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Background

Goal: Identify documents that best match users query

Measures

Recall = #relevant docs retrieved
#docs in collection

(max # useful docs)

Precision = #relevant docs retrieved
#docs retrieved

(min # useless docs)

Do it FAST!

Methods

Combinatorial

Statistical

Hashing

Pattern matching

Vector Space



SMART
(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 – 1965

IBM 7094 & IBM 360

Gerard Salton

Implemented at Cornell (1965 – 1970)

Based on matrix methods



Term–Document Matrix
Start With Dictionary of Terms

Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
Count fij = # times term i appears in document j

Unweighted Term–Document Matrix
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

 = Am×n

Features
A ≥ 0
A can be really big! — Terms = O(106) Docs = O(107)
A is sparse — but otherwise unstructured
A contains a lot of uncertainty (noise)



Example
(M. W. Berry & M. Browne, 1999, SIAM)

Terms Documents
T1: Bab(y, ies, y’s) D1: Infant and toddler first aid

T2: Child(ren’s) D2: Babies and children’s room for your home

T3: Guide D3: Child safety at home

T4: Health D4: Your baby’s health and safety: from infant to toddler

T5: Home D5: Baby proofing basics

T6: Infant D6: Your guide to easy rust proofing

T7: Proofing D7: Beanie babies collector’s guide

T8: Safety

T9: Toddler

A =



D1 D2 D3 D4 D5 D6 D7

T1 0 1 0 1 1 0 1
T2 0 1 1 0 0 0 0
T3 0 0 0 0 0 1 1
T4 0 0 0 1 0 0 0
T5 0 1 1 0 0 0 0
T6 1 0 0 1 0 0 0
T7 0 0 0 0 1 1 0
T8 0 0 1 1 0 0 0
T9 1 0 0 1 0 0 0


9×7
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Query Matching

Query Vector

qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

i.e., how close is q to each column Ak?

θ

1θ

2

A1
A2

A3

q ‖q− A1‖ < ‖q− A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol



Term Weighting
A Defect

If the term bank occurs once in Doc 1 but twice in Doc 2, and
if ‖A1‖ ≈ ‖A2‖, then a query containing only bank produces
δ2 ≈ 2δ1 (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

Set aij = log(1 + fij) (other weights also possible)

Query Weights

Terms Boeing and airplanes not equally important in query

Importance of Term i tends to be inversely proportional to
νi = # Docs containing Term i

To Compensate

Set qi =
{

log(n/νi) if νi �= 0
0 if νi = 0

(other weights also possible)



Noise in A
Ambiguity in Vocabulary

e.g., A bank could be

• A financial institution

• A river side

• A shot in the game of pool

Variation in Writing Style

No two authors write the same way

• One author may write car and laptop

• Another author may write automobile and portable

Variation in Indexing Conventions

No two people index documents the same way

Computer indexing is inexact and can be unpredictable



Practical Problems
Simple in Theory

Weight terms and normalize cols — Make ‖Ai‖ = 1

For each new query, weight and normalize — Make ‖q‖ = 1

Compute δi = cos θi = (qTA)i and return most relevant docs

Difficult in Practice

Must be able to do it FAST!

=⇒ Somehow compress the data

Must account for variations due to ambiguity in language and
variations in writing and indexing styles.

=⇒ Somehow reduce “noise” or “uncertainty” in A



Basis Games
Consider Vector of Data

v =
∑n

i=1αiei with respect to o.n. basis {e1,e2, . . .,en}
=⇒ αi = 〈ei v〉 = amount of v in direction of ei

Compression

Select new o.n. basis {u1,u2, . . .,un} so that fewer vectors
are needed to represent v =

∑r
i=1 βiui (r < n)

Data is compressed from {α1, α2, . . ., αn} into {β1, β2, . . ., βr}

Even More Compression

Eliminate data lying in insignificant directions

Arrange: |β1| ≥ |β2| ≥ . . . ≥ |βk| ≥ ε > |βk+1|. . . ≥ |βr|
Approximate: v ≈ ṽ =

∑k
i=1 βiui (k < r < n)

Data now compressed from {α1, α2, . . ., αn} to {β1, β2, . . ., βk}



Added Benefit

Noise Reduction

Assume noise (or uncertainty) is nondirectional

=⇒ As much noise in one direction as in any other direction

=⇒ v =
∑r

i=1 βiui =
∑r

i=1 siui +
∑r

i=1 εui = (signal) + (noise)

Suppose |s1| ≥ |s2| ≥ . . . ≥ |sk| ≥ ε > |sk+1|. . . ≥ |sr|

Drop βk+1, βk+2, . . ., βr, and use v ≈ ṽ =
∑k

i=1 βiui

=⇒ Only a small proportion of the signal is lost

=⇒ A larger proportion of the noise is lost



Example
(Matrix Analysis and Applied Linear Algebra, SIAM, 2000)

Sample Audio Signal 512 times for 1 sec.

x =



x0

x1

x2...
x510

x511



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Goal: Compress and Reduce Noise



Find A Better Basis
Oscillatory =⇒ Cosines & Sines

x(t) ∼
∞∑
f=1

αf cos 2πft + βf sin 2πft (if x(t) was a continuous function)

Discrete Time, Cosine, and Sine Vectors

t =


0/n
1/n
2/n
...

n−1/n

 cos 2πf t=


cos

(
2πf ·0n

)
cos

(
2πf ·1n

)
cos

(
2πf ·2n

)
...

cos
(
2πf ·n−1

n

)

 sin 2πf t =


sin

(
2πf ·0n

)
sin

(
2πf ·1n

)
sin

(
2πf ·2n

)
...

sin
(
2πf ·n−1

n

)



Discrete Exponential Vectors

ei2πf t = cos 2πf t + i sin 2πf t e−i2πf t = cos 2πf t− i sin 2πf t



Discrete Fourier Transform

ω = e2πi/n W = 1
2


1 1 1 .. . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ωn−2
...

...
...

. . .
...

1 ωn−1 ωn−2 . . . ω


n×n

Wf = 1
2e2πif t

Identities
cos 2πf t = Wf + Wn−f (0 < f < n)

sin 2πf t = −i(Wf −Wn−f)

New Basis = {W0,W1, . . .,Wn−1} (Find coordinates of x wrt Wi’s)

x = Wy =⇒ y = W−1x = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1


ξ = e−2πi/n = ω



The New Coordinates
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y = (e80 + e432)− 2i(e50 − e462) + ε

= (e80 + en−80)− 2i(e50 − en−50) + ε (n = 512)

x = Wy = (W80 + Wn−80)− 2i(W50 −Wn−50) + ε

= cos 2π80t + 2 sin 2π50t + ε



Original
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Cleaned & Compressed
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cos 2π80t + 2 sin 2π50t



The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory but Difficult in Practice

Must do it FAST!

Need For Speed =⇒ Matrix Factorizations =⇒ FFT

Fn = Bn(I2 ⊗ Fn/2)Pn Bn =
[

In/2 Dn/2

In/2 −Dn/2

]
Dn/2 =

[
1 ξ

ξ2...

]
FFT changes n2 flop requirement into (n/2) log2 n

“The most valuable numerical algorithm in our lifetime.”

—G. Strang, Bulletin of the AMS, April, 1993.



Things Have Changed

“For engineers and social and physical scientists, linear al-
gebra now fills a place that is often more important than
calculus.”

“It is partly [due to] the move from analog to digital; func-
tions are replaced by vectors.”

“My generation of students, and certainly my teachers, did
not see this change coming.”

—Gilbert Strang
From The American Scientist

April, 1994.



Back To IR
Almost the Same Problem

Evaluate qTA fast

Data is Now the Term-Doc Matrix in Standard Coordinates

A =
∑

i,j 〈Eij A〉Eij Eij = eieTj 〈Eij A〉 = aij

〈X Y〉 = trace
(
XTY

)
‖X‖ = 〈X X〉1/2 (Frobenius Norm)

Seek New o.n. Basis That Squeezes & Cleans

A =
∑r

i=1 〈Zi A〉Zi

Think Matrix Factorizations =⇒ SVD =⇒ A = UDVT

A =
∑r

i=1 σiuiv
T
i =

∑r
i=1 σiZi, Zi = uivTi , 〈Zi Zj〉 =

{
1 i=j

0 i�=j

σi = 〈Zi A〉 = the amount of A in direction of Zi



Same As Before
Assume Nondirectional Noise or Uncertainty

Drop small σi’s and use A ≈ Ã =
∑k

i=1 σiZi
Lose only small part of relevance

Lose larger proportion of noise or uncertainty

Be Liberal in Dropping σi’s

Numerical accuracy not important — 2 or 3 significant digits

New Query Matching Strategy

Normalize

• q← q/‖q‖

• Ã←
∑k

i=1 σiuiv
T
i D =

∑k
i=1 σiuiṽ

T
i

Compare query to each document

• (δ1, δ2, . . ., δn) = qT Ã =
∑k

i=1 σi(q
Tui)ṽTi



Pros & Cons
Advantages

Compression

• A is replaced by only a few sing values and sing vectors

• They are determined & normalized only once

SPEED!

• Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(q
Tui)ṽTi

Latent semantic associations are made

• Relevant docs not found by direct matching show up

Disadvantages

Adding & deleting docs (updating & downdating SVD) difficult

Determining optimal k is not easy (empirical tuning required)



Variations
Projected Query

First project the query onto the document space

q̃ = PR(A)q =
∑r

j=1 ujuTj q

Or, better yet, use truncated projection

q̃ = P
R
(

Ã
)q =

∑k
j=1 ujuTj q

Notice

• q̃T Ã =
∑k

i=1 σi(q̃
Tui)ṽTi =

∑k
i=1 σi

(
(
∑k

j=1 qTuTj uj)ui
)

ṽTi = qT Ã

• ‖q̃‖ ≤ ‖q‖

• cos θ̃i ≥ cos θi (more documents are deemed relevant)



Other Factorizations
DFT — FFT

No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast (if n = 2p)

Factor A = HmBHT
n =

∑
i,j βijhih

T
j ( h’s only use −1, 0, or 1)

• More than a few βij’s may be needed
• Needs padding if m or n not a power of 2

Semidiscrete Decomposition (T. Kolda and D. O’Leary, 1998)

Approximate A ≈
∑k

i=1αixiyj xi and yj only use −1, 0, or 1

Other Wavelet Transforms?



Using Centroids
Document Clusters

Assume A = [a1 a2
. . . an] (normalized) represents a cluster

Mean: m = 1
n

∑n
i=1 ai = Ae

n where eT = (1,1, . . .,1)

Centroid vector: c = m/‖m‖ = Ae/‖Ae‖

Facts
min

p≥0,‖p‖=1

∑
i=1

cos θ(ai,p) =
n∑
i=1

cos θ(ai,c).

i.e., c is the closest vector to the cluster

cTA ≈ eT (cTai = cos θi ≈ 1)

Reflectors With Specified Unit Column — Say c

L = I− 2uuT/(uTu) = [c |X] where u = c± e1

L = LT = L−1



Orthogonal Factorization
Specify c and e/

√
n as First Columns

L = [c |X] and R = [e/
√
n |Y]

LAR = LTAR =
[

cTAe/
√
n cTAY

XTAe/
√
n XTAY

]
≈

[
eTe/

√
n eTY

XTc‖Ae‖/√n XTAY

]
=

[√
n 0

0 XTAY

]
=

[√
n 0

0 B

]

A New Factorization

A = LDR = LDRT = ceT +
∑
i,j �= 1

βijxiyTj

Truncate To Compress & Clean

Break Entire Collection Into Clusters



To Learn More
Books
• Matrix Analysis and Applied Linear Algebra, C. D. Meyer, SIAM, 2000.

• Understanding Search Engines; Mathematical Modeling and Text Retrieval, M. W.
Berry and M. Browne, SIAM, 1999.

• Introduction to Modern Information Retrieval, G. Salton and M. McGill, McGraw–
Hill, 1983.

Papers
• M. W. Berry, Z. Drmac, and E. R. Jessup, Matrices, vector spaces, and information

retrieval, SIAM Rev., 41(1999), pp.335-362.

• M. W. Berry, S. T. Dumas, and G. W. O’Brien, Using linear algebra for intelligent
information retrieval, U. Tenn. Comp. Sci. Report CS-94-270, Dec, 1994.

• I. S. Dhillon and D. S. Modha, Concept decompositions for large sparse text data
using clustering, IBM Research Report RJ 10147 (95022), July 8, 1999–declassified
on March 13, 2000, to appear in Machine Learning.

URLs
• http://www.cs.utk.edu/˜ lsi/

• http://lsi.research.telcordia.com/

• http://lsa.colorado.edu/

• http://www.searchenginewatch.com/resources/index.html


