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LGoogle‘s ranking algorithm.

Basics of PageRank.

: r(Q)
» Basic ldea: r(P) = —
)= %, de(@
where r(P) is the rank of a webpage P, Bp is the set of

web pages pointing to P, and deg~ (Q) is the outdegree of
a webpage Q.
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LGoogle‘s ranking algorithm.

Web digraph adjacency matrix.

WWW digraph is represented by an adjacency matrix A.

P P P - Py
P 0 1 0 1
Rl 0 0 0 --- 0
1 0

U

P,\1 0 1
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LGoogle‘s ranking algorithm.

Web digraph hyperlink matrix.

P P Ps e P,
1 1
Pl 0 deg= (P1) 0 e deg= (P1)
Py 0 0 0 e 0
1 1 1
H= Py deg— (P3) deg—(P3) deg (P3) 0
i 1 1
B \tgmy 0 G@wmy T @
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LGoogle‘s ranking algorithm.

PageRank problem statement.
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LGoogle‘s ranking algorithm.

PageRank problem statement.

, 7(Q)
» Basic ldea: r(P) = _—

P)= 2, deg (@
» Problem restated:

» 7 - vector containing the rank scores.
7(0) - initial rank vector
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LGoogle‘s ranking algorithm.

PageRank problem statement.

» Basic Idea: r(P) = &
( ) QEZBP deg_(Q)
» Problem restated:
» 7 - vector containing the rank scores.
7(0) - initial rank vector
(k) =n”(k — )H
T(k) =m"(0 )H’“
(0

vVVYvey
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LGoogle‘s ranking algorithm.

Google matrix.

» Adjacency Matrix A.

» Hyperlink Matrix H.
» Stochastic matrix S.

» Replace the zero rows of H with (1/n)e’, where e is a
column vector of ones.

» Google Matrix G.

» Convex combination: G = aS + (1 — a)ev’,
a€(0,1), vl >0and vie = 1.
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LGoogle‘s ranking algorithm.
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LGoogle‘s ranking algorithm.

PageRank vector 7.

v

G is the transition probability matrix.
G is irreducible (and aperiodic).

Markov Chains theory implies:

7T (0)GF — T

such that #7=n"G

» 7 iS a unique probability distribution vector.

m; IS the PageRank score of the web page .

v

v
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Ranking NFL.

NFL weighted digraph.
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NFL adjacency matrix.

Arz .. Car Chi NO Pit TB
Arz o .- 4 0 0 0 0

Car| 0 --- 0 10 3 0 20
Chi o - 0 0 0 12 0

Pit o --- 0 0 0 0 0

TB o --- 10 3 0 0 0
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LRanking NFL.

GeM (Generalized Markov Method).

» Adjacency matrix A.
» Hyperlink matrix H(i,j) = > wj; /(323" w};))
t j ot
where w;?j is the weight on the edge from team i to team j
during week t¢.

» Stochastic matrix S, dealing with undefeated teams.

» GeM matrix G = oS + alevlT + ...+ akevf
where k£ > 1.



Applying theory of Markov Chains to the problem of sports ranking.

LRanking NFL.

Feature vectors vy, ..., vi.

» Based on the statistical data of the given season.



Applying theory of Markov Chains to the problem of sports ranking.

LRanking NFL.

Feature vectors vy, ..., vi.

» Based on the statistical data of the given season.
» Must be nonnegative.



Applying theory of Markov Chains to the problem of sports ranking.

LRanking NFL.

Feature vectors vy, ..., vi.

» Based on the statistical data of the given season.
» Must be nonnegative.

» Problem: What statistical data corresponds the most to the
performance?



Applying theory of Markov Chains to the problem of sports ranking.

LRanking NFL.

Feature vectors vy, ..., vi.

» Based on the statistical data of the given season.

» Must be nonnegative.

» Problem: What statistical data corresponds the most to the
performance?

» Start with a matrix containing statistical data for a given
season.



Applying theory of Markov Chains to the problem of sports ranking.

LRanking NFL.

Feature vectors vy, ..., vi.

v

Based on the statistical data of the given season.
Must be nonnegative.

Problem: What statistical data corresponds the most to the
performance?

Start with a matrix containing statistical data for a given
season.

» SVD — no guaranty on nonnegativity.

vy

v
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LRanking NFL.

Feature vectors vy, ..., vi.

» Based on the statistical data of the given season.
» Must be nonnegative.

» Problem: What statistical data corresponds the most to the
performance?

» Start with a matrix containing statistical data for a given
season.

» SVD — no guaranty on nonnegativity.
» NMF (nonnegative matrix factorization)
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LRanking NFL.

Feature vectors via NMF

Nonnegative matrix factorization: Given M,,,x,, > 0,

M = WkaHan
suchthat W > 0,and H > 0

M; =) W;h;
Possible uses of NMF:

» Given appropriate M matrix (e.g. teams by stats) feature
vectors could be the nonnegative “basis” of columns of M,
i.e. columns of W.
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LResults and current work.

Results.

GeM ranking method:

Sorted Totals '06 |Regular Season [Playoffs
Participant Games  |Spread  |Games [Spread
Colley Ranking 141 2035 i 70|
Keener Ranking 130 2058| 7l 89
GeM Ranking 130 224 128
Govan, Vincent 112 2275 47
Meyer, Carl 111 2305 B 105
Meyer, Bud 110 2329 112
Kelley, Tim 109 2613 149
Koh,Gil 106 2039 78.5)
Glantz-Culver Line 105 20104 79.5)
Rose, Nick 101 2070 117
{Albright, Russ 90 1996 7l 106
Meyer, Becky 88 1991 L 88|
Stitzinger, Ernie 83 188 7l 106
Massey Ranking 82 1761 7l 112
Kenney, Holly 69 1410 E 100
Kenney, Sean 63 1068 98|
Meyer, Marty 16 316 0
Laake, Kevin 12 217| q 0
Fauntleroy, Amassa 0 0 2 31
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Results and current work.

Results.

GeM ranking method:
» (without first two weeks) Basic GeM predicts 70% of the
games played correctly during 2004 NFL regular season.
» (without first two weeks) Basic GeM predicts 75.9% of the
games played correctly during 2005 NFL regular season.

» (without first two weeks) Basic GeM predicts 62% of the
games played correctly during 2006 NFL regular season.



Applying theory of Markov Chains to the problem of sports ranking.

LResults and current work.

Summary

» Expanding to bigger data set - NCAA men’s basketball.
» Experimenting with NMF to obtain feature vectors.
» Moving beyond sports (recommendation systems).
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