
SolutionMethods
for the

PageRankProblem

Amy Langville

Carl Meyer

Department of Mathematics
North Carolina State University
Raleigh, NC College of Charleston 2/27/04

Outline

• Introduction to Google and PageRank

• Markov Chain methods for computation of PageRank

• Linear System methods for computation of PageRank

Google
Indexing

• Must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)

Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
.
.
.

Ranking

• Determine a “PageRank” for each page Pi, Pj, Pk, Pl, . . .
Query independent — Based only on link structure

• Query matching

Q = Term1, T erm2, . . . produces Pi, Pj, Pk, Pl, . . .

• Return Pi, Pj, Pk, Pl, . . . to user in order of PageRank

Google’s PageRank Idea
(Sergey Brin & Lawrence Page 1998)

• Rankings are not query dependent

Depend only on link structure

Off-line calculations

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

One link to P from Yahoo! is important

Many links to P from me is not

• Yahoo! points many places — value of link to P is diluted

PageRank
The Definition

r(P) =
∑

P∈BP

r(P)

|P |

BP = {all pages pointing to P}

|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)

|P |

r2(Pi) =
∑

P∈BPi

r1(P)

|P |

.
.
.

rj+1(Pi) =
∑

P∈BPi

rj(P)

|P |

In Matrix Notation

After Step j

π
T
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

π
T
j+1

= π
T
j P where pij =

{

1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

π
T
j = π

T
(provided limit exists)

It’s Almost a Markov Chain

P has row sums = 1 for ND nodes, row sums = 0 for D nodes

In Matrix Notation

After Step j

π
T
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

π
T
j+1

= π
T
j P where pij =

{

1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

π
T
j = π

T
(provided limit exists)

It’s Almost a Markov Chain

P has row sums = 1 for ND nodes, row sums = 0 for D nodes

Stochasticity Fix: P̄ = P + avT . (ai=1 for i∈D, 0, o.w.)

In Matrix Notation

After Step j

π
T
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

π
T
j+1

= π
T
j P where pij =

{

1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

π
T
j = π

T
(provided limit exists)

It’s Almost a Markov Chain

P has row sums = 1 for ND nodes, row sums = 0 for D nodes

Stochasticity Fix: P̄ = P + avT . (ai=1 for i∈D, 0, o.w.)

Each π
T
j is a probability distribution vector

(
∑

i
rj(Pi)=1

)

π
T
j+1

= π
T
j P̄ is random walk on the graph defined by links

π
T = lim

j→∞
π

T
j = stationary probability distribution

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) (π
T

not well defined)

Could get trapped into a cycle (Pi → Pj → Pi) (No convergence)

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Irreducibility Fix: ¯̄P = αP̄ + (1 − α)E eij = 1/n α ≈ .85

¯̄P = αP + α a vT + (1 − α)E

Different E = evT and α allow customization & speedup,

yet rank-one update maintained; ¯̄P = αP+(α a+(1−α) e)vT

Computing πT

A Big Problem

Solve π
T = π

T ¯̄P (stationary distribution vector)

π
T (I − ¯̄P) = 0 (too big for direct solves)

PART2

Markovchainmethods

for the

ComputationofPageRank

Computing πT

A Big Problem

Solve π
T = π

T ¯̄P (stationary distribution vector)

π
T (I − ¯̄P) = 0 (too big for direct solves)

Start with π
T
0

= e/n and iterate π
T
j+1

= π
T
j

¯̄P (power method)

Power Method to compute PageRank

π
T
0

= eT/n

until convergence, do

π
T
j+1

= π
T
j

¯̄P (dense computation)

end

Power Method to compute PageRank

π
T
0

= eT/n

until convergence, do

X π
T
j+1

= π
T
j

¯̄P (dense computation)

• π
T
j+1

= α π
T
j P̄ + (1 − α) π

T
j e vT

(sparser computation)

end

Power Method to compute PageRank

π
T
0

= eT/n

until convergence, do

X π
T
j+1

= π
T
j

¯̄P (dense computation)

X π
T
j+1

= α π
T
j P̄ + (1 − α) π

T
j e vT

(sparser computation)

• π
T
j+1

= α π
T
j P + (α π

T
j a + (1− α)) vT

(even less computation)

end

• P is very, very sparse with about 3-10 nonzeros per row.

• ⇒ one vector-matrix mult. is O(nnz(P)) ≈ O(n).

Convergence

Can prove λ2(¯̄P) = α

(⇒ asymptotic rate of convergence of PageRank method is rate at which αk → 0)

Google

– uses α = .85 (5/6, 1/6 interpretation)

– report 50-100 iterations til convergence

– still takes days to converge

Enhancements to the PR power method

• Kamvar et al. Extrapolation

• Kamvar et al. Adaptive PageRank

• Kamvar et al. BlockRank

• Lee et al. Lumpability of Dangling Nodes

• Langville/Meyer: Updating PageRank

• Ipsen/Kirkland: more theory for Langville/Meyer

Kamvar et al. Extrapolation

π
T
k+1

= π
T
k P = π

T
k eπ

T + λk
2
π

T
k x2yT

2
+ λk

3
π

T
k x3yT

3
+ . . . + λk

nπ
T
k xnyT

n

Idea: - asympt. rate of conv. ⇒ must wait for λk
2
→ 0

- can do better by subtracting off components in yT
2

direction

(Aitken δ2
extrapolation)

- next step = annihilate additional components

(Kamvar et al. quadratic extrapolation)

Results: - extrapolation reduces time til convergence for large

convergence tolerance τ = 10
−2–10

−3 by about 20%.
Speed improvements slow down as τ gets smaller.

Kamvar et al. Adaptive PageRank

Observation

– In the power method, some pages converge to their PR values
faster than others.

Idea

– lock states that have already converged to their PR values. Do
not involve them in subsequent computations.

(early conv. determined by rel. diff. in successive iterates, |π(k+1)
i −π(k)

i |/|π(k)
i |<10

−3)

Results

– speeds computation of PageRank by 15%.

– adaptive PR converges experimentally, but no proof it will

converge in theory, or converge to correct PRs.

Kamvar et al. BlockRank

Observation

– Web has domain structure. Lots of links within domain/host,

fewer outside domain. This community structure affects
convergence of PR algorithm.

Idea

– use aggregation to

(1) compute local PRs for within each host,

(2) weight local PRs by importance of corresponding host,

(3) begin standard PR algorithm with weighted aggregate of

local PRs as starting vector.

Results

– speeds computation of PageRank by factor of 2 on some data.

– Also: personalized PR (changing vT) becomes feasible. vT is

1 × k vector where k is # of hosts. Incorporates personalization
in aggregation step, where it is computationally efficient.

Lee et al. Lumpability of D nodes

Observation

– rows of P̄ corresponding to D nodes are identical (vT).

⇒ use theory of lumpable Markov chains.

Idea

– do most of work only on ND part of P̄ by using two

aggregation matrices.

Results

– if D nodes make up 4/5 of webpages, then lumpable PageRank

takes only 1/5 time of standard PageRank.

– Also: other acceleration methods can be applied to small

ND system.

Langville/Meyer Updating
Motivation

– Updating PR is huge problem. Currently done monthly, but

web changes hourly.

– Chien et al. use aggregation to focus on pages whose PR

is most likely to change.

Idea

– Use iterative aggregation to extend Chien idea.

– Focus on bad states, aggregate good, fast-converging states

into one superstate.

– ⇒ only work on much smaller aggregated chain.

Results

– speedup by factor of 5-10 on some datasets.

Issue

– Partitioning into good and bad states is hard, and IAD is very

sensitive to partition.

Ipsen/Kirkland Updating Theory

Motivation

– L/M prove updating method converges at rate (λ2(S2))k → 0.

– Ipsen/Kirkand wonder: can λ2(S2) > α ?

Results

– λ2(S2) ≤ α for all partitions.

– λ2(S2) < α under two trivial assumptions on P.

(P is reducible, and at least one page in each essential class does not self-link)

PART3

LinearSystemmethods

for the

ComputationofPageRank

Linear System Formulation

For ¯̄P

π
T (I − ¯̄P) = 0

T and π
T e = 1.

For P̄

π
T (I − αP̄) = (1 − α)vT and π

T e = 1.

For P

π
T (I − αP) = vT and π

T e = 1.

(P is very sparse, 3-10 nonzeros per row)

Properties of (I − α P):

1. (I − αP) is nonsingular.

2. (I − αP) is an M-matrix.

3. The row sums of (I − αP) are either 1 − α for ND nodes

or 1 for D nodes.

4. ‖I − αP‖∞ = 1 + α.

5. Since (I − αP) is an M-matrix, (I − αP)−1 ≥ 0.

6. The row sums of (I − αP)−1 are equal to 1 for the D nodes

and less than or equal to 1/(1 − α) for the ND nodes.

7. The condition number κ∞(I − αP) ≤ (1 + α)/(1 − α).

8. The row of (I − αP)−1 corresponding to D node i is eT
i .

ND-D Reordering

P =

(

ND D
ND P11 P12

D 0 0

)

.

(I − αP) =

[

I − αP11 −αP12

0 I

]

.

(I − αP)−1 =

[

(I − αP11)−1 α(I − αP11)−1P12

0 I

]

.

Algorithm 1: ND-D Reordering

Solve π
T (I − αP) = vT and π

T e = 1.

Algorithm 1:

1. Solve for π
T
1

in π
T
1
(I − αP11) = vT

1
.

2. Compute π
T
2

= απ
T
1
P12 + vT

2
.

3. Normalize π
T = [πT

1
π

T
2
]/‖[πT

1
π

T
2
]‖1.

Pro: one small system solve, plus forward substitution.

Analog: Lee et al. lumpable D node Markov formulation.

Extension of ND-D Reordering

• Continue locating 0 rows in submatrices of (I − αP) until no

0 rows remain. Amounts to a reordering of indices.

Before Reordering After Reordering

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773

Algorithm 2: Recursive ND-D Reordering

Solve π
T (I − αP) = vT and π

T e = 1.

Algorithm 2:

1. Reorder the states of the original Markov chain, so that the

reordered matrix has the 0 block structure. O(nnz(P))≈1 power iter.

2. Solve for π
T
1

in π
T
1
(I − αP11) = vT

1
. Jacobi method with rate of conv. ≤ α

3. Compute π
T
2

= απ
T
1
P12 + vT

2
.

4. Compute π
T
3

= απ
T
1
P13 + απ

T
2
P23 + vT

3
.

5. Compute π
T
b = απ

T
1
P1b + απ

T
2
P2b + . . . + απ

T
b−1

Pb−1,b + vT
b . O(nnz(P))

6. Normalize π
T = [πT

1
π

T
2

. . . π
T
b]/‖[πT

1
π

T
2

. . . π
T
b]‖1.

Pro: even smaller system solve, plus forward substitution.

Speedup: by factor of nnz(P)/nnz(P11) (estimated)

Results of Reordered PageRank

EPA.dat CA.dat NCS.dat ND.dat SU450k.dat
PR Time 3.80 9.63 13.17 177.16 237.37

Iter. 159 176 162 166 164

n(P) 5,042 9,664 10,000 325,729 451,237

nz(P) 9,563 16,873 101,118 1,497,134 1,082,604

RePR Time .59 1.22 7.65 130.54 52.84

Iter. 155 169 160 170 145

b 10 9 5 18 12

n(P11) 704 2,622 7,136 325,729 84,861

nz(P11) 1,330 5,238 79,230 1,191,761 267,566

Speed Est. 7.2 6.4 1.3 1.3 4.0
Up Act. 6.4 7.9 1.7 1.4 4.5

• can do no worse than original PR power method

• Speedup is dataset-dependent

Conclusions

• there are many solution methods for the PageRank problem.

• nearly all methods have stayed in the Markov chain realm.

• yet, solution methods in the linear system realm may provide

powerful alternatives.

• many of these methods can be combined to achieve even

greater speedups.

• We are moving closer to lofty goal of computing real-time

personalized PageRank.

