LSI vs Link Analysis (A Survey)

C. D. Meyer and A. N. Langville

Department of Mathematics North Carolina University Raleigh, NC

1/23/2003

Outline

\bullet
 Background \& History

Outline

- Background \& History

- Vector Space Approach

Outline

- Background \& History

- Vector Space Approach
- Link Analysis Approach

Outline

- Background \& History

- Vector Space Approach
- Link Analysis Approach
- Hybrid Approachs

Background

Goal

- Identify documents that best match users query

Background

Goal

- Identify documents that best match users query

Measures

- Recall $=\frac{\text { \#relevant docs retrieved }}{\# d o c s ~ i n ~ c o l l e c t i o n ~}$
(max \# useful docs)
- Precision $=\frac{\# \text { relevant docs retrieved }}{\# \text { docs retrieved }}$ (min \# useless docs)

Background

Goal

- Identify documents that best match users query

Measures

- Recall $=\frac{\# r e l e v a n t ~ d o c s ~ r e t r i e v e d ~}{\# d o c s ~ i n ~ c o l l e c t i o n ~}$
(max \# useful docs)
- Precision $=\frac{\# \text { relevant docs retrieved }}{\# \text { docs retrieved }}$ (min \# useless docs)

Do it FAST!

SMART

(System for the Mechanical Analysis and Retrieval of Text)

SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 - 1965

- IBM 7094 \& IBM 360

SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 - 1965

- IBM 7094 \& IBM 360

Gerard Salton

- Implemented at Cornell (1965-1970)

SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 - 1965

- IBM 7094 \& IBM 360

Gerard Salton

- Implemented at Cornell (1965-1970)
- Based on matrix methods

Term-Document Matrix

Start With Dictionary of Terms

- Single words - or short phrases (e.g., landing gear)

Term-Document Matrix

Start With Dictionary of Terms

- Single words - or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)

- Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrix

Start With Dictionary of Terms

- Single words - or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)

- Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrix

$$
\begin{gathered}
\\
\text { Term } 1 \\
\text { Term } 2 \\
\vdots \\
\text { Term m }
\end{gathered}\left(\begin{array}{cccc}
\text { Doc } 1 & \text { Doc } 2 & \cdots & \text { Doc n } \\
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{\mathbf{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m \mathbf{1}} & f_{m \mathbf{2}} & \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

Term-Document Matrix

Start With Dictionary of Terms

- Single words - or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)

- Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrix

Features
Term 1
Term 2
\vdots
Term m
f_{21}
\vdots
$f_{m 1} \mathbf{1}$
f_{22}
$f_{m} \mathbf{2}$
f_{12}

- $\mathbf{A} \geq 0$

Term-Document Matrix

Start With Dictionary of Terms

- Single words - or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)

- Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrix

Features

$$
\left.\begin{array}{c}
\\
\text { Term } 1 \\
\text { Term 2 } \\
\vdots \\
\text { Term m } \\
f_{21} \\
\vdots \\
f_{11} \\
f_{m 1} \mathbf{1} \\
f_{22} \\
f_{m} \mathbf{2}
\end{array} \begin{array}{cccc}
\text { Doc } & \cdots & f_{1 n} \\
f_{2 n} \\
& \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

- $\mathbf{A} \geq 0$
- A can be really big

Term-Document Matrix

Start With Dictionary of Terms

- Single words - or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)

- Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrix

Features

$$
\begin{gathered}
\\
\text { Term 1 } \\
\text { Term 2 } \\
\vdots \\
\text { Term moc } 1
\end{gathered}\left(\begin{array}{cccc}
f_{11} & f_{12} & \cdots & f_{\mathbf{1} n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m} \mathbf{2} & \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

- $\mathbf{A} \geq 0$
- A can be really big
- A is sparse - but otherwise unstructured

Term-Document Matrix

Start With Dictionary of Terms

- Single words - or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)

- Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrix

Features

$$
\left.\begin{array}{c}
\\
\text { Term } 1 \\
\text { Term 2 } \\
\vdots \\
\text { Term m } \\
f_{21} \\
\vdots \\
f_{11} \\
f_{m 1} \mathbf{1} \\
f_{22} \\
f_{m} \mathbf{2}
\end{array} \begin{array}{cccc}
\text { Doc } & \cdots & f_{1 n} \\
f_{2 n} \\
& \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

- $\mathbf{A} \geq 0$
- A can be really big
- A is sparse - but otherwise unstructured
- A contains a lot of uncertainty

Query Matching

Query Vector

- $\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad$ where $\quad q_{i}= \begin{cases}\mathbf{1} & \text { if Term } i \text { is requested } \\ \mathbf{0} & \text { if not }\end{cases}$

Query Matching

Query Vector

- $\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad$ where $\quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}$

How Close is the Query to Each Document?

Query Matching

Query Vector

- $\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad$ where $\quad q_{i}= \begin{cases}\mathbf{1} & \text { if Term } i \text { is requested } \\ \mathbf{0} & \text { if not }\end{cases}$

How Close is the Query to Each Document?

- i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

Query Matching

Query Vector

- $\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad$ where $\quad q_{i}= \begin{cases}\mathbf{1} & \text { if Term } i \text { is requested } \\ \mathbf{0} & \text { if not }\end{cases}$

How Close is the Query to Each Document?

- i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

$$
\left\|\mathbf{q}-\mathbf{A}_{\mathbf{1}}\right\|<\left\|\mathbf{q}-\mathbf{A}_{\mathbf{2}}\right\| \text { but } \theta_{2}<\theta_{1}
$$

Query Matching

Query Vector

- $\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad$ where $\quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}$

How Close is the Query to Each Document?

- i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

$$
\begin{array}{r}
\left\|\mathbf{q}-\mathbf{A}_{1}\right\|<\left\|\mathbf{q}-\mathbf{A}_{2}\right\| \text { but } \theta_{2}<\theta_{1} \\
\text { Use } \delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}
\end{array}
$$

Query Matching

Query Vector

- $\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad$ where $\quad q_{i}= \begin{cases}\mathbf{1} & \text { if Term } i \text { is requested } \\ \mathbf{0} & \text { if not }\end{cases}$

How Close is the Query to Each Document?

- i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

$$
\begin{array}{r}
\left\|\mathbf{q}-\mathbf{A}_{1}\right\|<\left\|\mathbf{q}-\mathbf{A}_{2}\right\| \text { but } \theta_{2}<\theta_{1} \\
\text { Use } \delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}
\end{array}
$$

Rank documents by size of δ_{i}

Query Matching

Query Vector

- $\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad$ where $\quad q_{i}= \begin{cases}\mathbf{1} & \text { if Term } i \text { is requested } \\ \mathbf{0} & \text { if not }\end{cases}$

How Close is the Query to Each Document?

- i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

$$
\begin{array}{r}
\left\|\mathbf{q}-\mathbf{A}_{1}\right\|<\left\|\mathbf{q}-\mathbf{A}_{2}\right\| \text { but } \theta_{2}<\theta_{1} \\
\text { Use } \delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}
\end{array}
$$

Rank documents by size of δ_{i}
Return Document i to user when $\delta_{i} \geq$ tol

Term Weighting

A Defect

- If the term bank occurs once in Doc 1 but twice in Doc 2, and if $\left\|\mathbf{A}_{1}\right\| \approx\left\|\mathbf{A}_{2}\right\|$, then a query containing only bank produces $\delta_{2} \approx 2 \delta_{1}$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

Term Weighting

A Defect

- If the term bank occurs once in Doc 1 but twice in Doc 2, and if $\left\|\mathbf{A}_{1}\right\| \approx\left\|\mathbf{A}_{2}\right\|$, then a query containing only bank produces $\delta_{2} \approx \mathbf{2} \delta_{1}$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

- Set $a_{i j}=\log \left(1+f_{i j}\right)$
(other weights also possible)

Term Weighting

A Defect

- If the term bank occurs once in Doc 1 but twice in Doc 2, and if $\left\|\mathbf{A}_{1}\right\| \approx\left\|\mathbf{A}_{2}\right\|$, then a query containing only bank produces $\delta_{2} \approx 2 \delta_{1}$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

- Set $a_{i j}=\log \left(1+f_{i j}\right)$
(other weights also possible)

Query Weights

- Terms Boeing and airplanes not equally important in queries

Term Weighting

A Defect

- If the term bank occurs once in Doc 1 but twice in Doc 2, and if $\left\|\mathbf{A}_{1}\right\| \approx\left\|\mathbf{A}_{2}\right\|$, then a query containing only bank produces $\delta_{2} \approx 2 \delta_{1}$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

- Set $a_{i j}=\log \left(1+f_{i j}\right)$
(other weights also possible)

Query Weights

- Terms Boeing and airplanes not equally important in queries
- Importance of Term i tends to be inversely proportional to $\nu_{i}=\#$ Docs containing Term i

Term Weighting

A Defect

- If the term bank occurs once in Doc 1 but twice in Doc 2, and if $\left\|\mathbf{A}_{1}\right\| \approx\left\|\mathbf{A}_{2}\right\|$, then a query containing only bank produces $\delta_{2} \approx 2 \delta_{1}$ (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

- Set $a_{i j}=\log \left(1+f_{i j}\right)$
(other weights also possible)

Query Weights

- Terms Boeing and airplanes not equally important in queries
- Importance of Term i tends to be inversely proportional to $\nu_{i}=\#$ Docs containing Term i

To Compensate

- Set $q_{i}= \begin{cases}\log \left(n / \nu_{i}\right) & \text { if } \nu_{i} \neq \mathbf{0} \\ \mathbf{0} & \text { if } \nu_{i}=\mathbf{0}\end{cases}$
(other weights also possible)

Uncertainties in A

Uncertainties in A

Ambiguity in Vocabulary

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be ...

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be ...
- A flat geometrical object

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be ...
- A flat geometrical object
- A woodworking tool

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be ...
- A flat geometrical object
- A woodworking tool
- A Boeing product

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be ...
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

- No two authors write the same way

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

- No two authors write the same way
- One author may write car and laptop

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

- No two authors write the same way
- One author may write car and laptop
- Another author may write automobile and portable

Uncertainties in A

Ambiguity in Vocabulary

- e.g., A plane could be
- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style

- No two authors write the same way
- One author may write car and laptop
- Another author may write automobile and portable

Variation in Indexing Conventions

- No two people index documents the same way
- Computer indexing is inexact and can be unpredictable

Theory vs Practice

In Theory - it's easy

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols — Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\boldsymbol{\operatorname { c o s }} \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\boldsymbol{\operatorname { c o s }} \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\boldsymbol{\operatorname { c o s }} \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire
- D_{2} indexed automobile, fuel, and tire

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire
- D_{2} indexed automobile, fuel, and tire

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire
- D_{2} indexed automobile, fuel, and tire

Somehow Reveal Latent Connections

- Find D_{2} by making the connection through tire

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire
- D_{2} indexed automobile, fuel, and tire

Somehow Reveal Latent Connections

- Find D_{2} by making the connection through tire
- Do it FAST!

Theory vs Practice

In Theory - it's easy

- Weight terms and normalize cols - Make $\left\|\mathbf{A}_{i}\right\|=1$
- For each new query, weight and normalize - Make $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire
- D_{2} indexed automobile, fuel, and tire

Somehow Reveal Latent Connections

- Find D_{2} by making the connection through tire
- Do it FAST!
- Data compression

Contaminated Data (not text data)

$$
\mathbf{x}=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{510} \\
x_{511}
\end{array}\right]
$$

Contaminated Data (not text data)

Contaminated Data (not text data)

Goal

- Reveal hidden patterns

Contaminated Data (not text data)

Goal

- Reveal hidden patterns
- Compress the data

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of $W_{k} \quad$ (if \mathcal{B} o.n.)

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of W_{k}
(if \mathcal{B} o.n.)
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of $W_{k} \quad$ (if \mathcal{B} o.n.)
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$
$-\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
($\mathbf{y}=\mathbf{W}^{*} \mathbf{x}$ if \mathcal{B} o.n.)

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of $W_{k} \quad$ (if \mathcal{B} o.n.)
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$
$-\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
($\mathbf{y}=\mathbf{W}^{*} \mathbf{x}$ if \mathcal{B} o.n.)

Oscillatory

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of $W_{k} \quad$ (if \mathcal{B} o.n.)
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$
$-\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
($\mathbf{y}=\mathbf{W}^{*} \mathbf{x}$ if \mathcal{B} o.n.)
Oscillatory
- $\mathbf{W}=\frac{1}{2}\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega\end{array}\right]_{n \times n} \omega=\mathrm{e}^{2 \pi \mathrm{i} / n}$

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of $W_{k} \quad$ (if \mathcal{B} o.n.)
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$
$-\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
($\mathbf{y}=\mathbf{W}^{*} \mathbf{x}$ if \mathcal{B} o.n.)

Oscillatory

- $\mathbf{W}=\frac{1}{2}\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega\end{array}\right]_{n \times n} \omega=\mathrm{e}^{2 \pi \mathrm{i} / n}, \quad W_{k}=\frac{\mathrm{e}^{2 \pi \mathrm{i} k \mathrm{t}}}{2}$

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of W_{k}
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$
$-\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
($\mathbf{y}=\mathbf{W}^{*} \mathbf{x}$ if \mathcal{B} o.n.)

Oscillatory

- $\mathbf{W}=\frac{1}{2}\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega\end{array}\right]_{n \times n} \omega=\mathrm{e}^{2 \pi \mathrm{i} / n}, \quad W_{k}=\frac{\mathrm{e}^{2 \pi \mathrm{i} k \mathbf{t}}}{2}$
- $W_{k}+W_{n-k}=\cos 2 \pi k \mathbf{t}$

Change Of Coordinates

New Basis $\mathcal{B}=\left\{\mathbf{W}_{0}, \mathbf{W}_{1}, \ldots, \mathbf{W}_{n-1}\right\}$

- Find coordinates of \mathbf{x} with respect to \mathcal{B}
- Find y_{k} so that $\mathbf{x}=\sum y_{k} W_{k} \quad$ (Fourier expansion if \mathcal{B} o.n.)
- $y_{k}=\left\langle\mathbf{W}_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of $W_{k} \quad$ (if \mathcal{B} o.n.)
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$
$-\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
($\mathbf{y}=\mathbf{W}^{*} \mathbf{x}$ if \mathcal{B} o.n.)

Oscillatory

- $\mathbf{W}=\frac{1}{2}\left[\begin{array}{lllll}\mathbf{1} & \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{1} & \omega & \omega^{2} & \cdots & \omega^{n-1} \\ \mathbf{1} & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega\end{array}\right]_{n \times n} \omega=\mathrm{e}^{2 \pi \mathrm{i} / n}, \quad W_{k}=\frac{\mathrm{e}^{2 \pi \mathrm{i} k \mathbf{t}}}{2}$
- $W_{k}+W_{n-k}=\cos 2 \pi k \mathbf{t}$
- $W_{k}-W_{n-k}=\mathrm{i} \sin 2 \pi k \mathbf{t}$
$(0<k<n)$

Making The Change

Making The Change

Recall

- $\mathbf{x}=\sum y_{k} W_{k}=\mathbf{W y}$

Making The Change

Recall

- $\mathbf{x}=\sum y_{k} W_{k}=\mathbf{W y}$
- $\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$

Making The Change

Recall

- $\mathbf{x}=\sum y_{k} W_{k}=\mathbf{W y}$
- $\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
$\mathbf{W}^{-1}=(4 / n) \overline{\mathbf{W}}=$ Discrete Fourier Transform

Making The Change

Recall

- $\mathbf{x}=\sum y_{k} W_{k}=\mathbf{W y}$
- $\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
$\mathbf{W}^{-1}=(4 / n) \overline{\mathbf{W}}=$ Discrete Fourier Transform

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n-1}
\end{array}\right]=\frac{\mathbf{2}}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right]
$$

$$
\xi=\mathrm{e}^{-2 \pi \mathrm{i} / n}=\bar{\omega}
$$

The New Coordinates

The New Coordinates

- Only 4 are significant: $y_{80}=y_{432}=1$

The New Coordinates

- Only 4 are significant: $y_{80}=y_{432}=1$ and $y_{50}=-2 \mathrm{i}=-y_{462}$

The New Coordinates

- Only 4 are significant: $y_{80}=y_{432}=1$ and $y_{50}=-2 \mathrm{i}=-y_{462}$
- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$

The New Coordinates

- Only 4 are significant: $y_{80}=y_{432}=1$ and $y_{50}=-2 \mathrm{i}=-y_{462}$
- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- Small components (noise) are nondirectional

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)$

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)$
- $n=512$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{n-80}\right)-2 \mathbf{i}\left(W_{50}-W_{n-50}\right)$

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)$
- $n=512$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{n-80}\right)-2 \mathbf{i}\left(W_{50}-W_{n-50}\right)$

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)$
- $n=512$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{n-80}\right)-2 \mathbf{i}\left(W_{50}-W_{n-50}\right)$
$-W_{k}+W_{n-k}=\cos 2 \pi k \mathbf{t}$
$-W_{k}-W_{n-k}=\mathrm{i} \sin 2 \pi k \mathbf{t}$

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)$
- $n=512$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{n-80}\right)-2 \mathbf{i}\left(W_{50}-W_{n-50}\right)$
$-W_{k}+W_{n-k}=\cos 2 \pi k \mathbf{t}$
$-W_{k}-W_{n-k}=\mathrm{i} \sin 2 \pi k \mathbf{t}$
- $\widetilde{\mathbf{x}}=\cos 2 \pi 80 t+2 \sin 2 \pi 50 t$

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)$
- $n=512$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{n-80}\right)-2 \mathbf{i}\left(W_{50}-W_{n-50}\right)$
$-W_{k}+W_{n-k}=\cos 2 \pi k \mathbf{t}$
$-W_{k}-W_{n-k}=\mathrm{i} \sin 2 \pi k \mathbf{t}$
- $\widetilde{\mathbf{X}}=\cos 2 \pi 80 t+2 \sin 2 \pi 50 t$

Drop Small Coordinates

- $\mathbf{x}=\sum y_{k} W_{k}=1 W_{80}+1 W_{432}-2 \mathrm{i} W_{50}+2 \mathrm{i} W_{462}+\sum \varepsilon_{j} W_{j}$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)$
- $n=512$
- $\widetilde{\mathbf{x}}=\left(W_{80}+W_{n-80}\right)-2 \mathbf{i}\left(W_{50}-W_{n-50}\right)$
$-W_{k}+W_{n-k}=\cos 2 \pi k \mathbf{t}$
$-W_{k}-W_{n-k}=\mathrm{i} \sin 2 \pi k \mathbf{t}$
- $\widetilde{\mathbf{x}}=\cos 2 \pi 80 t+2 \sin 2 \pi 50 t$
- $\mathbf{x}=\cos 2 \pi 80 t+2 \sin 2 \pi 50 t+n o i s e$

Original Data

Cleaned \& Compressed Data

$$
\widetilde{\mathbf{x}}=\mathbf{x}-\text { noise }=\left(W_{80}+W_{432}\right)-2 \mathrm{i}\left(W_{50}-W_{462}\right)
$$

$\cos 2 \pi 80 t+2 \sin 2 \pi 50 t$

The DFT Game

Matrix-Vector Product

$$
\mathbf{y}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi i / n}
$$

The DFT Game

Matrix-Vector Product

$$
\mathbf{y}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi i / n}
$$

Simple in Theory, But ...

The DFT Game

Matrix-Vector Product

$$
\mathbf{y}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi \mathrm{i} / n}
$$

Simple in Theory, But ...

- Must do it FAST!

The DFT Game

Matrix-Vector Product

$$
\mathbf{y}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi \mathrm{i} / n}
$$

Simple in Theory, But ...

- Must do it FAST!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

The DFT Game

Matrix-Vector Product

$$
\mathbf{y}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi \mathrm{i} / n}
$$

Simple in Theory, But ...

- Must do it FAST!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

- $\mathbf{F}_{n}=\mathbf{B}_{n}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{n / 2}\right) \mathbf{P}_{n} \quad \mathbf{B}_{n}=\left[\begin{array}{ll}\mathbf{I}_{n / 2} & \mathbf{D}_{n / 2} \\ \mathbf{I}_{n / 2} & -\mathbf{D}_{n / 2}\end{array}\right] \quad \mathbf{D}_{n / 2}=\left[\begin{array}{lll}{ }^{1} \xi & & \\ & \xi^{2} & \\ & & \ddots\end{array}\right]$

The DFT Game

Matrix-Vector Product

$$
\mathbf{y}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi \mathrm{i} / n}
$$

Simple in Theory, But ...

- Must do it FAST!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

- $\mathbf{F}_{n}=\mathbf{B}_{n}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{n / 2}\right) \mathbf{P}_{n} \quad \mathbf{B}_{n}=\left[\begin{array}{ll}\mathbf{I}_{n / 2} & \mathbf{D}_{n / 2} \\ \mathbf{I}_{n / 2} & -\mathbf{D}_{n / 2}\end{array}\right] \quad \mathbf{D}_{n / 2}=\left[\begin{array}{lll}1 & & \\ & \xi & \\ & \xi^{2} & \\ & & \ddots\end{array}\right]$
- FFT changes n^{2} flop requirement into $(n / 2) \log _{2} n$

The DFT Game

Matrix-Vector Product

$$
\mathbf{y}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi i / n}
$$

Simple in Theory, But ...

- Must do it FAST!

Need For Speed \Longrightarrow Matrix Factorizations \Longrightarrow FFT

- $\mathbf{F}_{n}=\mathbf{B}_{n}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{n / 2}\right) \mathbf{P}_{n} \quad \mathbf{B}_{n}=\left[\begin{array}{ll}\mathbf{I}_{n / 2} & \mathbf{D}_{n / 2} \\ \mathbf{I}_{n / 2} & -\mathbf{D}_{n / 2}\end{array}\right] \quad \mathbf{D}_{n / 2}=\left[\begin{array}{lll}{ }^{1} & & \\ & & \\ & \xi^{2} & \\ & & \ddots\end{array}\right]$
- FFT changes n^{2} flop requirement into $(n / 2) \log _{2} n$

[^0]
Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast

Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast

Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast (clean \& compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

- $\mathbf{A}=\sum_{i, j} a_{i j} \mathbf{E}_{i j} \quad \mathbf{E}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{T}$

Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast (clean \& compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

- $\mathbf{A}=\sum_{i, j} a_{i j} \mathbf{E}_{i j} \quad \mathbf{E}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{T}$

Change Basis to $\mathcal{B}=\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots\right\}$ That Can Squeeze \& Clean

- $\mathbf{A}=\sum \sigma_{i} \mathbf{Z}_{i}$
(Fourier Expansion)

Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast (clean \& compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

- $\mathbf{A}=\sum_{i, j} a_{i j} \mathbf{E}_{i j} \quad \mathbf{E}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{T}$

Change Basis to $\mathcal{B}=\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots\right\}$ That Can Squeeze \& Clean

- $\mathbf{A}=\sum \sigma_{i} \mathbf{Z}_{i}$
(Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_{i}=\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle=$ amount of \mathbf{A} in direction of \mathbf{Z}_{i}

Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast (clean \& compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

- $\mathbf{A}=\sum_{i, j} a_{i j} \mathbf{E}_{i j} \quad \mathbf{E}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{T}$

Change Basis to $\mathcal{B}=\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots\right\}$ That Can Squeeze \& Clean

- $\mathbf{A}=\sum \sigma_{i} \mathbf{Z}_{i}$
(Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_{i}=\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle=$ amount of \mathbf{A} in direction of \mathbf{Z}_{i}

Matrix Factorizations: $\mathbf{A}=\mathbf{U R V}^{T}=\sum r_{i j} \mathbf{u}_{i} \mathbf{v}_{j}^{T}=\sum r_{i j} \mathbf{Z}_{i j}$

Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast (clean \& compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

- $\mathbf{A}=\sum_{i, j} a_{i j} \mathbf{E}_{i j} \quad \mathbf{E}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{T}$

Change Basis to $\mathcal{B}=\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots\right\}$ That Can Squeeze \& Clean

- $\mathbf{A}=\sum \sigma_{i} \mathbf{Z}_{i}$
(Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_{i}=\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle=$ amount of \mathbf{A} in direction of \mathbf{Z}_{i}

Matrix Factorizations: $\mathbf{A}=\mathbf{U R V} \mathbf{V}^{T}=\sum r_{i j} \mathbf{u}_{i} \mathbf{v}_{j}^{T}=\sum r_{i j} \mathbf{Z}_{i j}$

- Represent data with as few directions \mathbf{Z}_{i} as possible

Back To IR

Almost the Same Problem

- Reveal hidden patterns \& evaluate $\mathbf{q}^{T} \mathbf{A}$ fast (clean \& compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

- $\mathbf{A}=\sum_{i, j} a_{i j} \mathbf{E}_{i j} \quad \mathbf{E}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{T}$

Change Basis to $\mathcal{B}=\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots\right\}$ That Can Squeeze \& Clean

- $\mathbf{A}=\sum \sigma_{i} \mathbf{Z}_{i}$
(Fourier Expansion)
- \mathcal{B} o.n. $\Rightarrow \sigma_{i}=\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle=$ amount of \mathbf{A} in direction of \mathbf{Z}_{i}

Matrix Factorizations: $\mathbf{A}=\mathbf{U R V} \mathbf{V}^{T}=\sum r_{i j} \mathbf{u}_{i} \mathbf{v}_{j}^{T}=\sum r_{i j} \mathbf{Z}_{i j}$

- Represent data with as few directions \mathbf{Z}_{i} as possible
- $\mathbf{S V D} \Rightarrow \mathbf{R}=\left[\begin{array}{ccc}{ }^{\sigma_{1}} & & \\ \ddots_{\vartheta_{r}} & \\ & \sigma_{\sigma_{0}} & \\ & & \ddots_{0}\end{array}\right] \Rightarrow \mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$

Same As Before

Assume Nondirectional Uncertainty

Same As Before

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$

Same As Before

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$
- Lose only small part of relevance

Same As Before

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

Same As Before

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

Same As Before

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

- Normalize
$-\mathbf{q} \leftarrow \mathbf{q} /\|\mathbf{q}\|$

Same As Before

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

- Normalize
$-\mathbf{q} \leftarrow \mathbf{q} /\|\mathbf{q}\|$
$-\widetilde{\mathbf{A}} \leftarrow \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \mathbf{D}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{\mathbf{i}} \widetilde{\mathbf{v}}_{i}^{T}$

Same As Before

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Query Matching Strategy

- Normalize
$-\mathbf{q} \leftarrow \mathbf{q} /\|\mathbf{q}\|$
$-\widetilde{\mathbf{A}} \leftarrow \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \mathbf{D}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{\mathbf{i}} \widetilde{v}_{i}^{T}$
- Compare query to each document

$$
-\mathbf{q}^{T} \widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)
$$

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!
- Each query requires only a few inner products

$$
\mathbf{q}^{T} \widetilde{\mathbf{A}}_{m \times n}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}
$$

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!
- Each query requires only a few inner products

$$
\mathbf{q}^{T} \widetilde{\mathbf{A}}_{m \times n}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}
$$

- Latent semantic associations are made
- Relevant docs not found by direct matching show up

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!
- Each query requires only a few inner products

$$
\mathbf{q}^{T} \widetilde{\mathbf{A}}_{m \times n}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}
$$

- Latent semantic associations are made
- Relevant docs not found by direct matching show up
- Latent Semantic Indexing (LSI)

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!
- Each query requires only a few inner products

$$
\mathbf{q}^{T} \widetilde{\mathbf{A}}_{m \times n}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}
$$

- Latent semantic associations are made
- Relevant docs not found by direct matching show up
- Latent Semantic Indexing (LSI)

Disadvantages

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!
- Each query requires only a few inner products

$$
\mathbf{q}^{T} \widetilde{\mathbf{A}}_{m \times n}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}
$$

- Latent semantic associations are made
- Relevant docs not found by direct matching show up
- Latent Semantic Indexing (LSI)

Disadvantages

- Adding \& deleting docs requires updating \& downdating SVD

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!
- Each query requires only a few inner products

$$
\mathbf{q}^{T} \widetilde{\mathbf{A}}_{m \times n}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}
$$

- Latent semantic associations are made
- Relevant docs not found by direct matching show up
- Latent Semantic Indexing (LSI)

Disadvantages

- Adding \& deleting docs requires updating \& downdating SVD
- Determining optimal k is not easy (empirical tuning required)

Other Fourier Expansions ??

Other Fourier Expansions ??

Truncated URV Factorizations

Other Fourier Expansions ??

Truncated URV Factorizations

 DFT - FFT
Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $\mathbf{H}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $H_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad H_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

- $\mathbf{H}_{n}=\left(\mathbf{I}_{2} \otimes \mathbf{H}_{n / 2}\right) \mathbf{P}_{n}\left[\begin{array}{ll}\mathbf{H}_{n / 2} & \\ & \mathbf{I}_{n / 2}\end{array}\right] \Rightarrow \mathbf{H}_{n} \mathbf{x}$ is Fast! (if $\left.n=2^{p}\right)$

Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $\mathbf{H}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

- $\mathbf{H}_{n}=\left(\mathbf{I}_{2} \otimes \mathbf{H}_{n / 2}\right) \mathbf{P}_{n}\left[\begin{array}{ll}\mathbf{H}_{n / 2} & \\ & \mathbf{I}_{n / 2}\end{array}\right] \Rightarrow \mathbf{H}_{n} \mathbf{x}$ is Fast! (if $\left.n=2^{p}\right)$
- Factor $\mathbf{A}=\mathbf{H}_{m} \mathbf{B} \mathbf{H}_{n}^{T}=\sum_{i, j} \beta_{i j} \mathbf{h}_{i} \mathbf{h}_{j}^{T} \quad($ h's only use -1, 0, 1)

Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $\mathbf{H}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

- $\mathbf{H}_{n}=\left(\mathbf{I}_{2} \otimes \mathbf{H}_{n / 2}\right) \mathbf{P}_{n}\left[\begin{array}{ll}\mathbf{H}_{n / 2} & \\ & \mathbf{I}_{n / 2}\end{array}\right] \Rightarrow \mathbf{H}_{n} \mathbf{x}$ is Fast! (if $\left.n=2^{p}\right)$
- Factor $\mathbf{A}=\mathbf{H}_{m} \mathbf{B} \mathbf{H}_{n}^{T}=\sum_{i, j} \beta_{i j} \mathbf{h}_{i} \mathbf{h}_{j}^{T} \quad($ h's only use -1, 0,1)
- More than a few $\beta_{i j}$'s may be needed

Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $\mathbf{H}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

- $\mathbf{H}_{n}=\left(\mathbf{I}_{2} \otimes \mathbf{H}_{n / 2}\right) \mathbf{P}_{n}\left[\begin{array}{ll}\mathbf{H}_{n / 2} & \\ & \mathbf{I}_{n / 2}\end{array}\right] \Rightarrow \mathbf{H}_{n} \mathbf{x}$ is Fast! (if $\left.n=2^{p}\right)$
- Factor $\mathbf{A}=\mathbf{H}_{m} \mathbf{B} \mathbf{H}_{n}^{T}=\sum_{i, j} \beta_{i j} \mathbf{h}_{i} \mathbf{h}_{j}^{T} \quad($ h's only use -1, 0,1)
- More than a few $\beta_{i j}$'s may be needed
- Needs padding if m or n not a power of 2

Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $\mathbf{H}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

- $\mathbf{H}_{n}=\left(\mathbf{I}_{2} \otimes \mathbf{H}_{n / 2}\right) \mathbf{P}_{n}\left[\begin{array}{ll}\mathbf{H}_{n / 2} & \\ & \mathbf{I}_{n / 2}\end{array}\right] \Rightarrow \mathbf{H}_{n} \mathbf{x}$ is Fast! (if $\left.n=2^{p}\right)$
- Factor $\mathbf{A}=\mathbf{H}_{m} \mathbf{B} \mathbf{H}_{n}^{T}=\sum_{i, j} \beta_{i j} \mathbf{h}_{i} \mathbf{h}_{j}^{T} \quad($ h's only use - $1,0,1$)
- More than a few $\beta_{i j}$'s may be needed
- Needs padding if m or n not a power of 2

Semidiscrete Decomposition

- Approximate $\mathbf{A} \approx \sum_{i=1}^{k} \alpha_{i} \mathbf{x}_{i} \mathbf{y}_{j} \quad \mathbf{x}_{i}$ and \mathbf{y}_{j} only use $-\mathbf{1}, \mathbf{0}$, or $\mathbf{1}$

Other Fourier Expansions ??

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $\mathbf{H}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

- $\mathbf{H}_{n}=\left(\mathbf{I}_{2} \otimes \mathbf{H}_{n / 2}\right) \mathbf{P}_{n}\left[\begin{array}{ll}\mathbf{H}_{n / 2} & \\ & \mathbf{I}_{n / 2}\end{array}\right] \Rightarrow \mathbf{H}_{n} \mathbf{x}$ is Fast! (if $\left.n=2^{p}\right)$
- Factor $\mathbf{A}=\mathbf{H}_{m} \mathbf{B} \mathbf{H}_{n}^{T}=\sum_{i, j} \beta_{i j} \mathbf{h}_{i} \mathbf{h}_{j}^{T} \quad($ h's only use -1, 0,1)
- More than a few $\beta_{i j}$'s may be needed
- Needs padding if m or n not a power of 2

Semidiscrete Decomposition

- Approximate $\mathbf{A} \approx \sum_{i=1}^{k} \alpha_{i} \mathbf{x}_{i} \mathbf{y}_{j} \quad \mathbf{x}_{i}$ and \mathbf{y}_{j} only use $-\mathbf{1}, \mathbf{0}$, or $\mathbf{1}$

Other Wavelet Transforms?

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?
Indexing and Ranking

- Still must index key terms on each page

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?
Indexing and Ranking

- Still must index key terms on each page
- Robots crawl the web - software does indexing

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
- Robots crawl the web - software does indexing
- Inverted file structure
- $\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots$

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
- Robots crawl the web - software does indexing
- Inverted file structure
- Term $_{1} \rightarrow P_{i}, P_{j}, \ldots$
- Term $_{2} \rightarrow P_{k}, P_{l}, \ldots$

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
- Robots crawl the web - software does indexing
- Inverted file structure
- Term $_{\mathbf{1}} \rightarrow P_{i}, P_{j}, \ldots$
- Term $_{2} \rightarrow P_{k}, P_{l}, \ldots$ \vdots
- Attach an importance rating to $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
- Robots crawl the web - software does indexing
- Inverted file structure

$$
\begin{aligned}
& -\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots \\
& -\operatorname{Term}_{2} \rightarrow P_{k}, P_{l}, \ldots
\end{aligned}
$$

$$
\vdots
$$

- Attach an importance rating to $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$
- Direct query matching
- $Q=$ Term $_{1}$, Term $_{2}, \ldots$ produces $\quad P_{i}, P_{j}, P_{k}, P_{l}, \ldots$

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
- Robots crawl the web - software does indexing
- Inverted file structure

$$
\begin{aligned}
& -\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots \\
& -\operatorname{Term}_{2} \rightarrow P_{k}, P_{l}, \ldots
\end{aligned}
$$

$$
\vdots
$$

- Attach an importance rating to $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$
- Direct query matching
- $Q=$ Term $_{1}$, Term $_{2}, \ldots$ produces $\quad P_{i}, P_{j}, P_{k}, P_{l}, \ldots$
- Return $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$ to user in order of importance

How To Measure "Importance"

How To Measure "Importance"

Hubs \& Authorities

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

How To Measure "Importance"

Hubs \& Authorities

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

- For each query a "neighborhood graph" N is built

How To Measure "Importance"

Hubs \& Authorities

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

- For each query a "neighborhood graph" N is built
- Hub and authority scores for nodes in N are computed
- Eigenvector computation

How To Measure "Importance"

Hubs \& Authorities

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

- For each query a "neighborhood graph" N is built
- Hub and authority scores for nodes in N are computed
- Eigenvector computation
- Works, but requires new graph for each query

How To Measure "Importance"

Hubs \& Authorities

- Good hub pages point to good authority pages
- Good authorities are pointed to by good hubs

HITS Algorithm

- For each query a "neighborhood graph" N is built
- Hub and authority scores for nodes in N are computed
- Eigenvector computation
- Works, but requires new graph for each query
- Similar ideas in TEOMA.com

Google's Idea

PageRank

Google's Idea

PageRank

- Your page P has some rank $r(P)$

Google's Idea

PageRank

- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P

Google's Idea

PageRank

- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links

Google's Idea

PageRank

- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links
- One link to P from Yahoo! is important
- Many links to P from me is not

Google's Idea

PageRank

- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links
- One link to P from Yahoo! is important
- Many links to P from me is not
- But if Yahoo! points to many places, the value of the link to P is diluted

PageRank

The Definition

$$
\text { - } r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad-\mathcal{B}_{P}=\{\text { all pages pointing to } P\}
$$

PageRank

The Definition

$$
\begin{aligned}
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad-\mathcal{B}_{P}=\{\text { all pages pointing to } P\} \\
\quad-|P|=\text { number of out links from } P
\end{aligned}
$$

Successive Refinement

- Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
- Iteratively refine rankings for each page

PageRank

The Definition

$$
\begin{aligned}
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} & -\mathcal{B}_{P}=\{\text { all pages pointing to } P\} \\
& -|P|=\text { number of out links from } P
\end{aligned}
$$

Successive Refinement

- Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
- Iteratively refine rankings for each page

$$
-r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|}
$$

PageRank

The Definition

$$
\text { - } r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad-\mathcal{B}_{P}=\{\text { all pages pointing to } P\}
$$

Successive Refinement

- Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
- Iteratively refine rankings for each page

$$
\begin{aligned}
-r_{1}\left(P_{i}\right) & =\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& -r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|}
\end{aligned}
$$

PageRank

The Definition

- $r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}$
- $\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
- $|P|=$ number of out links from P

Successive Refinement

- Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
- Iteratively refine rankings for each page

$$
\begin{aligned}
& -r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& -\quad r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|} \\
& \\
& \\
& \\
& \\
& \\
& \quad-r_{j+1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{j}(P)}{|P|}
\end{aligned}
$$

In Matrix Notation

After Step j

$$
\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]
$$

In Matrix Notation

After Step j

- $\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]$
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ where $\quad p_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\ \mathbf{0} & \text { otherwise }\end{cases}$

In Matrix Notation

After Step j

- $\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]$
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ where $\quad p_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\ \mathbf{0} & \text { otherwise }\end{cases}$
- PageRank $=\lim _{j \rightarrow \infty} \pi_{j}^{T}=\pi^{T}$
(provided limit exists)

In Matrix Notation

After Step j

- $\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]$
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ where $\quad p_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\ \mathbf{0} & \text { otherwise }\end{cases}$
- PageRank $=\lim _{j \rightarrow \infty} \pi_{j}^{T}=\pi^{T}$
(provided limit exists)

It's A Markov Chain

- $\mathbf{P}=\left[p_{i j}\right]$ is a stochastic matrix

In Matrix Notation

After Step j

- $\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]$
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ where $\quad p_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\ \mathbf{0} & \text { otherwise }\end{cases}$
- PageRank $=\lim _{j \rightarrow \infty} \pi_{j}^{T}=\pi^{T}$

It's A Markov Chain

- $\mathbf{P}=\left[p_{i j}\right]$ is a stochastic matrix (row sums = 1)
- Each π_{j}^{T} (and $\left.\pi^{T}\right)$ is a probability vector

$$
\left(\sum_{i} r_{j}\left(P_{i}\right)=1\right)
$$

In Matrix Notation

After Step j

- $\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]$
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ where $\quad p_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\ \mathbf{0} & \text { otherwise }\end{cases}$
- PageRank $=\lim _{j \rightarrow \infty} \pi_{j}^{T}=\pi^{T}$

It's A Markov Chain

- $\mathbf{P}=\left[p_{i j}\right]$ is a stochastic matrix (row sums = 1)
- Each $\boldsymbol{\pi}_{j}^{T}\left(\right.$ and $\left.\boldsymbol{\pi}^{T}\right)$ is a probability vector $\left(\sum_{i} r_{j}\left(P_{i}\right)=1\right)$
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ is random walk on the graph defined by links

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Random Surfer

Web Surfer Randomly Clicks On Links

 (Back button not a link)- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on)

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on)
- No convergence!

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on)
- No convergence!
- Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on)
- No convergence!
- Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
- No convergence!

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on)
- No convergence!
- Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
- No convergence!

Convergence

- Markov chain must be irreducible and aperiodic

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on) - No convergence!
- Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$ - No convergence!

Convergence

- Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on) - No convergence!
- Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
- No convergence!

Convergence

- Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

- Replace \mathbf{P} by $\widetilde{\mathbf{P}}=\alpha \mathbf{P}+(1-\alpha) \mathbf{E}$ where $e_{i j}=1 / n \quad \alpha \approx .85$

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is $\boldsymbol{\pi}_{i}$

Problems

- Dead end page (nothing to click on) - No convergence!
- Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
- No convergence!

Convergence

- Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

- Replace \mathbf{P} by $\widetilde{\mathbf{P}}=\alpha \mathbf{P}+(1-\alpha) \mathbf{E}$ where $e_{i j}=1 / n \quad \alpha \approx .85$
- Different E's and α 's allow customization \& speedup

Computing π^{T}

World's Largest Eigenvector Problem (c. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)

Computing $\boldsymbol{\pi}^{T}$

World's Largest Eigenvector Problem (c. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
(stationary distribution vector)
(too big for direct solves)

Computing $\boldsymbol{\pi}^{T}$

World's Largest Eigenvector Problem (c. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
(too big for direct solves)
- Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

Computing $\boldsymbol{\pi}^{T}$

World's Largest Eigenvector Problem (c. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$ (too big for direct solves)
- Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

Updating Is A Big Problem

- Link structure of web is extremely dynamic

Computing $\boldsymbol{\pi}^{T}$

World's Largest Eigenvector Problem (c. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
- Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

Updating Is A Big Problem

- Link structure of web is extremely dynamic
- Links on CNN point to different pages every day (hour)

Computing $\boldsymbol{\pi}^{T}$

World's Largest Eigenvector Problem (C. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
- Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

Updating Is A Big Problem

- Link structure of web is extremely dynamic
- Links on CNN point to different pages every day (hour)
- Links are added and deleted every sec (milli-sec?)

Computing $\boldsymbol{\pi}^{T}$

World's Largest Eigenvector Problem (c. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
- Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

Updating Is A Big Problem

- Link structure of web is extremely dynamic
- Links on CNN point to different pages every day (hour)
- Links are added and deleted every sec (milli-sec?)
- Google says every 3 to 4 weeks just start from scratch

Computing $\boldsymbol{\pi}^{T}$

World's Largest Eigenvector Problem (c. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
- Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

Updating Is A Big Problem

- Link structure of web is extremely dynamic
- Links on CNN point to different pages every day (hour)
- Links are added and deleted every sec (milli-sec?)
- Google says every 3 to 4 weeks just start from scratch
- Old results don't help to restart (even if size doesn't change)
- Cutoff phenomenon in random walks (P. Diaconis, 1996)

Report Card

FEATURES	LSI	LINK ANALYSIS

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns		

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed		

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update		

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F}(? \uparrow ?)$

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F} \mathrm{(?} \mathrm{\uparrow ?)}$
Scales Up		

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F}(? \uparrow ?)$
Scales Up	D^{-}	

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F}(? \uparrow ?)$
Scales Up	D^{-}	A

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F} \mathrm{(?} \mathrm{\uparrow ?)}$
Scales Up	D^{-}	A
Takes Advantage of Link Structure		

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F} \mathrm{(?} \mathrm{\uparrow ?)}$
Scales Up	D^{-}	A
Takes Advantage of Link Structure	F	

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F}(? \uparrow ?)$
Scales Up	D^{-}	A
Takes Advantage of Link Structure	F	A^{+}

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F} \mathrm{(?} \mathrm{\uparrow ?)}$
Scales Up	D^{-}	A
Takes Advantage of Link Structure	F	A^{+}

Goals

- Do better job using link structure to reveal hidden connections

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F} \mathrm{(?} \mathrm{\uparrow ?)}$
Scales Up	D^{-}	A
Takes Advantage of Link Structure	F	A^{+}

Goals

- Do better job using link structure to reveal hidden connections
- Improve updating

Hybrid Approach

The Idea

- Use link structure to define measure of page (doc) contiguity
- What's the "distance" from P_{i} to P_{j} ?

Hybrid Approach

The Idea

- Use link structure to define measure of page (doc) contiguity
- What's the "distance" from P_{i} to P_{j} ?
- Link structure $\Longrightarrow \delta_{i j} \neq \delta_{j i}$

Hybrid Approach

The Idea

- Use link structure to define measure of page (doc) contiguity
- What's the "distance" from P_{i} to P_{j} ?
- Link structure $\Longrightarrow \delta_{i j} \neq \delta_{j i}$

1. Compute the distance $\delta_{i j}$ from P_{i} to P_{j} for all i, j

- Keep only those for which $\delta_{i j}<\tau$

Hybrid Approach

The Idea

- Use link structure to define measure of page (doc) contiguity
- What's the "distance" from P_{i} to P_{j} ?
- Link structure $\Longrightarrow \delta_{i j} \neq \delta_{j i}$

1. Compute the distance $\delta_{i j}$ from P_{i} to P_{j} for all i, j

- Keep only those for which $\delta_{i j}<\tau$
- File structure: $\left\{\begin{array}{c}P_{1} \rightarrow P_{i}, P_{j}, \ldots \\ P_{2} \rightarrow P_{k}, P_{l}, \ldots \\ \vdots\end{array}\right.$

Hybrid Approach

The Idea

- Use link structure to define measure of page (doc) contiguity
- What's the "distance" from P_{i} to P_{j} ?
- Link structure $\Longrightarrow \delta_{i j} \neq \delta_{j i}$

1. Compute the distance $\delta_{i j}$ from P_{i} to P_{j} for all i, j

- Keep only those for which $\delta_{i j}<\tau$
- File structure: $\left\{\begin{array}{c}P_{1} \rightarrow P_{i}, P_{j}, \ldots \\ P_{2} \rightarrow P_{k}, P_{l}, \ldots \\ \vdots\end{array}\right.$

2. Match query most relevant page(s) \mathcal{P}

- LSI — Link analysis - You pick

Hybrid Approach

The Idea

- Use link structure to define measure of page (doc) contiguity
- What's the "distance" from P_{i} to P_{j} ?
- Link structure $\Longrightarrow \delta_{i j} \neq \delta_{j i}$

1. Compute the distance $\delta_{i j}$ from P_{i} to P_{j} for all i, j

- Keep only those for which $\delta_{i j}<\tau$
- File structure: $\left\{\begin{array}{c}P_{1} \rightarrow P_{i}, P_{j}, \ldots \\ P_{2} \rightarrow P_{k}, P_{l}, \ldots \\ \vdots\end{array}\right.$

2. Match query most relevant page(s) \mathcal{P}

- LSI — Link analysis - You pick

3. Return \mathcal{P} together with those $\mathcal{P} \rightarrow P_{i}, P_{j}, P_{k}, P_{l}, \ldots$

Distance

What's the "distance" from D_{i} to D_{j} ?

Distance

What's the "distance" from D_{i} to D_{j} ?

- LSI uses $\delta_{i j}=\cos \theta_{i j}=\delta_{j i}$

Distance

What's the "distance" from D_{i} to D_{j} ?

- LSI uses $\delta_{i j}=\cos \theta_{i j}=\delta_{j i} \quad\left\{\begin{array}{l}\text { Based only on term frequencies } \\ \text { No link structure }\end{array}\right.$

Distance

What's the "distance" from D_{i} to D_{j} ?

- LSI uses $\delta_{i j}=\cos \theta_{i j}=\delta_{j i} \quad\left\{\begin{array}{l}\text { Based only on term frequencies } \\ \text { No link structure }\end{array}\right.$

Directed Link Structure \Longrightarrow Nonsymmetric Metric

[^0]: "The most valuable numerical algorithm in our lifetime."
 —G. Strang, Bulletin of the AMS, April, 1993.

