Solution Methods

for the

PageRank Problem

Amy Langville
Carl Meyer

Department of Mathematics

North Carolina State University
Raleigh, NC College of Charleston 2/27/04

) 4

Outline

Introduction to Google and PageRank
Markov Chain methods for computation of PageRank

Linear System methods for computation of PageRank

) 4

Google

Must index key terms on each page
Robots crawl the web — software does indexing

Inverted file structure (like book index: terms to pages)
Termy — P, Pj, ...
Termo — P, P, ...

Determine a “PageRank” for each page P, P;, P, B, ...
Query independent — Based only on link structure

Query matching
Q = Termy, Terms, ... produces P, P;, P, B,...

Return P;, P;, Py, P, ... to user in order of PageRank

) 4

Google’s PageRank Idea

(Sergey Brin & Lawrence Page 1998)
Rankings are not query dependent

Depend only on link structure
Off-line calculations

Your page P has some rank 7r(P)

Adjust r(P) higher or lower depending on ranks of pages
that point to P

Importance is not number of in-links or out-links
One link to P from Yahoo! is important
Many links to P from me is not

Yahoo! points many places — value of link to P is diluted

) 4

PageRank

Start with ro(P;) =1/n for all pages Py, Ps, ...,

lteratively reflne rankings for each page

7“1(Pz') = Z TOI(DP)

PEBpi ‘ |

r(P) Bp = {all pages pointing to P}

| P| = number of out links from P

Py

In Matrix Notation

) = |rj(P1), mi(P), * o, (P
1/|P] i
0 otherwise

T _ T =
7w =7; P where pw—{

PageRank = lim «! = =’

j—oo

P has row sums = 1 for ND nodes, row sums = 0 for D nodes

In Matrix Notation

mi = [ri(Pr), 7j(P2), =+, mi(Py)]
L/|B] ifi—j

+1 .
/ 0 otherwise

! = W?P where Dij = {
PageRank = lim «! = =’

j—oo J

P has row sums = 1 for ND nodes, row sums = 0 for D nodes
Stochasticity Fix: P =P +av’.

) 4

In Matrix Notation

71'? = [Tj(Pl)a frj(PQ)a Tt 7/.](PN)}
IR i

T T
- . =m:P where p~={
7+ g N 0 otherwise

PageRank = lim «! = =’

j—oo

P has row sums = 1 for ND nodes, row sums = 0 for D nodes
Stochasticity Fix: P = P +av’.

Each w]T IS a probability distribution vector

wi,, =m P is random walk on the graph defined by links

nl = lim =l = stationary probability distribution

j—oo 7

) 4

Random Surfer
Long-run proportion of time on page P, is m;

Dead end page (nothing to click on)
Could get trapped into a cycle (P, — P; — F;)

Markov chain must be irreducible and aperiodic

Irreducibility Fix: P=aP+(1—a)E ¢;=1/n a~ .85
P=aP+aavl+(1 - a)E
Different E =ev! and «a allow customization & speedup,

yet rank-one update maintained; P = aP+(ca+(1—a)e)v’

G

Computing 7*
A Big Problem

Solve 7TT = 7TT|5 (stationary distribution vector)

m'(1-P)=0 (too big for direct solves)

CLEVE’S
CORNER

Google’s PageRank is an eigenvector of a
matrix of order 2.7 billion.

One of the reasons why Googleis such an effective search engine is
the PageRank™ algorithm, developed by Google’s founders, Larry
Page and Sergey Brin, when they were graduate students at Stanford
University. PageRank is determined entirely by the link structure of
the Web. It is recomputed about once a month and does not involve
any of the actual content of Web pages or of any individual query.
Then, for any particular query, Google finds the pages on the

Web that match that query and lists those pages in the order of
their PageRank.

Imagine surfing the Web, going from page to page by randomly
choosing an outgoing link from one page to get to the next. This can
lead to dead ends at pages with no outgoing links, or cycles around
cliques of interconnected pages. So, a certain fraction of the time,
simply choose a random page from anywhere on the Web. This
theoretical random walk of the Web is a Markov chain or Markov
process. The limiting probability that a dedicated random surfer visits
any particular page is its PageRank. A page has high rank if it has
links to and from other pages with high rank.

Let W be the set of Web pages that can reached by following a chain

of hyperlinks starting from a page at Google and let 7 be the number
of pages in W. The set W actually varies with time, but in May 2002,

n was about 2.7 billion. Let G be the n-bv-# connectivity matrix of

THE WORLD’S LARGEST
MATRIX COMPUTATION

BY CLEVE MOLER

It tells us that the largest eigenvalue of A is equal to one and that the
corresponding eigenvector, which satisfies the equation

x=Ax,

exists and is unique to within a scaling factor. When this scaling
factor is chosen so that

Z,ixi: 1

then x is the state vector of the Markov chain. The elements of x are
Google’s PageRank.

If the matrix were small enough to fit in MATLAB, one way to
compute the eigenvector x would be to start with a good approximate
solution, such as the PageRanks from the previous month, and
simply repeat the assignment statement

X = AX

until successive vectors agree to within specified tolerance. This

is known as the power method and is about the only possible
approach for very large n. 'm not sure how Google actually computes
PageRank, but one step of the power method would require one

pass over a database of Web pages, updating weighted reference
counts generated by the hyperlinks between pages.

PART 2
Markov chain methods

for the

Computation of PageRank

G
Computing 7w
A Big Problem
Solve 7! = TP

7TT(| — P) =0

Start with «} = e/n and iterate anH = 7roI=D

G

Power Method to compute PageRank

w) =el/n

until convergence, do

71'?_'_1 71'? P (dense computation)

end

G

Power Method to compute PageRank

w) =el/n

until convergence, do

X 71'?_'_1 = 71'? P (dense computation)
® 71'};1 =« 71? P+ (1 — le) 7T]T e VT (sparser computation)

end

G

Power Method to compute PageRank

w) =el/n

until convergence, do

W]T+1=oz7r]TF_’+(1—o:)ﬂ']TevT
o 77?+1=oz7rfP+(oz7T]Ta+(1—oz))vT

P is very, very sparse with about 3-10 nonzeros per row.

= one vector-matrix mult. is O(nnz(P)) =~ O(n).

Convergence

— uses a = .85
— report 50-100 iterations til convergence

— still takes days to converge

G

Enhancements to the PR power method

Kamvar et al. Extrapolation

Kamvar et al. Adaptive PageRank
Kamvar et al. BlockRank

Lee et al. Lumpability of Dangling Nodes
Langville/Meyer: Updating PageRank

Ipsen/Kirkland: more theory for Langville/Meyer

) 4

Kamvar et al. Extrapolation

T k__T T
7Tk+1 = ﬂ.k P 7Tk 971' +)\27‘-]{ XZy2 + >\37T]€ X3y3 * 4)\nﬂ'k Xnyn

- asympt. rate of conv. = must wait for \§ — 0

- can do better by subtracting off components in y. direction

- next step = annihilate additional components

- extrapolation reduces time til convergence for large

convergence tolerance 7 = 1072-10"3 by about 20%.
Speed improvements slow down as 7 gets smaller.

G

Kamvar et al. Adaptive PageRank

— In the power method, some pages converge to their PR values
faster than others.

— lock states that have already converged to their PR values. Do
not involve them in subsequent computations.

— speeds computation of PageRank by 15%.

— adaptive PR converges experimentally, but no proof it will
converge in theory, or converge to correct PRs.

Kamvar et al. BlockRank

— Web has domain structure. Lots of links within domain/host,
fewer outside domain. This community structure affects
convergence of PR algorithm.

— use aggregation to
(1) compute local PRs for within each host,
(2) weight local PRs by importance of corresponding host,
(3) begin standard PR algorithm with weighted aggregate of
local PRs as starting vector.

— speeds computation of PageRank by factor of 2 on some data.

— Also: personalized PR (changing v!) becomes feasible. v’ is
1 x k vector where k is # of hosts. Incorporates personalization
in aggregation step, where it is computationally efficient.

G

Lee et al. Lumpability of D nodes

— rows of P corresponding to D nodes are identical (v').
= use theory of lumpable Markov chains.

— do most of work only on ND part of P by using two
aggregation matrices.

— if D nodes make up 4/5 of webpages, then lumpable PageRank
takes only 1/5 time of standard PageRank.

— Also: other acceleration methods can be applied to small
ND system.

) 4

Langville/Meyer Updating

Updating PR is huge problem. Currently done monthly, but
web changes hourly.

Chien et al. use aggregation to focus on pages whose PR
IS most likely to change.

Use iterative aggregation to extend Chien idea.

Focus on bad states, aggregate good, fast-converging states
iInto one superstate.

= only work on much smaller aggregated chain.

speedup by factor of 5-10 on some datasets.

Partitioning into good and bad states is hard, and |IAD is very
sensitive to partition.

Gy
Ipsen/Kirkland Updating Theory

— L/M prove updating method converges at rate (\2(S-))" — 0.

— Ipsen/Kirkand wonder: can A\3(S3) > o ?

— X2(S3) < « for all partitions.

— X2(S3) < a under two trivial assumptions on P.

PART 3

Linear System methods

for the

Computation of PageRank

G

For P

For P

For P

Linear System Formulation

) 4

(I — aP)

. (I — aP) is nonsingular.
. (I — aP) is an M-matrix.

. The row sums of (I — aP) are either 1 — o for ND nodes

or 1 for D nodes.

. [T=aP|lee = 1 + .
. Since (I — oP) is an M-matrix, (I — aP)~! > 0.

. The row sums of (I — aP)~! are equal to 1 for the D nodes

and less than or equal to 1/(1 — «) for the ND nodes.

. The condition number (I — aP) < (1 + a)/(1 — «).

. The row of (I — aP)~1 corresponding to D node i is e?.

(I —aP)™! =

ND-D Reordering

ND D
P11 P
0 0)
|

[Oé(l — OéPll)
0 I

| — C¥P11 —C\fPlz]

1|:’12]

Gy
Algorithm 1: ND-D Reordering

Solve m/(l —aP)=v! and w'e=1.

1. Solve for i in wl (I — aPyy) = vi.
2. Compute i = amiPis + Vi,
3. Normalize ©! =[nw] wl]/||[w1 =i]|:.

one small system solve, plus forward substitution.

Lee et al. lumpable D node Markov formulation.

Continue locating 0 rows in submatrices of (I — aP) until no
0 rows remain. Amounts to a reordering of indices.

Before Reordering After Reordering

k3
o
» .
=
"-
.
.l‘
i
£ -
* .
-
e
PO
-
3

.

o A ST

1000 2000 3000 4000 00 60 7000 8000 9000 1000 2000 3000 4000 5000 6000 7000 8000 9000
nz=16773 nz=16773

G

Algorithm 2: Recursive ND-D Reordering

o 0k~ 0 D

Solve m/(—aP)=v! and =w'e=1.

. Reorder the states of the original Markov chain, so that the

reordered matrix has the 0 block structure.

Solve for ! in wi(l — aPyq) = vi.

Compute 7l = amiPys + Vvi.

Compute 7l = amiPi3 + amiPas + Vi,

Compute 71'{ = amiPy + amiPgyy+ - + om'g_le_l,b + Vg.
Normalize = =[n{ w4 -+ «wl1/||[7] =5 -+ = 1|1

even smaller system solve, plus forward substitution.

by factor of nnz(P)/nnz(P11) (estimated)

2
<D
) 4

Results of Reordered PageRank

EPA.dat CA.dat NCS.dat ND.dat SU450k.dat
PR Tirme 3.80 9.63 13.17 177.16 237.37
Lter. 159 176 162 166 164
n(P) 5042 9,664 10,000 325.729 451,237
nz(P) 9,563 16,873 101,118 1,497,134 1,082,604

RePR Time .09 1.22 7.65 130.54 52.84
Iter. 155 169 160 170 145
b 10 9 5] 18 12

n(Py;) 704 2,622 7,136 325,729 84,861
nz(P1;) 1,330 5,238 79,230 1,191,761 267,566

Speed E'st. 7.2 6.4 1.3 1.3 4.0
Up Act. 6.4 7.9 1.7 1.4 4.5

can do no worse than original PR power method

Speedup is dataset-dependent

) 4

Conclusions

there are many solution methods for the PageRank problem.
nearly all methods have stayed in the Markov chain realm.

yet, solution methods in the linear system realm may provide
powerful alternatives.

many of these methods can be combined to achieve even
greater speedups.

We are moving closer to lofty goal of computing real-time
personalized PageRank.

