
Eigenvector Methods
in

Information Retrieval

Amy Langville

Carl Meyer

SAMSI Institute
Department of Mathematics
North Carolina State University SIAM AN–New Orleans 7/12/2005

Outline

Part 1: Traditional IR

• Vector Space Model (1960s and 1970s)

• Latent Semantic Indexing (1990s)

Part 2: Web IR

• PageRank (1998)

• HITS (1998)

Vector Space Model (1960s and 1970s)

Gerard Salton’s Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text

(Salton’s Magical Automatic Retriever of Text)

• turn n textual documents into n document vectors d1, d2, . . ., dn

• create term-by-document matrix Am×n = [d1|d2|. . .|dn]

• to retrieve info., create query vector q, which is a pseudo-doc

Vector Space Model (1960s and 1970s)

Gerard Salton’s Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text

(Salton’s Magical Automatic Retriever of Text)

• turn n textual documents into n document vectors d1, d2, . . ., dn

• create term-by-document matrix Am×n = [d1|d2|. . .|dn]

• to retrieve info., create query vector q, which is a pseudo-doc

GOAL: find doc. di closest to q

— angular cosine measure used: δi = cos θi = qTdi/(‖q‖2‖di‖2)

Example from Berry’s book
Terms Documents

T1: Bab(y,ies,y’s) D1: Infant & Toddler First Aid

T2: Child(ren’s) D2: Babies & Children’s Room (For Your Home)

T3: Guide D3: Child Safety at Home

T4: Health D4: Your Baby’s Health & Safety : From Infant to Toddler

T5: Home D5: Baby Proofing Basics

T6: Infant D6: Your Guide to Easy Rust Proofing

T7: Proofing D7: Beanie Babies Collector’s Guide

T8: Safety

T9: Toddler

Example from Berry’s book
Terms Documents
T1: Bab(y,ies,y’s) D1: Infant & Toddler First Aid

T2: Child(ren’s) D2: Babies & Children’s Room (For Your Home)

T3: Guide D3: Child Safety at Home

T4: Health D4: Your Baby’s Health & Safety : From Infant to Toddler

T5: Home D5: Baby Proofing Basics

T6: Infant D6: Your Guide to Easy Rust Proofing

T7: Proofing D7: Beanie Babies Collector’s Guide

T8: Safety

T9: Toddler

A =





























d1 d2 d3 d4 d5 d6 d7

t1 0 1 0 1 1 0 1

t2 0 1 1 0 0 0 0

t3 0 0 0 0 0 1 1

t4 0 0 0 1 0 0 0

t5 0 1 1 0 0 0 0

t6 1 0 0 1 0 0 0

t7 0 0 0 0 1 1 0

t8 0 0 1 1 0 0 0

t9 1 0 0 1 0 0 0





























q =



























1

0

0

1

0

0

0

0

0



























δ =



















δ1

δ2

δ3

δ4

δ5

δ6

δ7



















=



















0

.5774

0

.8944

.7071

0

.7071



















Latent Semantic Indexing (1990s)

Susan Dumais’s improvement to VSM = LSI

Idea: use low-rank approximation to A to filter out noise

• Use truncated SVD as low-rank approximation to A

SVD

Am×n: rank r term-by-document matrix

• SVD: A = UΣ VT =
∑r

i=1
σiuiv

T
i

• LSI: use Ak =
∑k

i=1
σiuiv

T
i in place of A

• Why?

— reduce storage when k << r

— filter out uncertainty, so that performance on text mining
tasks (e.g., query processing and clustering) improves

What’s Really Happening?
Change of Basis

using truncated SVD Ak = UkΣkVT
k

• Original Basis: docs represented in Term Space using Standard
Basis S = {e1, e2, . . ., em}

• New Basis: docs represented in smaller Latent Semantic Space
using Basis B = {u1, u2, . . ., uk} (k<<min(m,n))







doc1

nonneg.
.
.
.

entries A∗1
.
.
.







m×1

≈







.

.

.

u1
.
.
.






σ1v11 +







.

.

.

u2
.
.
.






σ2v12 + . . . +







.

.

.

uk
.
.
.






σkv1k

What’s Really Happening?
Change of Basis

using truncated SVD Ak = UkΣkVT
k

• Original Basis: docs represented in Term Space using Standard
Basis S = {e1, e2, . . ., em}

• New Basis: docs represented in smaller Latent Semantic Space
using Basis B = {u1, u2, . . ., uk} (k<<min(m,n))







doc1

nonneg.
.
.
.

entries A∗1
.
.
.







m×1

≈







.

.

.

u1
.
.
.






σ1v11 +







.

.

.

u2
.
.
.






σ2v12 + . . . +







.

.

.

uk
.
.
.






σkv1k

• still use angular cosine measure

δi = cos θi = qTdi/(‖q‖2‖di‖2) = qTAkei/(‖q‖2‖Akei‖2)

= qTUkΣkVT
k ei/(‖q‖2‖ΣkVT

k ei‖2)

Strengths and Weaknesses of LSI

Strengths

• using Ak in place of A gives improved performance

• dimension reduction considers only essential components of
term-by-document matrix, filters out noise

• best rank-k approximation: ‖A − Ak‖F = minrank(B)≤k ‖A − B‖F

Weaknesses

• storage—Uk and Vk are usually completely dense

• interpretation of basis vectors ui is impossible due to mixed
signs

• good truncation point k is hard to determine

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

sigma

k=28

• orthogonality restriction

Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

• It’s huge.
– over 10 billion pages, average page size of 500KB

– 20 times size of Library of Congress print collection

– Deep Web - 550 billion pages

Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

• It’s huge.
– over 10 billion pages, average page size of 500KB

– 20 times size of Library of Congress print collection

– Deep Web - 550 billion pages

• It’s dynamic.
– content changes: 40% of pages change in a week, 23% of .com change daily

– size changes: billions of pages added each year

Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

• It’s huge.
– over 10 billion pages, average page size of 500KB

– 20 times size of Library of Congress print collection

– Deep Web - 550 billion pages

• It’s dynamic.
– content changes: 40% of pages change in a week, 23% of .com change daily

– size changes: billions of pages added each year

• It’s self-organized.
– no standards, review process, formats

– errors, falsehoods, link rot, and spammers!

Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

• It’s huge.
– over 10 billion pages, average page size of 500KB

– 20 times size of Library of Congress print collection

– Deep Web - 550 billion pages

• It’s dynamic.
– content changes: 40% of pages change in a week, 23% of .com change daily

– size changes: billions of pages added each year

• It’s self-organized.
– no standards, review process, formats

– errors, falsehoods, link rot, and spammers!

A Herculean Task!

Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

• It’s huge.
– over 10 billion pages, each about 500KB

– 20 times size of Library of Congress print collection

– Deep Web - 550 billion pages

• It’s dynamic.
– content changes: 40% of pages change in a week, 23% of .com change daily

– size changes: billions of pages added each year

• It’s self-organized.
– no standards, review process, formats

– errors, falsehoods, link rot, and spammers!

• Ah, but it’s hyperlinked !
– Vannevar Bush’s 1945 memex

Term-by-Document Matrix for Web

• Too big for factorizations

• ⇒ fast inverted file + link analysis

Elements of a Web Search Engine
WWW

Crawler Module User

Indexing Module

Indexes

Query Module
Ranking Module

Content Index

Structure Index

Special-purpose indexes

Page Repository

Q
u
er

ie
s

R
esu

lts

Query Processing

Step 1: User enters query, i.e., aztec baby

Step 2: Inverted file consulted

• term 1 (aardvark) - 3, 117, 3961

 .

 .

 .

• term 10 (aztec) - 3, 15, 19, 101, 673, 1199

• term 11 (baby) - 3, 31, 56, 94, 673, 909, 11114, 253791

 .

 .

 .

• term m (zymurgy) - 1159223

Step 3: Relevant set identified, i.e. (3,673)

Simple traditional engines stop here.

Link Analysis

• uses hyperlink structure to focus the relevant set

• combine IR score with popularity or importance score

PageRank - Brin and Page ⇒

HITS - Kleinberg ⇒

The Web as a Graph

3

6 5

4

1 2

Nodes = webpages Arcs = hyperlinks

How to Use Web Graph for Search

Hyperlink = Recommendation

• page with 20 recommmendations (inlinks) must be more
important than page with 2 inlinks.

• but status of recommender matters.
EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people

• but what if recommender is generous with recommendations?
EX: suppose Trump has written over 40,000 letters.

• each inlink should be weighted to account for status of
recommender and # of outlinks from that recommender

How to Use Web Graph for Search

Hyperlink = Recommendation

• page with 20 recommmendations (inlinks) must be more
important than page with 2 inlinks.

• but status of recommender matters.
EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people

• but what if recommender is generous with recommendations?
EX: suppose Trump has written over 40,000 letters.

• each inlink should be weighted to account for status of
recommender and # of outlinks from that recommender

PAGERANK - importance/popularity score given to each page

Ranking by PageRank

The PageRank Idea (Sergey Brin & Lawrence Page 1998)

• Ranking is preassigned (An off-line calculation)

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages that
point to P

• Importance is not just number, but quality of in-links

— role of outlinks relegated

— much less sensitive to spamming

PageRank
The Definition

• r(P) =
∑

P∈BP

r(P)

|P |

— BP = {all pages pointing to P}

— |P | = number of out links from P

Successive Refinement

• Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

• Iteratively refine rankings for each page

— r1(Pi) =
∑

P∈BPi

r0(P)

|P |

— r2(Pi) =
∑

P∈BPi

r1(P)

|P |

.
.
.

— rj+1(Pi) =
∑

P∈BPi

rj(P)

|P |

In Matrix Notation

After Step j

πT
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

πT
j+1

= πT
j H where hij =

{

1/|Pi| if i → j

0 o.w.

In Matrix Notation

After Step j

πT
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

πT
j+1

= πT
j H where hij =

{

1/|Pi| if i → j

0 o.w.

3

6 5

4

1 2

H =

















p1 p2 p3 p4 p5 p6

p1 0 1/2 1/2 0 0 0

p2 0 0 0 0 0 0

p3 1/3 1/3 0 0 1/3 0

p4 0 0 0 0 1/2 1/2
p5 0 0 0 1/2 0 1/2
p6 0 0 0 1 0 0

















In Matrix Notation

After Step j

πT
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

πT
j+1

= πT
j H where hij =

{

1/|Pi| if i → j

0 o.w.

3

6 5

4

1 2

H =

















p1 p2 p3 p4 p5 p6

p1 0 1/2 1/2 0 0 0

p2 0 0 0 0 0 0

p3 1/3 1/3 0 0 1/3 0

p4 0 0 0 0 1/2 1/2
p5 0 0 0 1/2 0 1/2
p6 0 0 0 1 0 0

















PageRank = lim
j→∞

π
T
j = π

T
(provided limit exists)

It’s Almost a Markov Chain

H has row sums = 1 for ND nodes, row sums = 0 for D nodes

In Matrix Notation

It’s Almost a Markov Chain

• H has row sums = 1 for ND nodes, row sums = 0 for D nodes

In Matrix Notation

It’s Almost a Markov Chain

• H has row sums = 1 for ND nodes, row sums = 0 for D nodes

Stochasticity Fix: S = H + avT . (ai=1 for i∈D, 0, o.w.)

In Matrix Notation

It’s Almost a Markov Chain

• H has row sums = 1 for ND nodes, row sums = 0 for D nodes

Stochasticity Fix: S = H + avT . (ai=1 for i∈D, 0, o.w.)

S =















0 1/2 1/2 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 0 0 1/3 0

0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0















,where a=















0

1

0

0

0

0















,vT=1/6 eT

In Matrix Notation

It’s Almost a Markov Chain

• H has row sums = 1 for ND nodes, row sums = 0 for D nodes

Stochasticity Fix: S = H + avT . (ai=1 for i∈D, 0, o.w.)

S =















0 1/2 1/2 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 0 0 1/3 0

0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0















,where a=















0

1

0

0

0

0















,vT=1/6 eT

• Each πT
j is a probability distribution vector

(
∑

i
rj(Pi)=1

)

• πT
j+1

= πT
j S is random walk on the graph defined by links

• π
T = lim

j→∞
π

T
j = stationary probability distribution

Random Surfer

Could still encounter Convergence Problems
(dangling nodes, cycles, reducibility)

Irreducibility Fix: G = αS + (1 − α)E eij = 1/n α ≈ .85

G = αH + α a vT + (1 − α)E (trivially irreducible)

• πT is now guaranteed to exist and be unique and power
method is guaranteed to converge to πT .

Random Surfer

Could still encounter Convergence Problems

Irreducibility Fix: G = αS + (1 − α)E eij = 1/n α ≈ .85

G = αH + α a vT + (1 − α)E (trivially irreducible)

• πT is now guaranteed to exist and be unique and power
method is guaranteed to converge to πT .

• Different E = evT and α allow customization & speedup,
yet rank-one update maintained; G = αH + (α a + (1 − α) e)vT

G = αS+ (1−α)E =















1/60 7/15 7/15 1/60 1/60 1/60

1/6 1/6 1/6 1/6 1/6 1/6
19/60 19/60 1/60 1/60 19/60 1/60

1/60 1/60 1/60 1/60 7/15 7/15

1/60 1/60 1/60 7/15 1/60 7/15

1/60 1/60 1/60 11/12 1/60 1/60















PageRank Example

3

6 5

4

1 2

πT =
(

1 2 3 4 5 6

.03721 .05396 .04151 .3751 .206 .2862

)

Global ranking of pages = [4 6 5 2 3 1]

Query-independent way of ranking relevant set

Ranking by HITS

• give each page 2 scores (hub and authority scores) instead
of just 1.

• DEFN: Authorities Hubs

• pages can be both hubs and authorities (EX: ATL airport)

• Good hub pages point to good authority pages, and good
authorities are pointed to by good hubs.

HITS - hub and authority score given to each page

HITS - (Hypertext Induced Topic Search) ⇒ Teoma

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =

{

1 Pi → Pj

0 Pi 6→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

hi(k) =
∑

j:Pi→Pj

aj(k) ⇒ hk = Lak

— A = LTL ak = Aak−1 → e-vector

— H = LLT hk = Hhk−1 → e-vector

HITS Neighborhood Graph

1. Find relevant set by consulting inverted file

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood

HITS Example

1. Relevant set = [1,6]

2. Neighborhood graph N

�

�� �

�

��

3. Compute authority & hub scores.

Adjacency matrix for N = L =

















1 2 3 5 6 10

1 0 0 1 0 1 0

2 1 0 0 0 0 0

3 0 0 0 0 1 0

5 0 0 0 0 0 0

6 0 0 1 1 0 0

10 0 0 0 0 1 0

















HITS Example (cont.)
Authority matrix A = LTL Hub matrix H = LLT

LTL =

















1 2 3 5 6 10

1 1 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 2 1 1 0

5 0 0 1 1 0 0

6 0 0 1 0 3 0

10 0 0 0 0 0 0

















, LLT =

















1 2 3 5 6 10

1 2 0 1 0 1 1

2 0 1 0 0 0 0

3 1 0 1 0 0 1

5 0 0 0 0 0 0

6 1 0 0 0 2 0

10 1 0 1 0 0 1

















Authority score vector a

aT =
(

1 2 3 5 6 10

0 0 .3660 .1340 .5 0

)

Hub score vector h

hT =
(

1 2 3 5 6 10

.3660 0 .2113 0 .2113 .2113

)

Conclusions

• These three information retrieval methods rely on eigenvector
calculations.

• Large-scale matrices involved.

• Robust, efficient algorithms are essential.

