Data Clustering and Mining

Dexin Zhou – Bard College (Presenter) Ralph Abbey – North Carolina State U. Jeremy Diepenbrock – Washington U. at St. Louis

> Project Advisor: Dr. Carl Meyer Additional Advising: Dr. Amy Langville Graduate Assistant: Shaina Race

What is Data Clustering?

- Clustering is the partitioning of a data set into subsets (clusters).
- We are interested in creating good clusters that allow us to reorganize disordered data into a <u>block structure</u> so that useful information can be extracted.

A Visible Example Before Clustering

After Clustering

What are we clustering?

- An 86 mini-document set that we created with 13 topics
- A 185 document set used in Daniel Boley's paper with 10 topics
- SAS grocery store dataset

Preparing the data

$$A_{m\times n} = \left(\begin{array}{ccc} \text{Doc 1} & \text{Doc j} & \text{Doc n} \\ & & | & \\ & & | & \\ \text{Term i} & - & - & A_{ij} \end{array}\right)$$

- Term Aij is in the following form $A_{ij} = l_{ij}g_id_j$
- g term is a function of term i, it downplays the terms that appear frequently globally
- I term is a function of the raw frequency of a certain term in document j(eg: log)
- d term is a normalization factor

How?

- Principal Direction Divisive Partitioning
- Principal Direction Gap Partitioning
- Non-Negative Matrix Factorization
- Clustering Aggregation

Singular Value Decomposition

$$A = \begin{pmatrix} u_1 & u_2 & \dots & u_m \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots \\ \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & \sigma_r \end{pmatrix}_{m \times n} \begin{pmatrix} v_1^T \\ v_2^T \\ \dots \\ v_n^T \end{pmatrix}$$
 Where $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$

Principle Direction Divisive Partitioning

- PDDP uses the singular vector associated with the largest singular value
- The left singular vector, u₁, can be geometrically understood as the principal direction of the spread of the data
- The right singular vector, v₁, gives the value of the projection of the data onto the principal direction
- This information is easily obtained from the SVD

PDDP

- PDDP is an iterative algorithm
- Each iteration the data must be recentered
- The user inputs the number of clusters, k
- There are k-1 iterations

Figure 1: Example of Centered Data

PDDP

Above: Data Cloud and Principal Direction

Below: Data Cloud and Principal Direction with Hyper-plane

Principle Direction Gap Partitioning

• A split at zero may not be the best split as done in PDDP

A Comparison of PDGP w/ PDDP

Disadvantages

- The edge values can skew where splitting occurs
- Slower than PDDP

Advantages

- Better density and/or entropy rankings in some cases
- While edge values can skew where splitting occurs, this can also be changed by the user

Centering Vs. Non-Centering

Centering Destroys Sparsity

- Increased time for computation, though using Lanczos there are ways around large computation time
- Increased storage space needed

Non-centering With SVD

- Now first singular vector cannot be used
- Second singular vector shows trends less reliably
- Maintains sparsity

Non-Negative Matrix Factorization

$$A \approx \begin{pmatrix} w_{11} & \dots & w_{1k} \\ w_{21} & \dots & w_{2k} \\ \dots & \dots & \dots \\ w_{m1} & \dots & w_{mk} \end{pmatrix}_{m \times k} \begin{pmatrix} h_{11} & \dots & h_{1n} \\ h_{21} & \dots & h_{2n} \\ \dots & \dots & \dots \\ h_{k1} & \dots & h_{kn} \end{pmatrix}_{k \times n}$$

NMF Clustering

- $A \approx WH$ where A is m by n, W is m by k, and H is k by n
- k refers to the number of topics.
- Thus W is term by topic, and H is topic by document
- NMF clusters both rows and columns at the same time
- Similarily, the user must choose the k

Cluster Aggregation

- 1. Run a set of clustering algorithms on the data
- 2. Form an adjacency matrix for each algorithm by assigning 1 to A_{ij} if document i is in the same cluster as document j, and add them together
- 3. Run clustering on the overall adjacency matrix

Cluster Aggregation

Motivation

- Different algorithms can yield very different clustering results
- With unknown data sets, knowing which algorithm to use may be difficult
- We would like to use good results from multiple clustering algorithms

Claims

- Cluster aggregation can yield better clustering than using a single algorithm
- While slow, cluster aggregation can theoretically be made faster by use of parallel computing
- Cluster aggregation can eliminate poor clusters in various algorithms while maintaining good clustering

Metrics

- Entropy Method
 - A standard measurement based on our prior knowledge to the data file.
- Density Method
 - Does not require prior knowledge to the data file.
 - Less accurate.

Mini-document dataset

- Made from excerpts from webpages with 13 clusters
- Lengths are less than 100 words long
- There is no global weighting, all words are used, with augmented normalized term frequency
- The total term list is 2413 words along the rows with 86 documents along the columns

Mini-document dataset Result

Methods	Density Ranking	Entropy Ranking	Time Ranking	
PDGP Centered	0.4707	0.389	0.4846	
PDGP Uncentered	0.4675	0.4578	0.6865	
PDDP Centered	0.5177	0.4146	0.4342	
PDDP Uncentered	0.4183	0.5054	0.4006	
Lee and Seung	0.4229	0.5054	3.1115	
Agg w/ pddp	0.5194	0.5819	3.5607	
Agg w/ pdgp	0.4491	0.3905	3.5649	

Boley's J1 Dataset

- Document set used in Daniel Boley's paper "Principal Direction Divisive Partitioning" (1998).
- Documents are from various websites with 10 different clusters
- The columns of the term by document matrix are normalized so that the column sums are one
- The total term list is 10536 words along the rows with 185 documents along the columns

Boley's Dataset Result

Methods	Density Ranking	Entropy Ranking	Time Ranking
PDGP Centered	0.505	0.7405	2.3876
PDGP Uncentered	0.6496	0.6946	2.5744
PDDP Centered	0.4854	0.6886	2.0479
PDDP Uncentered	0.8488	0.7742	1.762
Lee and Seung	0.7924	0.4661	44.1468
Agg w/ pddp	0.4947	0.6012	15.5568
Agg w/ pdgp	0.5014	0.4655	15.5855

SAS Grocery Dataset

- Provided by SAS for testing purposes
- The total term list is 10982 terms along the rows with 48 stores along the columns
- The actual structure of the data set is not known, unlike in previous tests in which the data was known beforehand

SAS Grocery Dataset Results

Store by Store aggregation matrices: unclustered and clustered with PDGP

SAS Grocery Dataset Result

Aggregation matrices: unclustered and clustered with PDGP

Conclusion

- In tests on several document sets, PDGP has shown promise as a clustering algorithm
- Running clustering with centering does not take significantly more time, however the question of whether to use centered data or uncentered data is still unanswered
- On small, known data sets, cluster aggregation outperforms several other SVD based clustering algorithms

For Additional Information

- Please Visit
 - http://meyer.math.ncsu.edu/Meyer/REU/REU.html