Clustering

with the

SVD

Carl Meyer

meyer@ncsu.edu

N.C. State U.

Mathematics Dept.

Ibai Basabe

ibaichuk@msn.com

C. of Charleston

Mathematics Dept.

Amy Langville

langvillea@cofc.edu

C. of Charleston

Mathematics Dept.

Outline

- Fielder Method
- Clustering with the SVD
- Extended Fielder Method
- Vismatrix Tool
- Cluster Aggregation

Clustering

A graph: directed, undirected

• A data matrix: square, rectangular, symmetric, asymmetric

(related, but subtle differences)

Fiedler Method

Fiedler Method

Clustering on an undirected graph

Matrices

- Adjacency: A symmetric
- Diagonal: D of row sums
- Laplacian: L = D − A

Properties of L

- L is spd so all $\lambda_i \geq 0$.
- $\exists \lambda_i = 0, \forall \text{ connected component } i$
- If L is scc, then $\lambda_1 = 0$, $\lambda_i > 0$, $\forall i = 2, ..., n$.
- Le = $0 \Rightarrow \mu_L = 0$ (D as a type of centering)
- L has orthogonal e-decomp. \Rightarrow \mathbf{v}_2 centered about 0 (signs in \mathbf{v}_2 + bisection + recursion)

Fiedler Example

The subdominant eigenvector \mathbf{v}_2 gives info. on clustering.

Why does Fiedler vector cluster?

Two-way partition
$$\mathbf{A} = \begin{bmatrix} \mathbf{A_1} & \mathbf{A_2} \\ \mathbf{A_3} & \mathbf{A_4} \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} \mathbf{D_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{D_4} \end{bmatrix}$$

• Assign each node to one of two clusters. \Rightarrow Create decision variables x_i

$$x_i = 1$$
, if node i goes in cluster 1 $x_i = -1$, if node i goes in cluster 2

- Objective: minimize the number of between-cluster links maximize the number of in-cluster links
 - \Rightarrow min_x $\mathbf{x}^T \mathbf{L} \mathbf{x}^T$
- Suppose $\mathbf{x} = \begin{bmatrix} \mathbf{e} \\ -\mathbf{e} \end{bmatrix}$. Then
 - $\Rightarrow \min_{\mathbf{x}} \mathbf{x}^T \mathbf{L} \mathbf{x}$ $= (\mathbf{e}^T \mathbf{D}_1 \mathbf{e} + \mathbf{e}^T \mathbf{D}_4 \mathbf{e}) + (\mathbf{e}^T \mathbf{A}_2 \mathbf{e} + \mathbf{e}^T \mathbf{A}_3 \mathbf{e}) (\mathbf{e}^T \mathbf{A}_1 \mathbf{e} + \mathbf{e}^T \mathbf{A}_4 \mathbf{e})$ $\downarrow \text{ for balancing} \qquad \downarrow \text{ between-cluster links} \qquad \uparrow \text{ in-cluster links}$

Why does Fiedler vector cluster?

- Optimization Problem min $\mathbf{x}^T \mathbf{L} \mathbf{x}$ is NP-hard.
 - \Rightarrow Relax from discrete to continuous values for **x**.
- By Rayleigh theorem,

$$\min_{\|\mathbf{x}\|_2=1} \mathbf{x}^T \mathbf{L} \mathbf{x} = \lambda_1,$$

with \mathbf{x}^* as the eigenvector corresponding to λ_1 .

BUT, $\mathbf{x}^* = \mathbf{e}$, which is not helpful for clustering!

Optimization Solution

- Add constraint $\mathbf{x}^T \mathbf{e} = \mathbf{0}$.
- By Courant-Fischer theorem,

$$\min_{\|\mathbf{x}\|_2=1,\;\mathbf{x}^T\mathbf{e}=\mathbf{0}}\mathbf{x}^T\mathbf{L}\mathbf{x}=\lambda_{\mathbf{2}},$$

with $\mathbf{x}^* = \mathbf{v}_2$ as the eigenvector corresponding to λ_2 .

 \mathbf{v}_2 is called the Fiedler vector.

Notes on Fiedler

- getting \mathbf{v}_2 , skipping over $\mathbf{v}_1 = \mathbf{e}$ whose e-value is 0.
- You could use $\mathbf{L} = \mathbf{D} \mathbf{A}$ (s.p.d.) and find $\mathbf{2}^{nd}$ smallest e-vector OR
 - You could use L = A D (s.n.d.) and find 2^{nd} largest e-vector. Gives the same clustering.
- When **A** is symmetric and square, e-vectors of $\mathbf{L} = \mathbf{e}$ -vectors of $\mathbf{L}^T \mathbf{L} = \mathbf{s}$ -vectors of \mathbf{L}
 - Given L has e-decomp. $VLV^T = D$ and $L = L^T$.
 - Then LL^T has e-decomp. $VL^TLV^T = VL^2V^T = D^2$
 - \Rightarrow L and L^TL have same e-vectors.

What happens if A is asymm. or rect.?

e-vectors not centered about 0 or do not exist

Solution 1: Symmetrize so that standard Fiedler can be used.

Solution 2: Use s-vectors instead.

Singular Value Decomposition

$$\mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \boldsymbol{\Sigma} \mathbf{V}_{n \times n}^{T}$$

- orthogonal matrix $\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_m]$ of left singular vectors
- orthogonal matrix $\mathbf{V} = [\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_n]$ of right singular vectors
- rank-r matrix $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

Why does svd's v₂ work?

u₁ as direction of maximal variance/principal trend
(PCA)

need data that has been centered, i.e., mean is 0.

Centered Data

$$\mathbf{C} = \mathbf{A} - \mu \mathbf{e}^T$$
 (μ is mean of columns of \mathbf{A})
(Recall Laplacian $\mathbf{L} = \mathbf{A} - \mathbf{D}$.)

Partition data into two sets using \mathbf{u}_1^{\perp} wall

In Front of or Behind the Wall?

In Front when $\mathbf{u}_{1}^{T}\mathbf{c}_{j}>\mathbf{0}$ and Behind when $\mathbf{u}_{1}^{T}\mathbf{c}_{j}<\mathbf{0}$

Because

$$\mathbf{u}_1^T \mathbf{C} = \mathbf{u}_1^T \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sigma_1 \mathbf{v}_1^T$$

the signs in v_1 give information about the principal partition.

Further Partitioning

Recursion

work on submatrices (PDDP)

Secondary Partitions

use secondary s-vectors (Extended Fiedler)

Extended Fiedler

Other subdominant s-vectors

• If \mathbf{v}_1 gives approximate info. about clustering, what about the other s-vectors $\mathbf{v}_2, \mathbf{v}_3, \dots$?

- \mathbf{u}_1 and \mathbf{u}_2 create quadrants to partition data. signs in \mathbf{v}_1 and \mathbf{v}_2 tell us which quadrant data point is in.
- $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \Rightarrow \text{octants}$

Example Graph

Clustered Example Graph

using one vector

using three vectors

Nodes 4 and 18 are "saddle nodes" that straddle a few clusters.

Clustered Example Eigenvectors

6 clusters, $6 \in [3, 2^3]$

- Sign patterns in e/s-vectors give clusters and saddle nodes.
- Number of clusters found is not fixed, but lies in $[j, 2^j]$, where j is the number of vectors used.
- takes a global view for clustering (whereas recursive Fiedler tunnels down, despite possible errors at initial iterations.)

Term-by-Document Matrices

SVD to cluster Term-Doc Matrices

$$\mathbf{C} pprox \mathbf{C}_k = \mathbf{U}_k \boldsymbol{\varSigma}_k \mathbf{V}_k^T$$

 \rightarrow sign pattern in U_k will cluster terms.

 \Rightarrow sign pattern in V_k will cluster documents.

Pseudocode

For Term Clustering

```
k = truncation point for SVD
```

- ullet input ${f U}_k$ (matrix of k left singular vectors of ${f c}$)
- input j (user-defined scalar, # of clusters \in $[j, 2^j]$. Note: $j \le k$.)
- create $\mathbf{B} = \mathbf{U}(:, 1:j) >= 0$; binary matrix with sign patterns
- associate a number x(i) with each unique sign pattern

```
x=zeros(n,1);
for i=1:j
  x=x+(2^{j-i})*(B(:,i));
end
```

reorder rows of A by indices in sorted vector x

vismatrix tool

David Gleich

SVD Clustering of Reuters10

72K terms, 9K docs, 415K nonzeros

• j = 10 for terms produces 486 term clusters j = 4 for documents produces 8 document clusters

SVD Clustering of Reuters10

72K terms, 9K docs, 415K nonzeros

- j = 10 for terms produces 486 term clusters j = 4 for documents produces 8 document clusters
- j = 10 for terms produces 486 term clusters j = 10 for documents produces 391 document clusters

Summary of SVD Clustering

- + variable # of clusters returned between j and 2^{j}
- sign pattern idea allows for natural division within clusters
- clusters ordered so that similar clusters are nearby each other
- less work than recursive Fiedler
- can choose different # of clusters for terms and documents
- can identify "saddle terms" and "saddle documents"
- only hard clustering is possible
- picture can be too refined with too many clusters
- as j increases, range for # of clusters becomes too wide EX: j=10, # of clusters is between 10 and 1024
- In some sense, terms and docs are treated separately.
 (due to symmetry requirement)

Practical Issues

- Centering data and sparsity—modified Lanczos
- 2-way vs. 3-way splitting
- splitting at 0 vs. gap partitioning
- magnitudes vs. signs
- meaning of singular values

Cluster Aggregation

many clustering algorithms = many clustering results

⇒ Can we combine many results to make one super result?

Create aggregation matrix F

 $\mathbf{f}_{ij} = \mathbf{\#}$ of methods having items i and j in the same cluster

Run favorite clustering method on F

Cluster Aggregation Example

	Method 1
item	cluster assignment
1	1
2	3
3	2
4	1
5	1
6	2
1 4 5	

Method 2		
item	cluster assignment	
1	3	
2	1	
3	2	
4	3	
5	1	
6	2	
	14	
(3	25	

Cluster Aggregated Graph

Cluster Aggregated Results

Fiedler using just one eigenvector

Fiedler using two eigenvectors

Conclusions

Clustering with the SVD

- explains why Fiedler method works and explains use of D
- does not require expensive recursion
- # of clusters returned is not a user-defined parameter
- clusters ordered so that similar clusters are nearby each other
- can choose different # of clusters for terms and documents
- can identify "saddle terms" and "saddle documents"
- cluster aggregation emphasizes strong connections across methods, dilutes effect of outliers