LSI vs Link Analysis (A Survey)

C. D. Meyer and A. N. Langville

Department of Mathematics North Carolina University Raleigh, NC

1/23/2003

• Vector Space Approach

• Vector Space Approach

• Link Analysis Approach

• Vector Space Approach

• Link Analysis Approach

• Hybrid Approachs

Goal

• Identify documents that best match users query

Background

Goal

• Identify documents that best match users query

Measures

- Recall = $\frac{#relevant \ docs \ retrieved}{#docs \ in \ collection}$ (max # useful docs)
- Precision = $\frac{#relevant \ docs \ retrieved}{#docs \ retrieved}$ (min # useless docs)

Background

Goal

• Identify documents that best match users query

Measures

- Recall = $\frac{#relevant \ docs \ retrieved}{#docs \ in \ collection}$ (max # useful docs)
- Precision = $\frac{#relevant \ docs \ retrieved}{#docs \ retrieved}$ (min # useless docs)

Do it FAST!

Harvard 1962 – 1965

• IBM 7094 & IBM 360

Harvard 1962 - 1965

• IBM 7094 & IBM 360

Gerard Salton

• Implemented at Cornell (1965 – 1970)

Harvard 1962 - 1965

• IBM 7094 & IBM 360

Gerard Salton

- Implemented at Cornell (1965 1970)
- Based on matrix methods

Start With Dictionary of Terms

• Single words — or short phrases (e.g., *landing gear*)

Start With Dictionary of Terms

• Single words — or short phrases (e.g., *landing gear*)

Index Each Document (by human or by computer)

• Count f_{ij} = # times term *i* appears in document *j*

Start With Dictionary of Terms

• Single words — or short phrases (e.g., *landing gear*)

Index Each Document (by human or by computer)

• Count f_{ij} = # times term *i* appears in document *j*

Term–Document Matrix

Start With Dictionary of Terms

• Single words — or short phrases (e.g., *landing gear*)

Index Each Document (by human or by computer)

• Count f_{ij} = # times term *i* appears in document *j*

Term–Document Matrix

• $\mathsf{A} \geq 0$

Start With Dictionary of Terms

• Single words — or short phrases (e.g., *landing gear*)

Index Each Document (by human or by computer)

• Count f_{ij} = # times term *i* appears in document *j*

Term–Document Matrix

Features

- $\mathsf{A} \geq 0$
- A can be really big

Start With Dictionary of Terms

• Single words — or short phrases (e.g., *landing gear*)

Index Each Document (by human or by computer)

• Count f_{ij} = # times term *i* appears in document *j*

Term–Document Matrix

Features

- $\mathsf{A} \geq 0$
- A can be really big
- A is sparse but otherwise unstructured

Start With Dictionary of Terms

• Single words — or short phrases (e.g., *landing gear*)

Index Each Document (by human or by computer)

• Count f_{ij} = # times term *i* appears in document *j*

Term–Document Matrix

Features

- $\mathsf{A} \geq 0$
- A can be really big
- A is sparse but otherwise unstructured
- A contains a lot of uncertainty

Query Vector

•
$$\mathbf{q}^T = (q_1, q_2, \dots, q_m)$$
 where $q_i = \begin{cases} 1 & \text{if Term } i \text{ is requested} \\ \mathbf{0} & \text{if not} \end{cases}$

Query Vector

• $\mathbf{q}^T = (q_1, q_2, \dots, q_m)$ where $q_i = \begin{cases} 1 & \text{if Term } i \text{ is requested} \\ \mathbf{0} & \text{if not} \end{cases}$

How Close is the Query to Each Document?

Query Vector

• $\mathbf{q}^T = (q_1, q_2, \dots, q_m)$ where $q_i = \begin{cases} 1 & \text{if Term } i \text{ is requested} \\ 0 & \text{if not} \end{cases}$

How Close is the Query to Each Document?

• i.e., how close is **q** to each column A_i ?

Query Vector

• $\mathbf{q}^T = (q_1, q_2, \dots, q_m)$ where $q_i = \begin{cases} 1 & \text{if Term } i \text{ is requested} \\ 0 & \text{if not} \end{cases}$

How Close is the Query to Each Document?

• i.e., how close is **q** to each column A_i ?

Query Vector

• $\mathbf{q}^T = (q_1, q_2, \dots, q_m)$ where $q_i = \begin{cases} 1 & \text{if Term } i \text{ is requested} \\ 0 & \text{if not} \end{cases}$

How Close is the Query to Each Document?

• i.e., how close is **q** to each column **A**_i?

Query Vector

• $\mathbf{q}^T = (q_1, q_2, \dots, q_m)$ where $q_i = \begin{cases} 1 & \text{if Term } i \text{ is requested} \\ 0 & \text{if not} \end{cases}$

How Close is the Query to Each Document?

• i.e., how close is **q** to each column A_i ?

$$\|\mathbf{q} - \mathbf{A}_1\| < \|\mathbf{q} - \mathbf{A}_2\| \text{ but } \theta_2 < \theta_1$$
$$Use \ \delta_i = \cos \theta_i = \frac{\mathbf{q}^T \mathbf{A}_i}{\|\mathbf{q}\| \|\mathbf{A}_i\|}$$

Rank documents by size of δ_i

Query Vector

• $\mathbf{q}^T = (q_1, q_2, \dots, q_m)$ where $q_i = \begin{cases} 1 & \text{if Term } i \text{ is requested} \\ 0 & \text{if not} \end{cases}$

How Close is the Query to Each Document?

• i.e., how close is **q** to each column **A**_i?

A Defect

• If the term *bank* occurs once in Doc 1 but twice in Doc 2, and if $||\mathbf{A}_1|| \approx ||\mathbf{A}_2||$, then a query containing only *bank* produces $\delta_2 \approx 2\delta_1$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

A Defect

• If the term *bank* occurs once in Doc 1 but twice in Doc 2, and if $||\mathbf{A}_1|| \approx ||\mathbf{A}_2||$, then a query containing only *bank* produces $\delta_2 \approx 2\delta_1$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set
$$a_{ij} = \log(1 + f_{ij})$$

(other weights also possible)

A Defect

• If the term *bank* occurs once in Doc 1 but twice in Doc 2, and if $||\mathbf{A}_1|| \approx ||\mathbf{A}_2||$, then a query containing only *bank* produces $\delta_2 \approx 2\delta_1$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set $a_{ij} = \log(1 + f_{ij})$ (other weights also possible)

Query Weights

• Terms *Boeing* and *airplanes* not equally important in queries

A Defect

• If the term *bank* occurs once in Doc 1 but twice in Doc 2, and if $||\mathbf{A}_1|| \approx ||\mathbf{A}_2||$, then a query containing only *bank* produces $\delta_2 \approx 2\delta_1$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set $a_{ij} = \log(1 + f_{ij})$ (other weights also possible)

Query Weights

- Terms *Boeing* and *airplanes* not equally important in queries
- Importance of Term *i* tends to be inversely proportional to $\nu_i = \#$ Docs containing Term *i*

A Defect

• If the term *bank* occurs once in Doc 1 but twice in Doc 2, and if $||\mathbf{A}_1|| \approx ||\mathbf{A}_2||$, then a query containing only *bank* produces $\delta_2 \approx 2\delta_1$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set $a_{ij} = \log(1 + f_{ij})$ (other weights also possible)

Query Weights

- Terms *Boeing* and *airplanes* not equally important in queries
- Importance of Term *i* tends to be inversely proportional to $\nu_i = \#$ Docs containing Term *i*

To Compensate

• Set
$$q_i = \begin{cases} \log(n/\nu_i) & \text{if } \nu_i \neq 0 \\ 0 & \text{if } \nu_i = 0 \end{cases}$$

(other weights also possible)

Ambiguity in Vocabulary

Ambiguity in Vocabulary

• e.g., A plane could be \cdots

Ambiguity in Vocabulary

- e.g., A plane could be \cdots
- A flat geometrical object

Ambiguity in Vocabulary

- e.g., A plane could be \cdots
- A flat geometrical object
- A woodworking tool

Ambiguity in Vocabulary

- e.g., A plane could be \cdots
- A flat geometrical object
- A woodworking tool
- A Boeing product

Ambiguity in Vocabulary

- e.g., A *plane* could be ···
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

• No two authors write the same way

Ambiguity in Vocabulary

- e.g., A *plane* could be
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

- No two authors write the same way
- One author may write car and laptop

Ambiguity in Vocabulary

- e.g., A *plane* could be
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

- No two authors write the same way
- One author may write *car* and *laptop*
- Another author may write *automobile* and *portable*

Ambiguity in Vocabulary

- e.g., A *plane* could be
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

- No two authors write the same way
- One author may write *car* and *laptop*
- Another author may write *automobile* and *portable*

Variation in Indexing Conventions

- No two people index documents the same way
- Computer indexing is inexact and can be unpredictable

In Theory — it's easy

In Theory — it's easy

• Weight terms and normalize cols — Make $\|\mathbf{A}_i\| = 1$

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Theory — it's easy

- Weight terms and normalize cols Make $||\mathbf{A}_i|| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

• Suppose query = *gas*

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

- Suppose query = *gas*
- D_1 indexed by gas, car, tire

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

- Suppose query = *gas*
- D_1 indexed by gas, car, tire

(found)

In Theory — it's easy

- Weight terms and normalize cols Make $||\mathbf{A}_i|| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

- Suppose query = *gas*
- D_1 indexed by gas, car, tire

(found)

• D_2 indexed automobile, fuel, and tire

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

- Suppose query = *gas*
- D_1 indexed by gas, car, tire
- D_2 indexed automobile, fuel, and tire

(found) (missed)

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

- Suppose query = *gas*
- D_1 indexed by gas, car, tire
- D_2 indexed automobile, fuel, and tire

(found) (missed)

Somehow Reveal Latent Connections

• Find D_2 by making the connection through *tire*

In Theory — it's easy

- Weight terms and normalize cols Make $\|\mathbf{A}_i\| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

- Suppose query = *gas*
- D_1 indexed by gas, car, tire
- D_2 indexed automobile, fuel, and tire

(found) (missed)

Somehow Reveal Latent Connections

- Find D_2 by making the connection through *tire*
- Do it *FAST*!

In Theory — it's easy

- Weight terms and normalize cols Make $||\mathbf{A}_i|| = 1$
- For each new query, weight and normalize Make $\|\mathbf{q}\| = 1$
- Compute $\delta_i = \cos \theta_i = (\mathbf{q}^T \mathbf{A})_i$ to return the most relevant docs

In Practice — it's not so easy

- Suppose query = *gas*
- D_1 indexed by gas, car, tire
- D_2 indexed automobile, fuel, and tire

(found) (missed)

Somehow Reveal Latent Connections

- Find D_2 by making the connection through *tire*
- Do it *FAST*!
 - Data compression

Goal

• Reveal hidden patterns

Goal

- Reveal hidden patterns
- Compress the data

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

— Find
$$y_k$$
 so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
 - Find y_k so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)

- $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of **x** in direction of W_k (if \mathcal{B} o.n.)

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

— Find y_k so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)

— $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of **x** in direction of W_k (if \mathcal{B} o.n.)

- $\mathbf{x} = \mathbf{W}\mathbf{y}$ where $\mathbf{W} = (W_0 | W_1 | \cdots | W_{n-1})$

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

- Find y_k so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.) - $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of \mathbf{x} in direction of W_k (if \mathcal{B} o.n.) - $\mathbf{x} = \mathbf{W}\mathbf{y}$ where $\mathbf{W} = (W_0 | W_1 | \cdots | W_{n-1})$ - $\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$ (y=W*x if \mathcal{B} o.n.)

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

- Find
$$y_k$$
 so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)
- $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of \mathbf{x} in direction of W_k (if \mathcal{B} o.n.)
- $\mathbf{x} = \mathbf{W}\mathbf{y}$ where $\mathbf{W} = (W_0 | W_1 | \cdots | W_{n-1})$
- $\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$ ($\mathbf{y}=\mathbf{W}^*\mathbf{x}$ if \mathcal{B} o.n.)

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

- Find
$$y_k$$
 so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)
- $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of \mathbf{x} in direction of W_k (if \mathcal{B} o.n.)
- $\mathbf{x} = \mathbf{W}\mathbf{y}$ where $\mathbf{W} = (W_0 | W_1 | \cdots | W_{n-1})$
- $\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$ (y=W*x if \mathcal{B} o.n.)

•
$$\mathbf{W} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega \end{bmatrix}_{n \times n} \omega = \mathbf{e}^{2\pi \mathbf{i}/n}$$

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

- Find
$$y_k$$
 so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)
- $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of \mathbf{x} in direction of W_k (if \mathcal{B} o.n.)
- $\mathbf{x} = \mathbf{W}\mathbf{y}$ where $\mathbf{W} = (W_0 | W_1 | \cdots | W_{n-1})$
- $\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$ ($\mathbf{y}=\mathbf{W}^*\mathbf{x}$ if \mathcal{B} o.n.)

•
$$\mathbf{W} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega \end{bmatrix}_{n \times n} \omega = \mathbf{e}^{2\pi \mathbf{i}/n}, \quad W_k = \frac{\mathbf{e}^{2\pi \mathbf{i}k\mathbf{t}}}{2}$$

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

- Find
$$y_k$$
 so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)
- $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of \mathbf{x} in direction of W_k (if \mathcal{B} o.n.)
- $\mathbf{x} = \mathbf{W}\mathbf{y}$ where $\mathbf{W} = (W_0 | W_1 | \cdots | W_{n-1})$
- $\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$ ($\mathbf{y}=\mathbf{W}^*\mathbf{x}$ if \mathcal{B} o.n.)

•
$$\mathbf{W} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega \end{bmatrix}_{n \times n} \omega = \mathbf{e}^{2\pi \mathbf{i}/n}, \quad W_k = \frac{\mathbf{e}^{2\pi \mathbf{i}k\mathbf{t}}}{2}$$

•
$$W_k + W_{n-k} = \cos 2\pi k \mathbf{t}$$

New Basis $B = \{W_0, W_1, ..., W_{n-1}\}$

• Find coordinates of \mathbf{x} with respect to \mathcal{B}

- Find
$$y_k$$
 so that $\mathbf{x} = \sum y_k W_k$ (Fourier expansion if \mathcal{B} o.n.)
- $y_k = \langle \mathbf{W}_k | \mathbf{x} \rangle$ = amount of \mathbf{x} in direction of W_k (if \mathcal{B} o.n.)
- $\mathbf{x} = \mathbf{W}\mathbf{y}$ where $\mathbf{W} = (W_0 | W_1 | \cdots | W_{n-1})$
- $\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$ ($\mathbf{y}=\mathbf{W}^*\mathbf{x}$ if \mathcal{B} o.n.)

•
$$\mathbf{W} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega \end{bmatrix}_{n \times n} \omega = \mathbf{e}^{2\pi \mathbf{i}/n}, \quad W_k = \frac{\mathbf{e}^{2\pi \mathbf{i}k\mathbf{t}}}{2}$$

•
$$W_k + W_{n-k} = \cos 2\pi k \mathbf{t}$$

•
$$W_k - W_{n-k} = i \sin 2\pi k t$$

Making The Change

Making The Change

Recall

•
$$\mathbf{x} = \sum y_k W_k = \mathbf{W} \mathbf{y}$$

Making The Change

Recall

•
$$\mathbf{x} = \sum y_k W_k = \mathbf{W} \mathbf{y}$$

•
$$\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$$

Making The Change

Recall

•
$$\mathbf{x} = \sum y_k W_k = \mathbf{W} \mathbf{y}$$

•
$$\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$$

 $W^{-1} = (4/n)\overline{W} = Discrete Fourier Transform$

Making The Change

Recall

•
$$\mathbf{x} = \sum y_k W_k = \mathbf{W} \mathbf{y}$$

• $\mathbf{y} = \mathbf{W}^{-1}\mathbf{x}$

$W^{-1} = (4/n)\overline{W} = Discrete Fourier Transform$

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2\pi\mathrm{i}/n} = \overline{\omega}$$

• Only 4 are significant: $y_{80} = y_{432} = 1$ and $y_{50} = -2i = -y_{462}$

• $\mathbf{X} = \sum y_k W_k = \mathbf{1} W_{80} + \mathbf{1} W_{432} - \mathbf{2} i W_{50} + \mathbf{2} i W_{462} + \sum \varepsilon_j W_j$

• Only 4 are significant: $y_{80} = y_{432} = 1$ and $y_{50} = -2i = -y_{462}$

• $\mathbf{X} = \sum y_k W_k = \mathbf{1} W_{80} + \mathbf{1} W_{432} - \mathbf{2} i W_{50} + \mathbf{2} i W_{462} + \sum \varepsilon_j W_j$

Small components (noise) are nondirectional

• $\mathbf{X} = \sum y_k W_k = \mathbf{1} W_{80} + \mathbf{1} W_{432} - \mathbf{2} i W_{50} + \mathbf{2} i W_{462} + \sum \varepsilon_j W_j$

- $\mathbf{X} = \sum y_k W_k = \mathbf{1} W_{80} + \mathbf{1} W_{432} \mathbf{2} i W_{50} + \mathbf{2} i W_{462} + \sum \varepsilon_j W_j$
- $\widetilde{\mathbf{X}} = (W_{80} + W_{432}) 2i(W_{50} W_{462})$

- $\mathbf{X} = \sum y_k W_k = 1W_{80} + 1W_{432} 2iW_{50} + 2iW_{462} + \sum \varepsilon_j W_j$
- $\widetilde{\mathbf{X}} = (W_{80} + W_{432}) 2i(W_{50} W_{462})$
- *n* = **5**12
- $\widetilde{\mathbf{X}} = (W_{80} + W_{n-80}) 2i(W_{50} W_{n-50})$

- $\mathbf{X} = \sum y_k W_k = \mathbf{1} W_{80} + \mathbf{1} W_{432} \mathbf{2} i W_{50} + \mathbf{2} i W_{462} + \sum \varepsilon_j W_j$
- $\widetilde{\mathbf{x}} = (W_{80} + W_{432}) 2i(W_{50} W_{462})$

• *n* = **5**12

• $\tilde{\mathbf{X}} = (W_{80} + W_{n-80}) - 2i(W_{50} - W_{n-50})$ Compressed (512-4)

• $\mathbf{X} = \sum y_k W_k = 1W_{80} + 1W_{432} - 2iW_{50} + 2iW_{462} + \sum \varepsilon_j W_j$

•
$$\widetilde{\mathbf{x}} = (W_{80} + W_{432}) - 2i(W_{50} - W_{462})$$

• *n* = **512**

•
$$\widetilde{\mathbf{x}} = (W_{80} + W_{n-80}) - 2i(W_{50} - W_{n-50})$$
 Compressed (512 \rightarrow 4)
- $W_k + W_{n-k} = \cos 2\pi k \mathbf{t}$
- $W_k - W_{n-k} = i \sin 2\pi k \mathbf{t}$

• $\mathbf{X} = \sum y_k W_k = \mathbf{1} W_{80} + \mathbf{1} W_{432} - \mathbf{2} i W_{50} + \mathbf{2} i W_{462} + \sum \varepsilon_j W_j$

•
$$\widetilde{\mathbf{X}} = (W_{80} + W_{432}) - 2i(W_{50} - W_{462})$$

• *n* = **512**

•
$$\widetilde{\mathbf{X}} = (W_{80} + W_{n-80}) - 2i(W_{50} - W_{n-50})$$
 Compressed (512 \rightarrow 4)
- $W_k + W_{n-k} = \cos 2\pi k \mathbf{t}$
- $W_k - W_{n-k} = i \sin 2\pi k \mathbf{t}$

• $\tilde{\mathbf{x}} = \cos 2\pi 80\mathbf{t} + 2\sin 2\pi 50\mathbf{t}$

• $\mathbf{X} = \sum y_k W_k = 1W_{80} + 1W_{432} - 2iW_{50} + 2iW_{462} + \sum \varepsilon_j W_j$

•
$$\widetilde{\mathbf{X}} = (W_{80} + W_{432}) - 2i(W_{50} - W_{462})$$

• *n* = 512

•
$$\widetilde{\mathbf{X}} = (W_{80} + W_{n-80}) - 2i(W_{50} - W_{n-50})$$
 Compressed (512 \rightarrow 4)
- $W_k + W_{n-k} = \cos 2\pi k \mathbf{t}$
- $W_k - W_{n-k} = i \sin 2\pi k \mathbf{t}$
• $\widetilde{\mathbf{X}} = \cos 2\pi 80\mathbf{t} + 2 \sin 2\pi 50\mathbf{t}$ Cleaned

Cleaned

• $\mathbf{X} = \sum y_k W_k = \mathbf{1} W_{80} + \mathbf{1} W_{432} - \mathbf{2} i W_{50} + \mathbf{2} i W_{462} + \sum \varepsilon_j W_j$

•
$$\widetilde{\mathbf{X}} = (W_{80} + W_{432}) - 2i(W_{50} - W_{462})$$

• *n* = **512**

•
$$\tilde{\mathbf{x}} = (W_{80} + W_{n-80}) - 2i(W_{50} - W_{n-50})$$
 Compressed (512 \rightarrow 4)
- $W_k + W_{n-k} = \cos 2\pi k \mathbf{t}$
- $W_k - W_{n-k} = i \sin 2\pi k \mathbf{t}$

- $\tilde{\mathbf{X}} = \cos 2\pi 80\mathbf{t} + 2\sin 2\pi 50\mathbf{t}$ Cleaned
- $\mathbf{x} = \cos 2\pi 80\mathbf{t} + 2\sin 2\pi 50\mathbf{t} + \mathbf{noise}$

Original Data

Cleaned & Compressed Data

 $\widetilde{\mathbf{x}} = \mathbf{x} - \text{noise} = (W_{80} + W_{432}) - 2i(W_{50} - W_{462})$

 $\cos 2\pi 80t + 2\sin 2\pi 50t$

Matrix–Vector Product

$$\mathbf{y} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2\pi\mathrm{i}/n}$$

Matrix–Vector Product

$$\mathbf{y} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2\pi\mathrm{i}/n}$$

Simple in Theory, But ····

Matrix–Vector Product

$$\mathbf{y} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2\pi\mathrm{i}/n}$$

Simple in Theory, But ····

• Must do it *FAST*!

Matrix–Vector Product

$$\mathbf{y} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2\pi\mathrm{i}/n}$$

Simple in Theory, But ····

• Must do it *FAST*!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

Matrix–Vector Product

$$\mathbf{y} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2\pi\mathrm{i}/n}$$

Simple in Theory, But ····

• Must do it *FAST*!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

•
$$\mathbf{F}_n = \mathbf{B}_n (\mathbf{I}_2 \otimes \mathbf{F}_{n/2}) \mathbf{P}_n$$
 $\mathbf{B}_n = \begin{bmatrix} \mathbf{I}_{n/2} & \mathbf{D}_{n/2} \\ \mathbf{I}_{n/2} & -\mathbf{D}_{n/2} \end{bmatrix}$ $\mathbf{D}_{n/2} = \begin{bmatrix} \mathbf{1} & \xi & \xi^2 \\ \xi^2 & \xi^2 & \xi^2 \end{bmatrix}$

Matrix–Vector Product

$$\mathbf{y} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2 \pi \mathrm{i}/n}$$

Simple in Theory, But ····

• Must do it *FAST*!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

•
$$\mathbf{F}_n = \mathbf{B}_n (\mathbf{I}_2 \otimes \mathbf{F}_{n/2}) \mathbf{P}_n$$
 $\mathbf{B}_n = \begin{bmatrix} \mathbf{I}_{n/2} & \mathbf{D}_{n/2} \\ \mathbf{I}_{n/2} & -\mathbf{D}_{n/2} \end{bmatrix}$ $\mathbf{D}_{n/2} = \begin{bmatrix} \mathbf{1}_{-\xi} & \xi^2 \\ & \xi^2 \end{bmatrix}$

• FFT changes n^2 flop requirement into $(n/2) \log_2 n$

Matrix–Vector Product

$$\mathbf{y} = \frac{2}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \xi & \xi^2 & \cdots & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \cdots & \xi^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$\xi = \mathrm{e}^{-2\pi\mathrm{i}/n}$$

Simple in Theory, But ····

• Must do it *FAST*!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

•
$$\mathbf{F}_n = \mathbf{B}_n (\mathbf{I}_2 \otimes \mathbf{F}_{n/2}) \mathbf{P}_n$$
 $\mathbf{B}_n = \begin{bmatrix} \mathbf{I}_{n/2} & \mathbf{D}_{n/2} \\ \mathbf{I}_{n/2} & -\mathbf{D}_{n/2} \end{bmatrix}$ $\mathbf{D}_{n/2} = \begin{bmatrix} \mathbf{1}_{-\xi} & \xi^2 \\ \xi^2 & \xi^2 \end{bmatrix}$

• FFT changes n^2 flop requirement into $(n/2) \log_2 n$

"The most valuable numerical algorithm in our lifetime."

-G. Strang, Bulletin of the AMS, April, 1993.

Almost the Same Problem

• Reveal hidden patterns & evaluate $\mathbf{q}^T \mathbf{A}$ fast

Almost the Same Problem

• Reveal hidden patterns & evaluate $\mathbf{q}^T \mathbf{A}$ fast (clean & compress)

Almost the Same Problem

• Reveal hidden patterns & evaluate $q^T A$ fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

•
$$\mathbf{A} = \sum_{i,j} a_{ij} \mathbf{E}_{ij}$$
 $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^T$

Almost the Same Problem

• Reveal hidden patterns & evaluate $q^T A$ fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

•
$$\mathbf{A} = \sum_{i,j} a_{ij} \mathbf{E}_{ij}$$
 $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^T$

Change Basis to $\mathcal{B} = \{Z_1, Z_2, \ldots\}$ That Can Squeeze & Clean

•
$$\mathbf{A} = \sum \sigma_i \mathbf{Z}_i$$
 (Fourier Expansion)

Almost the Same Problem

• Reveal hidden patterns & evaluate $q^T A$ fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

•
$$\mathbf{A} = \sum_{i,j} a_{ij} \mathbf{E}_{ij}$$
 $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^T$

Change Basis to $\mathcal{B} = \{Z_1, Z_2, ...\}$ That Can Squeeze & Clean

- $\mathbf{A} = \sum \sigma_i \mathbf{Z}_i$ (Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_i = \langle \mathbf{Z}_i | \mathbf{A} \rangle = \text{amount of } \mathbf{A} \text{ in direction of } \mathbf{Z}_i$

Almost the Same Problem

• Reveal hidden patterns & evaluate $\mathbf{q}^T \mathbf{A}$ fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

•
$$\mathbf{A} = \sum_{i,j} a_{ij} \mathbf{E}_{ij}$$
 $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^T$

Change Basis to $\mathcal{B} = \{Z_1, Z_2, ...\}$ That Can Squeeze & Clean

- $\mathbf{A} = \sum \sigma_i \mathbf{Z}_i$ (Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_i = \langle \mathbf{Z}_i | \mathbf{A} \rangle = \text{amount of } \mathbf{A} \text{ in direction of } \mathbf{Z}_i$

Matrix Factorizations: $\mathbf{A} = \mathbf{U}\mathbf{R}\mathbf{V}^T = \sum r_{ij}\mathbf{u}_i\mathbf{v}_j^T = \sum r_{ij}\mathbf{Z}_{ij}$

Almost the Same Problem

• Reveal hidden patterns & evaluate $q^T A$ fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

•
$$\mathbf{A} = \sum_{i,j} a_{ij} \mathbf{E}_{ij}$$
 $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^T$

Change Basis to $\mathcal{B} = \{Z_1, Z_2, \ldots\}$ That Can Squeeze & Clean

- $\mathbf{A} = \sum \sigma_i \mathbf{Z}_i$ (Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_i = \langle \mathbf{Z}_i | \mathbf{A} \rangle = \text{amount of } \mathbf{A} \text{ in direction of } \mathbf{Z}_i$

Matrix Factorizations: $A = URV^T = \sum r_{ij}u_iv_j^T = \sum r_{ij}Z_{ij}$

• Represent data with as few directions Z_i as possible

Almost the Same Problem

• Reveal hidden patterns & evaluate $q^T A$ fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

•
$$\mathbf{A} = \sum_{i,j} a_{ij} \mathbf{E}_{ij}$$
 $\mathbf{E}_{ij} = \mathbf{e}_i \mathbf{e}_j^T$

Change Basis to $\mathcal{B} = \{Z_1, Z_2, ...\}$ That Can Squeeze & Clean

- $\mathbf{A} = \sum \sigma_i \mathbf{Z}_i$ (Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_i = \langle \mathbf{Z}_i | \mathbf{A} \rangle = \text{amount of } \mathbf{A} \text{ in direction of } \mathbf{Z}_i$

Matrix Factorizations: $A = URV^T = \sum r_{ij}u_iv_j^T = \sum r_{ij}Z_{ij}$

• Represent data with as few directions Z_i as possible

• SVD
$$\Rightarrow \mathbf{R} = \begin{bmatrix} \sigma_1 & & \\ & \sigma_r & \\ & & \sigma_n \end{bmatrix} \Rightarrow \mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{Z}_i, \quad \langle \mathbf{Z}_i | \mathbf{Z}_j \rangle = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$$

Assume Nondirectional Uncertainty

Assume Nondirectional Uncertainty

• Drop small σ_i 's — replace **A** with $\widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i \mathbf{Z}_i$

Assume Nondirectional Uncertainty

- Drop small σ_i 's replace **A** with $\widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i \mathbf{Z}_i$
- Lose only small part of relevance

Assume Nondirectional Uncertainty

- Drop small σ_i 's replace **A** with $\widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i \mathbf{Z}_i$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

Assume Nondirectional Uncertainty

- Drop small σ_i 's replace **A** with $\widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i \mathbf{Z}_i$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

Assume Nondirectional Uncertainty

- Drop small σ_i 's replace **A** with $\widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i \mathbf{Z}_i$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

• Normalize

— $\mathbf{q} \leftarrow \mathbf{q} / \|\mathbf{q}\|$

Assume Nondirectional Uncertainty

- Drop small σ_i 's replace **A** with $\widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i \mathbf{Z}_i$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

• Normalize

$$\|\mathbf{p}\| \setminus \mathbf{p} \to \mathbf{p}$$

-
$$\widetilde{\mathbf{A}} \leftarrow \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{D} = \sum_{i=1}^k \sigma_i \mathbf{u}_i \widetilde{\mathbf{v}}_i^T$$

Assume Nondirectional Uncertainty

- Drop small σ_i 's replace **A** with $\widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i \mathbf{Z}_i$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

• Normalize

$$\|\mathbf{p}\| \setminus \mathbf{p} \to \mathbf{p}$$

-
$$\widetilde{\mathbf{A}} \leftarrow \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{D} = \sum_{i=1}^k \sigma_i \mathbf{u}_i \widetilde{\mathbf{v}}_i^T$$

• Compare query to each document

-
$$\mathbf{q}^T \widetilde{\mathbf{A}} = \sum_{i=1}^k \sigma_i (\mathbf{q}^T \mathbf{u}_i) \widetilde{\mathbf{v}}_i^T = (\delta_1, \delta_2, \dots, \delta_n)$$

Advantages

Compression

A replaced with a few sing values & vectors (but dense)

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once
- SPEED!

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once
- SPEED!
 - Each query requires only a few inner products

$$\mathbf{q}^T \widetilde{\mathbf{A}}_{m \times n} = \sum_{i=1}^k \sigma_i (\mathbf{q}^T \mathbf{u}_i) \widetilde{\mathbf{v}}_i^T$$

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once
- SPEED!
 - Each query requires only a few inner products

$$\mathbf{q}^T \widetilde{\mathbf{A}}_{m \times n} = \sum_{i=1}^k \sigma_i (\mathbf{q}^T \mathbf{u}_i) \widetilde{\mathbf{v}}_i^T$$

- Latent semantic associations are made
 - Relevant docs not found by direct matching show up

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once
- SPEED!
 - Each query requires only a few inner products

$$\mathbf{q}^T \widetilde{\mathbf{A}}_{m \times n} = \sum_{i=1}^k \sigma_i (\mathbf{q}^T \mathbf{u}_i) \widetilde{\mathbf{v}}_i^T$$

- Latent semantic associations are made
 - Relevant docs not found by direct matching show up
 - Latent Semantic Indexing (LSI)

Advantages

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once
- SPEED!
 - Each query requires only a few inner products

$$\mathbf{q}^T \widetilde{\mathbf{A}}_{m \times n} = \sum_{i=1}^k \sigma_i (\mathbf{q}^T \mathbf{u}_i) \widetilde{\mathbf{v}}_i^T$$

- Latent semantic associations are made
 - Relevant docs not found by direct matching show up
 - Latent Semantic Indexing (LSI)

Disadvantages

Advantages

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once
- SPEED!
 - Each query requires only a few inner products

$$\mathbf{q}^T \widetilde{\mathbf{A}}_{m \times n} = \sum_{i=1}^k \sigma_i (\mathbf{q}^T \mathbf{u}_i) \widetilde{\mathbf{v}}_i^T$$

- Latent semantic associations are made
 - Relevant docs not found by direct matching show up
 - Latent Semantic Indexing (LSI)

Disadvantages

Adding & deleting docs requires updating & downdating SVD

Advantages

- Compression
 - A replaced with a few sing values & vectors (but dense)
 - They are determined & normalized only once
- SPEED!
 - Each query requires only a few inner products

$$\mathbf{q}^T \widetilde{\mathbf{A}}_{m \times n} = \sum_{i=1}^k \sigma_i (\mathbf{q}^T \mathbf{u}_i) \widetilde{\mathbf{v}}_i^T$$

- Latent semantic associations are made
 - Relevant docs not found by direct matching show up
 - Latent Semantic Indexing (LSI)

Disadvantages

- Adding & deleting docs requires updating & downdating SVD
- Determining optimal k is not easy (empirical tuning required)

Truncated URV Factorizations

Truncated URV Factorizations DFT — FFT

Truncated URV Factorizations

- DFT FFT
 - No compression no oscillatory components

Truncated URV Factorizations

DFT — FFT

• No compression — no oscillatory components

Haar Transform
$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $H_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$

Truncated URV Factorizations

DFT — FFT

• No compression — no oscillatory components

Haar Transform
$$\mathbf{H}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $\mathbf{H}_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$
• $\mathbf{H}_n = (\mathbf{I}_2 \otimes \mathbf{H}_{n/2}) \mathbf{P}_n \begin{bmatrix} \mathbf{H}_{n/2} \\ \mathbf{I}_{n/2} \end{bmatrix} \Rightarrow \mathbf{H}_n \mathbf{x} \text{ is } Fast!$ (if $n=2^p$)

Truncated URV Factorizations

DFT — FFT

• No compression — no oscillatory components

Haar Transform
$$\mathbf{H}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $\mathbf{H}_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$
• $\mathbf{H}_n = (\mathbf{I}_2 \otimes \mathbf{H}_{n/2}) \mathbf{P}_n \begin{bmatrix} \mathbf{H}_{n/2} \\ \mathbf{I}_{n/2} \end{bmatrix} \Rightarrow \mathbf{H}_n \mathbf{X} \text{ is } Fast!$ (if $n=2^p$)
• Factor $\mathbf{A} = \mathbf{H}_m \mathbf{B} \mathbf{H}_n^T = \sum_{i,j} \beta_{ij} \mathbf{h}_i \mathbf{h}_j^T$ (h's only use -1, 0, 1)

_

Truncated URV Factorizations

DFT — FFT

No compression — no oscillatory components

Haar Transform
$$\mathbf{H}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $\mathbf{H}_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$
• $\mathbf{H}_n = (\mathbf{I}_2 \otimes \mathbf{H}_{n/2}) \mathbf{P}_n \begin{bmatrix} \mathbf{H}_{n/2} \\ \mathbf{I}_{n/2} \end{bmatrix}$ \Rightarrow $\mathbf{H}_n \mathbf{x}$ is *Fast!* (if $n=2^p$)

• Factor
$$\mathbf{A} = \mathbf{H}_m \mathbf{B} \mathbf{H}_n^T = \sum_{i,j} \beta_{ij} \mathbf{h}_i \mathbf{h}_j^T$$
 (h's only use -1, 0, 1)

— More than a few β_{ij} 's may be needed

Truncated URV Factorizations

DFT — FFT

No compression — no oscillatory components

Haar Transform
$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $H_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$

•
$$\mathbf{H}_n = (\mathbf{I}_2 \otimes \mathbf{H}_{n/2}) \mathbf{P}_n \begin{bmatrix} \mathbf{H}_{n/2} \\ & \mathbf{I}_{n/2} \end{bmatrix} \Rightarrow \mathbf{H}_n \mathbf{X} \text{ is } Fast! \quad (\text{if } n=2^p)$$

1)

• Factor
$$\mathbf{A} = \mathbf{H}_m \mathbf{B} \mathbf{H}_n^T = \sum_{i,j} \beta_{ij} \mathbf{h}_i \mathbf{h}_j^T$$
 (h's only use -1, 0,

- More than a few β_{ij} 's may be needed
- Needs padding if m or n not a power of 2

Truncated URV Factorizations

DFT — FFT

No compression — no oscillatory components

Haar Transform
$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $H_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$
 $H_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & -1 \end{bmatrix}$

•
$$\mathbf{H}_n = (\mathbf{I}_2 \otimes \mathbf{H}_{n/2}) \mathbf{P}_n \begin{bmatrix} \mathbf{I}_{n/2} \\ \mathbf{I}_{n/2} \end{bmatrix} \Rightarrow \mathbf{H}_n \mathbf{X} \text{ is } Fast!$$
 (if $n=2^p$)

- Factor $\mathbf{A} = \mathbf{H}_m \mathbf{B} \mathbf{H}_n^{\perp} = \sum_{i,j} \beta_{ij} \mathbf{n}_i \mathbf{n}_j^{\perp}$ (**h**'s only use -1, 0, 1)
- More than a few β_{ij} 's may be needed
- Needs padding if m or n not a power of 2

Semidiscrete Decomposition

(T. KOLDA AND D. O'LEARY, 1998) • Approximate $\mathbf{A} \approx \sum_{i=1}^{k} \alpha_i \mathbf{x}_i \mathbf{y}_i$ \mathbf{x}_i and \mathbf{y}_i only use -1, 0, or 1

Truncated URV Factorizations

DFT — FFT

No compression — no oscillatory components

Haar Transform
$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $H_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$

•
$$\mathbf{H}_n = (\mathbf{I}_2 \otimes \mathbf{H}_{n/2}) \mathbf{P}_n \begin{bmatrix} \mathbf{n}_{n/2} \\ & \mathbf{I}_{n/2} \end{bmatrix} \Rightarrow \mathbf{H}_n \mathbf{X} \text{ is } Fast!$$
 (if $n=2^p$)

- Factor $\mathbf{A} = \mathbf{H}_m \mathbf{B} \mathbf{H}_n^{I} = \sum_{i,j} \beta_{ij} \mathbf{h}_i \mathbf{h}_j^{I}$ (**h**'s only use -1, 0, 1)
 - More than a few β_{ij} 's may be needed
 - Needs padding if m or n not a power of 2

Semidiscrete Decomposition

(T. KOLDA AND D. O'LEARY, 1998) • Approximate $\mathbf{A} \approx \sum_{i=1}^{k} \alpha_i \mathbf{x}_i \mathbf{y}_i$ \mathbf{x}_i and \mathbf{y}_i only use -1, 0, or 1

Other Wavelet Transforms?

How To Take Advantage of Link Structure ?

How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
 - Robots crawl the web software does indexing

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
 - Robots crawl the web software does indexing
- Inverted file structure
 - $Term_1 \rightarrow P_i, P_j, \ldots$

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
 - Robots crawl the web software does indexing
- Inverted file structure

•

$$- Term_1 \to P_i, P_j, \dots$$

$$- Term_2 \rightarrow P_k, P_l, \dots$$

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
 - Robots crawl the web software does indexing
- Inverted file structure

-
$$Term_1 \rightarrow P_i, P_j, \ldots$$

- $Term_2 \rightarrow P_k, P_l, \ldots$
- Attach an importance rating to $P_i, P_j, P_k, P_l, \ldots$

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
 - Robots crawl the web software does indexing
- Inverted file structure

-
$$Term_1 \rightarrow P_i, P_j, \ldots$$

- $Term_2 \rightarrow P_k, P_l, \ldots$
- Attach an importance rating to $P_i, P_j, P_k, P_l, \ldots$
- Direct query matching

- $Q = Term_1, Term_2, \ldots$ produces $P_i, P_j, P_k, P_l, \ldots$

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
 - Robots crawl the web software does indexing
- Inverted file structure

$$- \quad Term_1 \to P_i, P_j, \dots$$

- $\operatorname{Term}_{2} \to P_{k}, P_{l}, \dots$:
- Attach an importance rating to $P_i, P_j, P_k, P_l, \ldots$
- Direct query matching

- $Q = Term_1, Term_2, \ldots$ produces $P_i, P_j, P_k, P_l, \ldots$

• Return $P_i, P_j, P_k, P_l, \dots$ to user in order of importance

Hubs & Authorities

(Jon Kleinberg 1998)

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

Hubs & Authorities

(Jon Kleinberg 1998)

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a "neighborhood graph" N is built

Hubs & Authorities

(Jon Kleinberg 1998)

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

- For each query a "neighborhood graph" N is built
- Hub and authority scores for nodes in N are computed

```
— Eigenvector computation
```

How To Measure "Importance"

Hubs & Authorities

(Jon Kleinberg 1998)

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

- For each query a "neighborhood graph" N is built
- Hub and authority scores for nodes in N are computed

— Eigenvector computation

• Works, but requires new graph for each query

How To Measure "Importance"

Hubs & Authorities

(Jon Kleinberg 1998)

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

- For each query a "neighborhood graph" N is built
- Hub and authority scores for nodes in N are computed

— Eigenvector computation

- Works, but requires new graph for each query
- Similar ideas in TEOMA.com

PageRank

PageRank

(Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P)

PageRank

- Your page P has some rank r(P)
- Adjust r(P) higher or lower depending on ranks of pages that point to P

PageRank

- Your page P has some rank r(P)
- Adjust r(P) higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links

PageRank

- Your page P has some rank r(P)
- Adjust r(P) higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links
 - One link to *P* from Yahoo! is important
 - Many links to P from me is not

PageRank

- Your page P has some rank r(P)
- Adjust r(P) higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links
 - One link to *P* from Yahoo! is important
 - Many links to P from me is not
- But if Yahoo! points to many places, the value of the link to P is diluted

The Definition

•
$$r(P) = \sum_{P \in \mathcal{B}_P} \frac{r(P)}{|P|}$$

- $\mathcal{B}_P = \{ \text{all pages pointing to } P \}$

- |P| = number of out links *from* P

The Definition

•
$$r(P) = \sum_{P \in \mathcal{B}_P} \frac{r(P)}{|P|}$$
 — $\mathcal{B}_P = \{ all \text{ pages pointing to } P \}$
— $|P| = number of out links from P$

- Start with $r_0(P_i) = 1/n$ for all pages P_1, P_2, \ldots, P_n
- Iteratively refine rankings for each page

The Definition

•
$$r(P) = \sum_{P \in \mathcal{B}_P} \frac{r(P)}{|P|}$$
 — $\mathcal{B}_P = \{ all \text{ pages pointing to } P \}$
— $|P| = number of out links from P$

- Start with $r_0(P_i) = 1/n$ for all pages P_1, P_2, \ldots, P_n
- Iteratively refine rankings for each page

$$- r_1(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_0(P)}{|P|}$$

The Definition

•
$$r(P) = \sum_{P \in \mathcal{B}_P} \frac{r(P)}{|P|}$$
 — $\mathcal{B}_P = \{ \text{all pages pointing to } P \}$
— $|P| = \text{number of out links from } P$

- Start with $r_0(P_i) = 1/n$ for all pages P_1, P_2, \ldots, P_n
- Iteratively refine rankings for each page

$$- r_1(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_0(P)}{|P|}$$
$$- r_2(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_1(P)}{|P|}$$

The Definition

•
$$r(P) = \sum_{P \in \mathcal{B}_P} \frac{r(P)}{|P|}$$
 — $\mathcal{B}_P = \{ all \text{ pages pointing to } P \}$
— $|P| = number of out links from P$

- Start with $r_0(P_i) = 1/n$ for all pages P_1, P_2, \ldots, P_n
- Iteratively refine rankings for each page

$$-r_1(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_0(P)}{|P|}$$
$$-r_2(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_1(P)}{|P|}$$
$$\vdots$$
$$r_{j+1}(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_j(P)}{|P|}$$

After Step j

• $\boldsymbol{\pi}_j^T = [r_j(P_1), r_j(P_2), \cdots, r_j(P_n)]$

After Step j

•
$$\pi_j^T = [r_j(P_1), r_j(P_2), \cdots, r_j(P_n)]$$

• $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ where $p_{ij} = \begin{cases} 1/|P_i| & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$

After Step j

•
$$\pi_j^T = [r_j(P_1), r_j(P_2), \dots, r_j(P_n)]$$

• $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ where $p_{ij} = \begin{cases} 1/|P_i| & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$
• PageRank = $\lim_{j \to \infty} \pi_j^T = \pi^T$ (provided limit exists)

After Step j

•
$$\pi_j^T = [r_j(P_1), r_j(P_2), \dots, r_j(P_n)]$$

• $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ where $p_{ij} = \begin{cases} 1/|P_i| & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$
• PageRank = $\lim_{j \to \infty} \pi_j^T = \pi^T$ (provided limit exists)

It's A Markov Chain

• $\mathbf{P} = [p_{ij}]$ is a stochastic matrix

(row sums = 1)

After Step j

•
$$\pi_j^T = [r_j(P_1), r_j(P_2), \dots, r_j(P_n)]$$

• $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ where $p_{ij} = \begin{cases} 1/|P_i| & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$
• PageRank = $\lim_{j \to \infty} \pi_j^T = \pi^T$ (provided limit exists)

It's A Markov Chain

•
$$\mathbf{P} = [p_{ij}]$$
 is a stochastic matrix

(row sums = 1)

• Each π_i^T (and π^T) is a probability vector

$$\left(\sum_i r_j(P_i) = 1\right)$$

After Step j

•
$$\pi_j^T = [r_j(P_1), r_j(P_2), \dots, r_j(P_n)]$$

• $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ where $p_{ij} = \begin{cases} 1/|P_i| & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$
• PageRank = $\lim_{j \to \infty} \pi_j^T = \pi^T$ (provided limit exists)

It's A Markov Chain

- $\mathbf{P} = [p_{ij}]$ is a stochastic matrix (row sums = 1)
- Each π_i^T (and π^T) is a probability vector

$$\left(\sum_i r_j(P_i) = \mathbf{1}\right)$$

• $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ is random walk on the graph defined by links

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

• Dead end page (nothing to click on)

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

- Dead end page (nothing to click on)
 - No convergence!

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

- Dead end page (nothing to click on)
 - No convergence!
- Could get trapped into a cycle $(P_i \rightarrow P_j \rightarrow P_i)$

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

- Dead end page (nothing to click on)
 - No convergence!
- Could get trapped into a cycle $(P_i \rightarrow P_j \rightarrow P_i)$
 - No convergence!

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

- Dead end page (nothing to click on)
 - No convergence!
- Could get trapped into a cycle $(P_i \rightarrow P_j \rightarrow P_i)$
 - No convergence!

Convergence

• Markov chain must be irreducible and aperiodic

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

- Dead end page (nothing to click on)
 - No convergence!
- Could get trapped into a cycle $(P_i \rightarrow P_i \rightarrow P_i)$
 - No convergence!

Convergence

• Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

- Dead end page (nothing to click on)
 - No convergence!
- Could get trapped into a cycle $(P_i \rightarrow P_j \rightarrow P_i)$
 - No convergence!

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

• Replace P by $\tilde{\mathbf{P}} = \alpha \mathbf{P} + (1 - \alpha) \mathbf{E}$ where $e_{ij} = 1/n$ $\alpha \approx .85$

Web Surfer Randomly Clicks On Links

(Back button not a link)

• Long-run proportion of time on page P_i is π_i

Problems

- Dead end page (nothing to click on)
 - No convergence!
- Could get trapped into a cycle $(P_i \rightarrow P_j \rightarrow P_i)$
 - No convergence!

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

- Replace P by $\tilde{\mathbf{P}} = \alpha \mathbf{P} + (1 \alpha) \mathbf{E}$ where $e_{ij} = 1/n$ $\alpha \approx .85$
 - Different E's and α 's allow customization & speedup

World's Largest Eigenvector Problem (C. Moler)

• Solve
$$\pi^T = \pi^T \mathbf{P}$$

(stationary distribution vector)

World's Largest Eigenvector Problem (C. Moler)

• Solve
$$\pi^T = \pi^T \mathbf{P}$$

• $\pi^T(\mathbf{I} - \mathbf{P}) = 0$

(stationary distribution vector)

(too big for direct solves)

World's Largest Eigenvector Problem (C. Moler)

- Solve $\pi^T = \pi^T \mathbf{P}$ (stationary distribution vector)
- $\pi^T (I P) = 0$ (too big for direct solves)
- Start with $\pi_0^T = \mathbf{e}/n$ and iterate $\pi_{j+1}^T = \pi_j^T \mathbf{P}$

(power method)

World's Largest Eigenvector Problem (C. Moler)

- Solve $\pi^T = \pi^T \mathbf{P}$ (stationary distribution vector)
- $\pi^T (I P) = 0$ (too big for direct solves)
- Start with $\pi_0^T = \mathbf{e}/n$ and iterate $\pi_{j+1}^T = \pi_j^T \mathbf{P}$

(power method)

Updating Is A Big Problem

• Link structure of web is extremely dynamic

World's Largest Eigenvector Problem (C. Moler)

- Solve $\pi^T = \pi^T \mathbf{P}$ (stationary distribution vector)
- $\pi^T (I P) = 0$ (too big for direct solves)
- Start with $\pi_0^T = \mathbf{e}/n$ and iterate $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ (power method)

- Link structure of web is extremely dynamic
 - Links on CNN point to different pages every day (hour)

World's Largest Eigenvector Problem (C. Moler)

- Solve $\pi^T = \pi^T \mathbf{P}$ (stationary distribution vector)
- $\pi^T (I P) = 0$ (too big for direct solves)
- Start with $\pi_0^T = \mathbf{e}/n$ and iterate $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ (power method)

- Link structure of web is extremely dynamic
 - Links on CNN point to different pages every day (hour)
 - Links are added and deleted every sec (milli-sec?)

World's Largest Eigenvector Problem (C. Moler)

- Solve $\pi^T = \pi^T \mathbf{P}$ (stationary distribution vector)
- $\pi^T (I P) = 0$ (too big for direct solves)
- Start with $\pi_0^T = \mathbf{e}/n$ and iterate $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ (power method)

- Link structure of web is extremely dynamic
 - Links on CNN point to different pages every day (hour)
 - Links are added and deleted every sec (milli-sec?)
- Google says every 3 to 4 weeks just start from scratch

World's Largest Eigenvector Problem (C. Moler)

- Solve $\pi^T = \pi^T \mathbf{P}$ (stationary distribution vector)
- $\pi^T (I P) = 0$ (too big for direct solves)
- Start with $\pi_0^T = \mathbf{e}/n$ and iterate $\pi_{j+1}^T = \pi_j^T \mathbf{P}$ (power method)

- Link structure of web is extremely dynamic
 - Links on CNN point to different pages every day (hour)
 - Links are added and deleted every sec (milli-sec?)
- Google says every 3 to 4 weeks just start from scratch
- Old results don't help to restart (even if size doesn't change)
 - Cutoff phenomenon in random walks (P. Diaconis, 1996)

FEATURES	LSI	LINK ANALYSIS

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns		

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed		

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed	B ⁻	

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed	B ⁻	A ⁺

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed	B ⁻	A+
Easy To Update		

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	А	С
Speed	B ⁻	A+
Easy To Update	D	

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	А	С
Speed	B ⁻	A+
Easy To Update	D	F (?↑?)

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed	B ⁻	A ⁺
Easy To Update	D	F (?↑?)
Scales Up		

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed	B ⁻	A ⁺
Easy To Update	D	F (?↑?)
Scales Up	D ⁻	

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed	B ⁻	A ⁺
Easy To Update	D	F (?↑?)
Scales Up	D ⁻	Α

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	Α	С
Speed	B ⁻	A ⁺
Easy To Update	D	F (?↑?)
Scales Up	D-	Α
Takes Advantage of Link Structure		

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	А	С
Speed	B ⁻	A ⁺
Easy To Update	D	F (?↑?)
Scales Up	D ⁻	Α
Takes Advantage of Link Structure	F	

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	А	С
Speed	B ⁻	A ⁺
Easy To Update	D	F (?↑?)
Scales Up	D ⁻	Α
Takes Advantage of Link Structure	F	A+

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	А	С
Speed	B ⁻	A+
Easy To Update	D	F (?↑?)
Scales Up	D^-	Α
Takes Advantage of Link Structure	F	A+

Goals

• Do better job using link structure to reveal hidden connections

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	А	С
Speed	B ⁻	A+
Easy To Update	D	F (?↑?)
Scales Up	D ⁻	Α
Takes Advantage of Link Structure	F	A+

Goals

- Do better job using link structure to reveal hidden connections
- Improve updating

The Idea

• Use link structure to define measure of page (doc) contiguity

— What's the "distance" from P_i to P_j ?

The Idea

- Use link structure to define measure of page (doc) contiguity
 - What's the "distance" from P_i to P_j ?
 - Link structure $\implies \delta_{ij} \neq \delta_{ji}$

The Idea

• Use link structure to define measure of page (doc) contiguity

— What's the "distance" from P_i to P_j ?

— Link structure $\implies \delta_{ij} \neq \delta_{ji}$

1. Compute the distance δ_{ij} from P_i to P_j for all i, j

— Keep only those for which $\delta_{ij} < \tau$ (provides sparsity)

The Idea

• Use link structure to define measure of page (doc) contiguity

— What's the "distance" from P_i to P_j ?

— Link structure $\implies \delta_{ij} \neq \delta_{ji}$

1. Compute the distance δ_{ij} from P_i to P_j for all i, j

- Keep only those for which $\delta_{ij} < \tau$ (provides sparsity) - File structure: $\begin{cases} P_1 \rightarrow P_i, P_j, \dots \\ P_2 \rightarrow P_k, P_l, \dots \\ \vdots \end{cases}$

The Idea

• Use link structure to define measure of page (doc) contiguity

— What's the "distance" from P_i to P_j ?

— Link structure $\implies \delta_{ij} \neq \delta_{ji}$

1. Compute the distance δ_{ij} from P_i to P_j for all i, j

- Keep only those for which $\delta_{ij} < \tau$ (provides sparsity) - File structure: $\begin{cases} P_1 \rightarrow P_i, P_j, \dots \\ P_2 \rightarrow P_k, P_l, \dots \\ \vdots \end{cases}$

2. Match query most relevant page(s) \mathcal{P} — LSI — Link analysis — You pick

The Idea

• Use link structure to define measure of page (doc) contiguity

— What's the "distance" from P_i to P_j ?

— Link structure $\implies \delta_{ij} \neq \delta_{ji}$

1. Compute the distance δ_{ij} from P_i to P_j for all i, j

- Keep only those for which $\delta_{ij} < \tau$ (provides sparsity) - File structure: $\begin{cases} P_1 \rightarrow P_i, P_j, \dots \\ P_2 \rightarrow P_k, P_l, \dots \\ \vdots \end{cases}$

2. Match query most relevant page(s) \mathcal{P} - LSI — Link analysis — You pick

3. Return \mathcal{P} together with those $\mathcal{P} \rightarrow P_i, P_j, P_k, P_l, \ldots$

What's the "distance" from D_i to D_j ?

What's the "distance" from D_i to D_j ?

• LSI uses
$$\delta_{ij} = \cos \theta_{ij} = \delta_{ji}$$

What's the "distance" from D_i to D_j ?

• LSI uses
$$\delta_{ij} = \cos \theta_{ij} = \delta_{ji}$$

Based only on term frequencies No link structure

What's the "distance" from D_i to D_j ?

• LSI uses
$$\delta_{ij} = \cos \theta_{ij} = \delta_{ji}$$

{ Based only on term frequencies
 No link structure

Directed Link Structure \implies **Nonsymmetric Metric**