Applying theory of Markov Chains to the problem of sports ranking.

A. Govan C. Meyer

Department of Mathematics North Carolina State University

AMS Southeastern Section Meeting, March 2007

Outline

Google's ranking algorithm.

Ranking NFL.

Results and current work.

Basics of PageRank.

▶ Basic Idea: $r(P) = \sum_{Q \in B_P} \frac{r(Q)}{deg^-(Q)}$ where r(P) is the rank of a webpage P, B_P is the set of web pages pointing to P, and $deg^-(Q)$ is the outdegree of a webpage Q.

Web digraph.

Web digraph adjacency matrix.

WWW digraph is represented by an adjacency matrix A.

$$\mathbf{A} = \begin{pmatrix} P_1 & P_2 & P_3 & \cdots & P_n \\ P_1 & 0 & 1 & 0 & \cdots & 1 \\ P_2 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ P_n & 1 & 0 & 1 & \cdots & 1 \end{pmatrix}$$

Web digraph hyperlink matrix.

$$\mathbf{H} = \begin{pmatrix} P_1 & P_2 & P_3 & \cdots & P_n \\ P_1 & 0 & \frac{1}{\deg^-(P_1)} & 0 & \cdots & \frac{1}{\deg^-(P_1)} \\ P_2 & 0 & 0 & 0 & \cdots & 0 \\ \frac{1}{\deg^-(P_3)} & \frac{1}{\deg^-(P_3)} & \frac{1}{\deg^-(P_3)} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ P_n & \frac{1}{\deg^-(P_n)} & 0 & \frac{1}{\deg^-(P_n)} & \cdots & \frac{1}{\deg^-(P_n)} \end{pmatrix}$$

- ▶ Basic Idea: $r(P) = \sum\limits_{Q \in B_P} \frac{r(Q)}{deg^-(Q)}$
- ► Problem restated:
 - π vector containing the rank scores.

- ▶ Basic Idea: $r(P) = \sum\limits_{Q \in B_P} \frac{r(Q)}{deg^-(Q)}$
- ► Problem restated:
 - \blacktriangleright π vector containing the rank scores.
 - $\pi(0)$ initial rank vector

- ▶ Basic Idea: $r(P) = \sum\limits_{Q \in B_P} \frac{r(Q)}{deg^-(Q)}$
- ► Problem restated:
 - π vector containing the rank scores.
 - \blacktriangleright $\pi(0)$ initial rank vector
 - $\qquad \boldsymbol{\pi}^T(k) = \boldsymbol{\pi}^T(k-1)\mathbf{H}$

- ▶ Basic Idea: $r(P) = \sum\limits_{Q \in B_P} \frac{r(Q)}{deg^-(Q)}$
- ► Problem restated:
 - π vector containing the rank scores.
 - \blacktriangleright $\pi(0)$ initial rank vector
 - $\qquad \qquad \boldsymbol{\pi}^{T}(k) = \boldsymbol{\pi}^{T}(k-1)\mathbf{H}$
 - $\qquad \qquad \boldsymbol{\pi}^T(k) = \boldsymbol{\pi}^T(0)\mathbf{H}^k$

- ▶ Basic Idea: $r(P) = \sum\limits_{Q \in B_P} \frac{r(Q)}{deg^-(Q)}$
- ► Problem restated:
 - \blacktriangleright π vector containing the rank scores.
 - \blacktriangleright $\pi(0)$ initial rank vector
 - \bullet $\boldsymbol{\pi}^T(k) = \boldsymbol{\pi}^T(k-1)\mathbf{H}$
 - \bullet $\boldsymbol{\pi}^T(k) = \boldsymbol{\pi}^T(0)\mathbf{H}^k$
 - $\quad \bullet \quad \boldsymbol{\pi}^T(0)\mathbf{H}^k \to \boldsymbol{\pi} ?$

► Adjacency Matrix A.

- ► Adjacency Matrix A.
- ► Hyperlink Matrix H.

- ► Adjacency Matrix A.
- ► Hyperlink Matrix H.
- Stochastic matrix S.
 - ► Replace the zero rows of \mathbf{H} with $(1/n)\mathbf{e}^T$, where \mathbf{e} is a column vector of ones.

- ► Adjacency Matrix A.
- Hyperlink Matrix H.
- ► Stochastic matrix S.
 - ► Replace the zero rows of \mathbf{H} with $(1/n)\mathbf{e}^T$, where \mathbf{e} is a column vector of ones.
- ► Google Matrix G.
 - ► Convex combination: $\mathbf{G} = \alpha \mathbf{S} + (1 \alpha) \mathbf{e} \mathbf{v}^T$, $\alpha \in (0, 1), \mathbf{v}^T > 0$ and $\mathbf{v}^T \mathbf{e} = 1$.

▶ G is the transition probability matrix.

- ▶ G is the transition probability matrix.
- ► G is irreducible (and aperiodic).

- ▶ G is the transition probability matrix.
- ► G is irreducible (and aperiodic).
- ▶ Markov Chains theory implies: $\boldsymbol{\pi}^T(0)\mathbf{G}^k \to \boldsymbol{\pi}^T$

such that
$$\boldsymbol{\pi}^T = \boldsymbol{\pi}^T \mathbf{G}$$

- ▶ G is the transition probability matrix.
- ► G is irreducible (and aperiodic).
- ► Markov Chains theory implies: $\pi^T(0)\mathbf{G}^k \to \pi^T$ such that $\pi^T = \pi^T \mathbf{G}$
- \blacktriangleright π is a unique probability distribution vector.

- ▶ G is the transition probability matrix.
- ► G is irreducible (and aperiodic).
- ► Markov Chains theory implies: $\pi^T(0)\mathbf{G}^k \to \pi^T$ such that $\pi^T = \pi^T \mathbf{G}$
- \blacktriangleright π is a unique probability distribution vector.
- ▶ π_i is the PageRank score of the web page i.

NFL weighted digraph.

NFL adjacency matrix.

GeM (Generalized Markov Method).

- ► Adjacency matrix A.
- ▶ Hyperlink matrix $\mathbf{H}(i,j) = \sum_t w_{ij}^t/(\sum_j (\sum_t w_{ij}^t))$ where w_{ij}^t is the weight on the edge from team i to team j during week t.
- ► Stochastic matrix S, dealing with undefeated teams.
- ► GeM matrix $\mathbf{G} = \alpha_0 \mathbf{S} + \alpha_1 \mathbf{e} \mathbf{v}_1^T + ... + \alpha_k \mathbf{e} \mathbf{v}_k^T$ where k > 1.

▶ Based on the statistical data of the given season.

- ▶ Based on the statistical data of the given season.
- ► Must be nonnegative.

- Based on the statistical data of the given season.
- Must be nonnegative.
- ► Problem: What statistical data corresponds the most to the performance?

- Based on the statistical data of the given season.
- Must be nonnegative.
- ► Problem: What statistical data corresponds the most to the performance?
- Start with a matrix containing statistical data for a given season.

- Based on the statistical data of the given season.
- Must be nonnegative.
- ► Problem: What statistical data corresponds the most to the performance?
- Start with a matrix containing statistical data for a given season.
- SVD → no guaranty on nonnegativity.

- Based on the statistical data of the given season.
- Must be nonnegative.
- ► Problem: What statistical data corresponds the most to the performance?
- Start with a matrix containing statistical data for a given season.
- SVD → no guaranty on nonnegativity.
- ► NMF (nonnegative matrix factorization)

Feature vectors via NMF

Nonnegative matrix factorization: Given $\mathbf{M}_{m \times n} \geq 0$,

$$\mathbf{M} = \mathbf{W}_{m \times k} \mathbf{H}_{k \times n}$$

such that $W \ge 0$, and $H \ge 0$

$$\mathbf{M}_j = \sum \mathbf{W}_i h_{ij}$$

Possible uses of NMF:

Given appropriate M matrix (e.g. teams by stats) feature vectors could be the nonnegative "basis" of columns of M, i.e. columns of W.

GeM ranking method:

Sorted Totals '06	Regular	Season	Playoffs	
Participant	Games	Spread	Games	Spread
Colley Ranking	141	2035	11	70
Keener Ranking	130	2058	7	89
GeM Ranking	130	2246	6	128
Govan, Vincent	112	2275	6	47
Meyer, Carl	111	2305	5	105
Meyer, Bud	110	2325	6	112
Kelley, Tim	109	2613	3	149
Koh,Gil	106	2039	9	78.5
Glantz-Culver Line	105	2010.4	9	79.5
Rose, Nick	101	2070	3	117
Albright, Russ	90	1996	7	106
Meyer, Becky	88	1991	8	88
Stitzinger, Ernie	83	1886	7	106
Massey Ranking	82	1761	7	112
Kenney, Holly	69	1410	5	100
Kenney, Sean	63	1068	6	98
Meyer, Marty	16	316	0	0
Laake, Kevin	12	217	0	0
Fauntleroy, Amassa	C	0	2	31

GeM ranking method:

▶ (without first two weeks) Basic GeM predicts 70% of the games played correctly during 2004 NFL regular season.

GeM ranking method:

- ▶ (without first two weeks) Basic GeM predicts 70% of the games played correctly during 2004 NFL regular season.
- ▶ (without first two weeks) Basic GeM predicts 75.9% of the games played correctly during 2005 NFL regular season.

GeM ranking method:

- ▶ (without first two weeks) Basic GeM predicts 70% of the games played correctly during 2004 NFL regular season.
- ▶ (without first two weeks) Basic GeM predicts 75.9% of the games played correctly during 2005 NFL regular season.
- ▶ (without first two weeks) Basic GeM predicts 62% of the games played correctly during 2006 NFL regular season.

Summary

- ► Expanding to bigger data set NCAA men's basketball.
- Experimenting with NMF to obtain feature vectors.
- ▶ Moving beyond sports (recommendation systems).