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Google’s ranking algorithm.

Basics of PageRank.

I Basic Idea: r(P ) =
∑

Q∈BP

r(Q)
deg−(Q)

where r(P ) is the rank of a webpage P , BP is the set of
web pages pointing to P , and deg−(Q) is the outdegree of
a webpage Q.
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Google’s ranking algorithm.

Web digraph adjacency matrix.

WWW digraph is represented by an adjacency matrix A.

A =



P1 P2 P3 · · · Pn

P1 0 1 0 · · · 1
P2 0 0 0 · · · 0
P3 1 1 1 · · · 0
...

...
...

...
...

...
Pn 1 0 1 · · · 1


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Google’s ranking algorithm.

Web digraph hyperlink matrix.

H =



P1 P2 P3 · · · Pn

P1 0 1
deg−(P1)

0 · · · 1
deg−(P1)

P2 0 0 0 · · · 0
P3

1
deg−(P3)

1
deg−(P3)

1
deg−(P3)

· · · 0
...

...
...

...
...

...
Pn

1
deg−(Pn)

0 1
deg−(Pn)

· · · 1
deg−(Pn)





Applying theory of Markov Chains to the problem of sports ranking.

Google’s ranking algorithm.

PageRank problem statement.

I Basic Idea: r(P ) =
∑

Q∈BP

r(Q)
deg−(Q)

I Problem restated:
I π - vector containing the rank scores.

I π(0) - initial rank vector
I πT (k) =πT (k − 1)H
I πT (k) =πT (0)Hk

I πT (0)Hk → π ?
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Google’s ranking algorithm.

Google matrix.

I Adjacency Matrix A.

I Hyperlink Matrix H.
I Stochastic matrix S.

I Replace the zero rows of H with (1/n)eT , where e is a
column vector of ones.

I Google Matrix G.
I Convex combination: G = αS + (1− α)evT ,

α ∈ (0, 1), vT > 0 and vT e = 1.
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Google’s ranking algorithm.

PageRank vector π.

I G is the transition probability matrix.

I G is irreducible (and aperiodic).
I Markov Chains theory implies:

πT (0)Gk → πT

such that πT =πTG
I π is a unique probability distribution vector.
I πi is the PageRank score of the web page i.
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Ranking NFL.

NFL adjacency matrix.

A =



Arz · · · Car Chi NO Pit TB · · ·
Arz 0 · · · 4 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
Car 0 · · · 0 10 3 0 20 · · ·
Chi 0 · · · 0 0 0 12 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
NO 0 · · · 3 0 0 0 14 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
Pit 0 · · · 0 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
TB 0 · · · 10 3 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·


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Ranking NFL.

GeM (Generalized Markov Method).

I Adjacency matrix A.
I Hyperlink matrix H(i, j) =

∑
t

wt
ij/(

∑
j

(
∑
t

wt
ij))

where wt
ij is the weight on the edge from team i to team j

during week t.

I Stochastic matrix S, dealing with undefeated teams.
I GeM matrix G = α0S + α1evT

1 + ... + αkevT
k

where k ≥ 1.
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Ranking NFL.

Feature vectors v1, ...,vk.

I Based on the statistical data of the given season.

I Must be nonnegative.
I Problem: What statistical data corresponds the most to the

performance?
I Start with a matrix containing statistical data for a given

season.
I SVD → no guaranty on nonnegativity.
I NMF (nonnegative matrix factorization)
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Ranking NFL.

Feature vectors via NMF

Nonnegative matrix factorization: Given Mm×n ≥ 0,

M = Wm×kHk×n

such that W ≥ 0, and H ≥ 0

Mj =
∑

Wihij

Possible uses of NMF:
I Given appropriate M matrix (e.g. teams by stats) feature

vectors could be the nonnegative “basis” of columns of M,
i.e. columns of W.
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games played correctly during 2004 NFL regular season.

I (without first two weeks) Basic GeM predicts 75.9% of the
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I (without first two weeks) Basic GeM predicts 62% of the
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Results and current work.

Summary

I Expanding to bigger data set - NCAA men’s basketball.
I Experimenting with NMF to obtain feature vectors.
I Moving beyond sports (recommendation systems).
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