AGGREGATION METHODS FOR NEARLY UNCOUPLED SYSTEMS

CARL D. MEYER

OUTLINE

- Intuitive overview of the Simon-Ando theory

\author{

- Intuitive derivation and discussion of basic A/D
}

Analysis of errors in
the basic A/D process

HISTORY

1961 H. Simon and A. Ando, Aggregation of variables in dynamic systems, Econometrica, Vol 29, pg. 111.

1975-1977 P. J. Courtois,

- Econometrica, Vol 43, pg. 691.
- Queueing And Computer System

Applications, Academic Press.
1982 F. Chatelin and W. Miranker, Acceleration by aggregation of successive approximation methods, LAA, Vol 43, pg. 17.

1984 McAllister, G. Stewart, W. Stewart, On a Rayleigh-Ritz refinement technique ... LAA, Vol 60, pg.1.

INITIAL

SHORT RUN EQUILIBRIUM

MID RUN RELATIVE EQUILIBRIUM

LONG RUN STEADY STATE

GOAL: Use short run info to estimate steady state

NEARLY UNCOUPLED MARKOV CHAINS

ASSUMPTIONS

- Large finite state space

- Homogeneous
- Irreducible
- Aperiodic
- Loosely connected

$$
\begin{aligned}
& \text { clusters (say } 3 \text { of them) } \\
& \text { of closely connected } \\
& \text { states }
\end{aligned}
$$

NOTATION

Partitioned Transition Matrix

- $\mathbf{P}=\left[\begin{array}{lll}\mathbf{P} & \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} & \mathbf{P}\end{array}\right] \quad e=\left[\begin{array}{l}: \\ \vdots\end{array}\right]$
$\mathrm{P} \quad \mathrm{Pe}=\mathrm{e}$

Initial Distribution
$0 \quad 0()=\left[\begin{array}{lllll}0 & () & 0 & () & 0 \\ 0 & ()\end{array}\right]$

After t Steps
$0 \quad 0()=\left[\begin{array}{llllll}0 & () & 0 & () & 0 & ()\end{array}\right]=0 \quad() P$

Steady State0()8
$0=[0$
0
0]

- $0=0 \quad \mathbf{P}$

SPECTRUM OF P

CENSORED CHAIN

OBSERVE PROCESS IN ONLY ONE CLUSTER

- $\mathbf{P}=\mathbf{P}$ (to directly)
- $\mathbf{q}=\mathbf{P}$ (reenter cluster at leave from)

CENSORED PROBABILITY

- $\mathbf{s}=\mathbf{p}+\mathbf{q}$

CENSORED TRANSITION MATRIX

- $\mathbf{S}=\mathbf{P}+\mathbf{Q}$
QUESTION
Q =???

Q =???

- $\mathbf{S}=\mathbf{P}+\mathbf{Q}$

$$
\mathbf{P}=\left[\begin{array}{lll}
\mathbf{P} & \mathbf{P} & \mathbf{P} \\
\mathbf{P} & \mathbf{P} & \mathbf{P} \\
\mathbf{P} & \mathbf{P} & \mathbf{P}
\end{array}\right]
$$

$\mathbf{Q}=\left[\begin{array}{lll}\mathbf{P} & \mathbf{P}\end{array}\right]\left[\begin{array}{rlrl}\mathbf{l}^{8} & \mathbf{P} & 8 & \mathbf{P} \\ 8 & \mathbf{P} & j^{8} & \mathbf{P}\end{array}\right]^{8}\left[\begin{array}{l}\mathbf{P} \\ \mathbf{P}\end{array}\right]$

- $\mathbf{S}=\mathbf{P}+\mathbf{P}_{6}\left(l^{8} \mathbf{P}\right)^{8} \mathbf{P}_{6}$

- Similarly for S and S

- S 's are called stochastic complements
- $\mathbf{S} \mathbf{S}=\mathbf{s}$
- $\mathbf{s}=$ steady state of censored chain

BACK TO SIMON-ANDO

$0 \quad()=\left[\begin{array}{lll}0 & () & 0\end{array} \quad() 0 \quad()\right]$

SIMON-ANDO (cont)

MID RUN RELATIVE EQUILIBRIUM

0 () 0 [9 ()S

9 ()
9

LONG RUN STEADY STATE

$$
0()^{8} \quad 0=\left[\begin{array}{llllll}
9 & S & 9 & \mathbf{S} & 9 & \mathbf{S}
\end{array}\right]
$$

THE PROBLEM

GOAL

- Estimate components in steady state

$$
0=\left[\begin{array}{llll}
9 \mathbf{S} & 9 \mathbf{S} & 9 & \mathbf{S}
\end{array}\right]
$$

WE KNOW

- s can be estimated by observing the short-run equlibrium

REMAINING QUESTION

- How can we estimate the coupling factors 9 ?

A/D OPERATORS

AGGREGATION (RESTRICTION)

- A:

DISAGGREGATION (PROLONGATION)

- D:
- DA = I

NATURAL CHOICES
e

- $\mathbf{A}_{3}=\boldsymbol{e}$
$\left[\begin{array}{lll}p & p & p\end{array}\right] A=\left[\begin{array}{lll}p e & p & p\end{array}\right]$

S

- $\mathbf{D}_{3}=\mathbf{s}$
s
$\left[\begin{array}{lll}9 & 9 & 9\end{array}\right] \mathbf{D}=\left[\begin{array}{lllll}9 & \mathbf{S} & 9 & \mathbf{S} & 9\end{array}\right]$

COUPLING MATRIX

DEFINITION

- C
$(\mathrm{DPA})_{3}={ }^{3} \mathrm{~S} P \mathrm{e}^{6}$

PROPERTIES

- \mathbf{C} is irreducible and stochastic
- For $0=[9 \mathbf{s} 9 \mathbf{s}$] and

$$
9=\left[\begin{array}{lll}
9 & 9 & 9
\end{array}\right]
$$

it must be the case that $9 \mathbf{C}=9$

CONCLUSION

- If we can estimate the \mathbf{s} 's, then we can estimate the 9 's by computing the steady state vector of \mathbf{C}.

BASIC A/D ALGORITHM

1. Somehow compute an estimate \mathbf{s} of each \mathbf{s}

VARIOUS POSSIBILITIES

- Iterate until short-run approximate equilibrium is detected (until spectral components associated with small 's are annihilated)

$$
0()=\left[\begin{array}{lll}
\mathbf{c} & \mathbf{c} & \mathbf{c}
\end{array}\right], \quad \mathbf{S}=\frac{\mathbf{c}}{\mathbf{c} \mathbf{e}}
$$

- Approximate each stochastic complement $\mathbf{S}=\mathbf{P}+\mathbf{P}_{6}\left(\mathbf{l}^{8} \mathbf{P}\right)^{8} \mathbf{P}_{6}$ with an irreducible S : Then compute $\mathbf{s}=$ normalized (left) Perron vector of \mathbf{S}

Question: How can \mathbf{S} be obtained?

Answer: Melt mass of \mathbf{P}_{6} into \mathbf{P}

$$
\begin{aligned}
\mathbf{S} & =\mathbf{P} \quad+\text { diagonal } \\
\mathbf{S} & =\mathbf{P} \quad+\text { low rank update } \\
\mathbf{S} & =\mathbf{P} \quad \text { (i.e., ignore } \mathbf{P}_{6} \text {) }
\end{aligned}
$$

A/D ALGORITHM (Cont)

2. Approximate the coupling matrix $\mathbf{C}=\left[\begin{array}{lll}\mathbf{s} & \mathbf{P} & \mathbf{e}\end{array}\right]$ by computing

- $\mathbf{C}=\left[\begin{array}{lll}\mathbf{s} & \mathbf{P} & \mathbf{e}\end{array}\right]$

3. Estimate the coupling vector $9=\left[\begin{array}{lll}9 & 9 & 9\end{array}\right]$ with the steady state vector of C

- Solve $9=9$ for $9=\left[\begin{array}{lll}9 & 9 & 9\end{array}\right]$

4. Approximate $0=[9$ S $9 \mathbf{S} 9 \mathbf{S}]$ with
$0 \quad 0=\left[\begin{array}{lll}9 & \mathbf{S} & 9 \\ \mathbf{S} & \mathbf{S}\end{array}\right]$

NOT TWICE

THE IDENTITY

- $\mathbf{s}=\frac{0}{0 \boldsymbol{e}}$

SUGGESTS ITERATING

- by using $0=[9 \mathbf{s} 9 \boldsymbol{s} 9 \mathbf{s}]$ from A/D
step to build approximation of \mathbf{s}
BUT

$$
\mathbf{S}=\frac{9 \mathbf{S}}{9 \mathbf{S} \mathbf{E}}=\frac{9 \mathbf{S}}{9}=\mathbf{S}
$$

SO WE MUST ITERATE IN OTHER WAYS

- Restart iteration with o () o
- A/D acts an accelerator to an underlying smoothing iteration (e.g., power method)
- Dynamic re-aggregation
- Use an A/D output o as input to different aggregation stratedgy

STANDARD A/D

DYNAMIC RE-AGGREGATION

1

STEP 3

(3)

4	
5	6

7

2

4
5

DYNAMIC RE-AGGRE. (alt)

1

(2)
(3)

BASIC A/D ERRORS

INTERMEDIATE ERRORS

$$
\begin{aligned}
& \mathbf{S} 0 \mathbf{S}=\mathbf{P}+\mathbf{P}_{6}\left(\mathbf{l}^{8} \mathbf{P}\right)^{8} \mathbf{P}_{6} \\
& { }_{4}=\left\|\mathbf{S}^{8} \mathbf{S}\right\| \quad{ }_{4}=\max _{4} \\
& \mathbf{s} \mathbf{S}=\mathbf{s} \\
& \text { - }=\left\|\mathbf{s}^{8} \mathbf{s}\right\| \quad=\max \\
& \mathbf{C}=\left[\begin{array}{lll}
\mathbf{s} & \mathbf{P} & \mathbf{e}
\end{array}\right] \circ \quad \mathbf{C}=\left[\begin{array}{lll}
\mathbf{s} & \mathbf{P} & \mathbf{e}
\end{array}\right] \\
& \text { - } \mathbf{F}=\mathbf{C l}^{8} \mathbf{C} \\
& \text { 9 } \mathbf{C}=9 \\
& \text { - } \mathbf{f}=9^{8} 9 \\
& 0=\left[\begin{array}{lll}
9 \mathbf{S} & 9 & \mathbf{S}
\end{array}\right]
\end{aligned}
$$

THE BIG ONE

$$
\| \begin{array}{lll|l}
0 & 8 & 0 & \text { ??? }
\end{array}
$$

BASIC A/D ERRORS

INTERMEDIATE ERRORS

$$
\begin{array}{lllll}
\mathbf{S} & 0 & \mathbf{S}=\mathbf{P}+\mathbf{P}_{6}\left(\mathbf{I}^{8} \mathbf{P}\right)^{8} & \mathbf{P}_{6} \\
\mathbf{O}_{4} & =\| \mathbf{S} & 8 & \mathbf{S} \| & 4
\end{array}=\max _{4} .
$$

s S =s $_$Perturbed E-Vector Problem

- $=\mathbf{s}^{8} \mathbf{s}=\max$
$\mathbf{C}=\left[\begin{array}{lll}\mathbf{s} & \mathbf{P} & \mathbf{e}\end{array}\right] \circ \quad \mathbf{C}=\left[\begin{array}{lll}\mathbf{s} & \mathbf{P} & \mathbf{e}\end{array}\right]$
- $F=C^{8} C$

9 C = $9 ~ \longleftarrow$ Perturbed E-Vector Problem

- $\mathbf{f}=9^{8} 9$
$0=\left[\begin{array}{lll}9 & \mathbf{S} & \mathbf{S} \\ \hline\end{array}\right]$

THE BIG ONE

$$
\left\|\begin{array}{lll||}
& 8 & 0
\end{array}\right\| \text { ??? }
$$

OLD ANALYSIS

MAXIMUM DEGREE OF COUPLING
 - $=\max \mathrm{P}_{6}$

COURTOIS (1977)
Theorem $\left\|\begin{array}{llll}0 & 8 & 0\end{array}\right\|=2 / 3()$
Proof Entire third chapter of his book

DIFFICULT POINTS

- Unknown Order Constants
- Asymptotic Arguments
- For validity, must be "small" but it can't be determined how small "small" must be.
- Cumbersome Notation \& Hard To Follow

DIFFERENT APPROACH

THE GROUP INVERSE

- $\mathbf{Q}=\left(\boldsymbol{I}^{8} \mathrm{P}\right) \quad$ multiplicative group
- $\mathbf{Q}=\mathbf{X}^{\mathbf{8}}[\mathbf{B}] \mathbf{X}, \mathbf{Q}^{\#}=\mathbf{X}^{\mathbf{8}}\left[\quad \mathbf{B}^{\mathbf{8}}\right] \mathbf{X}$
- AKA Kato's reduced resolvent at =

$$
\begin{aligned}
\left(I^{8} \mathbf{Q}\right)^{8} & =\frac{\mathbf{G}_{8}}{3 / 4}+\mathbf{G}+\mathbf{G}+\mathbf{G}+444 \\
\mathbf{G} & =\frac{\left.\mathbf{(I}^{8} \mathbf{Q}\right)^{8}}{0}=\mathbf{Q}^{\#}
\end{aligned}
$$

PERTURBED EIGENVECTORS

- Consider

$\mathbf{P}=\quad$ and
$P=$

- If $E=P^{8} \mathbf{P}$ then ${ }^{8}=E Q^{\#}$

ERGODICITY COEFFICIENTS

APPROXIMATE
(P) WITH
(P)(\mathbf{P} P) (\mathbf{P}) (\mathbf{P})
(P)$(P)=\quad$ if and only if $\quad \mathbf{P}=\boldsymbol{e}_{0}$

NORMS ALONE DON'T WORK WELL
P possibly

- $\mathbf{P}=$ for all \mathbf{P}

A PARTICULAR

$$
\begin{equation*}
(\mathrm{P})=\max -\sum_{=} \tag{8}
\end{equation*}
$$

PROPERTIES

$$
\begin{array}{rrrr}
(\mathbf{P} P) & (\mathbf{P}) & (\mathbf{P}) \\
(\mathbf{P}) & (= & \text { iff } & \text { pair of rows }) \\
(\mathbf{P})= & \text { if and only if } \quad \mathbf{P}=\mathbf{e}_{o}
\end{array}
$$

(P) (P) (Bauer, Deutch, Stoer, `69)

- FP

F
(P) whenever $\mathrm{Fe}=$
$F\left(\begin{array}{ll}l^{8} & P\end{array}\right)^{\#} \quad \frac{F}{8}(\mathbf{P})$
$\left(\mathrm{I}^{8} \mathrm{P}\right)^{\#}$ $\overline{\mathrm{min}=8} \quad$ (Seneta, `93)

ANALYSIS

LET

- $\mathbf{S}=\mathbf{P}+\boldsymbol{M}$ where $\mathbf{M}=\mathbf{P}_{\text {б }}$

SO THAT

- ${ }_{4} \mathbf{S}^{8} \mathbf{S}=\max \mathbf{P}_{6}$

PROPOSITION

If $\mathbf{S} \mathbf{S}=\mathbf{s}$ and \mathbf{S} is ${ }_{3}$
then

$$
\begin{aligned}
&={ }^{5} \mathbf{S} 8^{8} \mathbf{S}^{5} \quad 4\left(\mathbf{I}^{8} \mathbf{S}\right)^{\#} \\
&\left.=\min ^{\frac{5}{8}}\right)^{8}
\end{aligned}
$$

SPECTRUM SPLIT

$$
\begin{aligned}
& =5^{8} \mathbf{S}^{5} \\
& \begin{array}{ll}
\min & 8
\end{array} \\
& =\text { () } \\
& \text { - } \quad \text { max } \\
& \max
\end{aligned}
$$

COUPLING ERROR

PROPOSITION For

$$
\mathbf{F}=\mathbf{C}^{8} \mathbf{C}={ }^{3} \mathbf{S} P \mathrm{e}^{6} 8^{3} \mathbf{S} P \mathrm{e}^{6}
$$

- F

9 max

PROPOSITION For 9 C=9
BUT

- C = DPA and
$(\mathrm{D})=(\mathrm{A})=$

$$
(C)=(D P A) \quad(D) \quad(P) \quad(A)=(P)
$$

THEREFORE

$9 \quad 8 \quad 9$
$\frac{}{8 \quad(P)} 9 \frac{\max }{8(P)}$

TOTAL ERROR

$$
\begin{array}{llllll}
\text { EXACT } & 0 & =\left[\begin{array}{lllll}
9 & \mathbf{S} & 9 & \mathbf{S} & 9 \\
\mathbf{S}
\end{array}\right] \\
\text { A/D APPROX } & 0 & =\left[\begin{array}{lllll}
9 & \mathbf{S} & 9 & \mathbf{S} & 9
\end{array}\right]
\end{array}
$$

FOR 3 CLUSTERS

FOR k CLUSTERS

$$
\overline{8 \quad(P)}+
$$

$$
\frac{\max }{8(P)}+\max
$$

THIS IS A COMPUTABLE ESTIMATE

- All quantities in this estimate are directly available from \mathbf{P}

SUMMARY

The more uncoupled, the better A/D works

Not good for closely coupled problems

- Can be iterated, but not in obvious ways

- Analysis is not easy for iterative cases

