

in Information Retrieval

Amy Langville Carl Meyer

SAMSI Institute Department of Mathematics North Carolina State University

SIAM AN-New Orleans 7/12/2005

Outline

Part 1: Traditional IR

- Vector Space Model (1960s and 1970s)
- Latent Semantic Indexing (1990s)

Part 2: Web IR

- PageRank (1998)
- HITS (1998)

Vector Space Model (1960s and 1970s)

Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn *n* textual documents into *n* document vectors d_1, d_2, \ldots, d_n
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector **q**, which is a pseudo-doc

Vector Space Model (1960s and 1970s)

Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn *n* textual documents into *n* document vectors d_1, d_2, \ldots, d_n
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector **q**, which is a pseudo-doc

GOAL: find doc. d_i closest to q

- angular cosine measure used: $\delta_i = \cos \theta_i = \mathbf{q}^T \mathbf{d}_i / (\|\mathbf{q}\|_2 \|\mathbf{d}_i\|_2)$

Example from Berry's book

Terms

Documents

- T1: Bab(y,ies,y's)
- T2: Child(ren's)
- T3: Guide
- T4: Health
- T5: Home
- T6: Infant
- T7: Proofing
- T8: Safety
- T9: Toddler

- D1: Infant & Toddler First Aid
- D2: Babies & Children's Room (For Your Home)
- D3: Child Safety at Home
 - D4: Your Baby's Health & Safety : From Infant to Toddler
 - D5: Baby Proofing Basics
 - D6: Your Guide to Easy Rust Proofing
 - D7: Beanie Babies Collector's Guide

Example from Berry's book

Terms

- T1: Bab(y,ies,y's)
- T2: Child(ren's)
- T3: Guide
- T4: Health
- T5: Home
- T6: Infant
- T7: Proofing
- T8: Safety
- T9: Toddler

Documents

- D1: Infant & Toddler First Aid
- D2: Babies & Children's Room (For Your Home)
- D3: Child Safety at Home
- D4: Your Baby's Health & Safety : From Infant to Toddler
- D5: Baby Proofing Basics
- D6: Your Guide to Easy Rust Proofing
- D7: Beanie Babies Collector's Guide

		d_1	d_{2}	d_{3}	d_4	d_{5}	d_{6}	d_{7}						
	t_1	0	1	0	1	1	0	1		$\begin{bmatrix} 1 \end{bmatrix}$				
	t_2	0	1	1	0	0	0	0		0		$\lceil \delta_1 \rceil$		0
	t_{3}	0	0	0	0	0	1	1		0		δ_{2}		.5774
	t_4	0	0	0	1	0	0	0		1		δ_{3}		0
A =	t_{5}	0	1	1	0	0	0	0	q =	0	$\delta =$	δ_4	=	.8944
	t_{6}	1	0	0	1	0	0	0		0		δ_{5}		.7071
	t_{7}	0	0	0	0	1	1	0		0		δ_{6}		0
	t_8	0	0	1	1	0	0	0		0		$\lfloor \delta_7 \rfloor$.7071 _
	t_{9}	1	0	0	1	0	0	0		0				

Latent Semantic Indexing (1990s)

Susan Dumais's improvement to VSM = LSI

Idea: use low-rank approximation to A to filter out noise

• Use truncated SVD as low-rank approximation to A

SVD

 $A_{m \times n}$: rank r term-by-document matrix

- SVD: $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- LSI: use $\mathbf{A}_{k} = \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ in place of \mathbf{A}
- Why?
 - reduce storage when $k \ll r$
 - filter out uncertainty, so that performance on text mining tasks (e.g., query processing and clustering) improves

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T$

- Original Basis: docs represented in Term Space using Standard Basis S = {e₁, e₂, ..., e_m}
- New Basis: docs represented in smaller Latent Semantic Space using Basis $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ (k<<min(m,n))

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T$

- Original Basis: docs represented in Term Space using Standard Basis S = {e₁, e₂, ..., e_m}
- New Basis: docs represented in smaller Latent Semantic Space using Basis $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ (k<<min(m,n))

$$\begin{array}{c} doc_{1} \\ nonneg. \\ \left(\begin{array}{c} \vdots \\ \mathbf{A}_{*1} \\ \vdots \end{array} \right)_{m \times 1} \approx \begin{bmatrix} \vdots \\ \mathbf{u}_{1} \\ \vdots \end{bmatrix} \sigma_{1} v_{11} + \begin{bmatrix} \vdots \\ \mathbf{u}_{2} \\ \vdots \end{bmatrix} \sigma_{2} v_{12} + \dots + \begin{bmatrix} \vdots \\ \mathbf{u}_{k} \\ \vdots \end{bmatrix} \sigma_{k} v_{1k} \end{array}$$

still use angular cosine measure $\delta_i = \cos \theta_i = \mathbf{q}^T \mathbf{d}_i / (\|\mathbf{q}\|_2 \|\mathbf{d}_i\|_2) = \mathbf{q}^T \mathbf{A}_k \mathbf{e}_i / (\|\mathbf{q}\|_2 \|\mathbf{A}_k \mathbf{e}_i\|_2)$ $= \mathbf{q}^T \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T \mathbf{e}_i / (\|\mathbf{q}\|_2 \|\boldsymbol{\Sigma}_k \mathbf{V}_k^T \mathbf{e}_i\|_2)$

Strengths and Weaknesses of LSI

Strengths

- using \mathbf{A}_k in place of \mathbf{A} gives improved performance
- dimension reduction considers only essential components of term-by-document matrix, filters out noise
- best rank-k approximation: $\|\mathbf{A} \mathbf{A}_k\|_F = \min_{rank(\mathbf{B}) \leq k} \|\mathbf{A} \mathbf{B}\|_F$

Weaknesses

- storage— \mathbf{U}_k and \mathbf{V}_k are usually completely dense
- interpretation of basis vectors u_i is impossible due to mixed signs
- good truncation point k is hard to determine
- orthogonality restriction

IR before the Web = traditional IR IR on the Web = web IR

IR before the Web = traditional IR IR on the Web = web IR

IR before the Web = traditional IR IR on the Web = web IR

- It's huge.
 - over 10 billion pages, average page size of 500KB
 - 20 times size of Library of Congress print collection
 - Deep Web 550 billion pages

IR before the Web = traditional IR IR on the Web = web IR

- It's huge.
 - over 10 billion pages, average page size of 500KB
 - 20 times size of Library of Congress print collection
 - Deep Web 550 billion pages
- It's dynamic.
 - content changes: 40% of pages change in a week, 23% of .com change daily
 - size changes: billions of pages added each year

IR before the Web = traditional IR IR on the Web = web IR

- It's huge.
 - over 10 billion pages, average page size of 500KB
 - 20 times size of Library of Congress print collection
 - Deep Web 550 billion pages
- It's dynamic.
 - content changes: 40% of pages change in a week, 23% of .com change daily
 - size changes: billions of pages added each year
- It's self-organized.
 - no standards, review process, formats
 - errors, falsehoods, link rot, and spammers!

IR before the Web = traditional IR IR on the Web = web IR

How is the Web different from other document collections?

- It's huge.
 - over 10 billion pages, average page size of 500KB
 - 20 times size of Library of Congress print collection
 - Deep Web 550 billion pages
- It's dynamic.
 - content changes: 40% of pages change in a week, 23% of .com change daily
 - size changes: billions of pages added each year

It's self-organized.

- no standards, review process, formats
- errors, falsehoods, link rot, and spammers!

A Herculean Task!

IR before the Web = traditional IR IR on the Web = web IR

How is the Web different from other document collections?

- It's huge.
 - over 10 billion pages, each about 500KB
 - 20 times size of Library of Congress print collection
 - Deep Web 550 billion pages
- It's dynamic.
 - content changes: 40% of pages change in a week, 23% of .com change daily
 - size changes: billions of pages added each year
- It's self-organized.
 - no standards, review process, formats
 - errors, falsehoods, link rot, and spammers!
- Ah, but it's *hyperlinked* !
 - Vannevar Bush's 1945 memex

Memox in the form of a desk would instantly bring files and material on any subject to the operator's fingertips. Slanting ranslucent viewing screens magnify supermicrofilm filed by code numbers. At left is a mechanism which automatically photographs longhand notes, pictures and letters, then files them in the desk for future reference (LIFE 19(11), p. 123).

Term-by-Document Matrix for Web

- Too big for factorizations
- \Rightarrow fast inverted file + <u>link</u> analysis

Elements of a Web Search Engine

Query Processing

Step 1: User enters query, i.e., aztec baby

Step 2: Inverted file consulted

• term 1 (aardvark) - 3, 117, 3961

- term 10 (aztec) 3, 15, 19, 101, 673, 1199
- term 11 (baby) 3, 31, 56, 94, 673, 909, 11114, 253791

• term m (zymurgy) - 1159223

Step 3: Relevant set identified, i.e. (3,673)
Simple traditional engines stop here.

Link Analysis

• uses *hyperlink* structure to focus the relevant set

• combine IR score with popularity or importance score

HITS - Kleinberg
$$\Rightarrow$$

The Web as a Graph

Nodes = webpages

How to Use Web Graph for Search

Hyperlink = **Recommendation**

- page with 20 recommendations (inlinks) must be more important than page with 2 inlinks.
- but status of recommender matters.
 EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people
- but what if recommender is generous with recommendations?
 EX: suppose Trump has written over 40,000 letters.
- each inlink should be weighted to account for status of recommender and # of outlinks from that recommender

How to Use Web Graph for Search

Hyperlink = **Recommendation**

- page with 20 recommendations (inlinks) must be more important than page with 2 inlinks.
- but status of recommender matters.
 EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people
- but what if recommender is generous with recommendations?
 EX: suppose Trump has written over 40,000 letters.
- each inlink should be weighted to account for status of recommender and # of outlinks from that recommender

PAGERANK - importance/popularity score given to each page

Ranking by PageRank

The PageRank Idea

(Sergey Brin & Lawrence Page 1998)

Ranking is preassigned

(An off-line calculation)

- Your page P has some rank r(P)
- Adjust r(P) higher or lower depending on ranks of pages that point to P
- Importance is not just number, but *quality* of in-links
 - role of outlinks relegated
 - much less sensitive to spamming

PageRank

The Definition

•
$$r(P) = \sum_{P \in \mathcal{B}_P} \frac{r(P)}{|P|}$$
 — $\mathcal{B}_P = \{ \text{all pages pointing to } P \}$
— $|P| = \text{number of out links from } P$

Successive Refinement

- Start with $r_0(P_i) = 1/n$ for all pages P_1, P_2, \ldots, P_n
- Iteratively refine rankings for each page

$$- r_1(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_0(P)}{|P|}$$

$$- r_2(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_1(P)}{|P|}$$

$$\vdots$$

$$- r_{j+1}(P_i) = \sum_{P \in \mathcal{B}_{P_i}} \frac{r_j(P)}{|P|}$$

After Step j $\pi_j^T = [r_j(P_1), r_j(P_2), \dots, r_j(P_n)]$ $\pi_{j+1}^T = \pi_j^T \mathbf{H}$ where $h_{ij} = \begin{cases} \mathbf{1}/|P_i| & \text{if } i \to j \\ \mathbf{0} & \text{o.w.} \end{cases}$

5

5

It's Almost a Markov Chain

H has row sums = 1 for ND nodes, row sums = 0 for D nodes

It's Almost a Markov Chain

• H has row sums = 1 for ND nodes, row sums = 0 for D nodes

It's Almost a Markov Chain

• **H** has row sums = 1 for ND nodes, row sums = 0 for D nodes Stochasticity Fix: $\mathbf{S} = \mathbf{H} + \mathbf{av}^T$. (*a_i*=1 for *i*∈*D*, 0, o.w.)

It's Almost a Markov Chain

• **H** has row sums = 1 for ND nodes, row sums = 0 for D nodes Stochasticity Fix: $\mathbf{S} = \mathbf{H} + \mathbf{av}^T$. (*a_i*=1 for *i*∈*D*, 0, o.w.)

$$\mathbf{S} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \text{where } \mathbf{a} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}^{T} = 1/6 \mathbf{e}^{T}$$

It's Almost a Markov Chain

• **H** has row sums = 1 for ND nodes, row sums = 0 for D nodes Stochasticity Fix: $S = H + av^T$. (*a_i*=1 for *i* $\in D$, 0, o.w.)

 $\mathbf{S} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \text{where } \mathbf{a} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}^T = 1/6 \mathbf{e}^T$

• Each π_i^T is a probability distribution vector

 $\left(\sum_{j}r_{j}(P_{i})=1\right)$ • $\pi_{i+1}^T = \pi_i^T S$ is random walk on the graph defined by links • $\pi^T = \lim_{j \to \infty} \pi_j^T$ = stationary probability distribution

Random Surfer

Could still encounter Convergence Problems

(dangling nodes, cycles, reducibility)

Irreducibility Fix: $\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha) \mathbf{E}$ $e_{ij} = 1/n$ $\alpha \approx .85$ $\mathbf{G} = \alpha \mathbf{H} + \alpha \mathbf{a} \mathbf{v}^T + (1 - \alpha) \mathbf{E}$ (trivially irreducible)

• π^T is now guaranteed to exist and be unique and power method is guaranteed to converge to π^T .

Random Surfer

Could still encounter Convergence Problems Irreducibility Fix: $\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha)\mathbf{E}$ $e_{ij} = 1/n$ $\alpha \approx .85$ $\mathbf{G} = \alpha \mathbf{H} + \alpha \mathbf{a} \mathbf{v}^T + (1 - \alpha)\mathbf{E}$ (trivially irreducible)

• π^T is now guaranteed to exist and be unique and power method is guaranteed to converge to π^T .

• Different $\mathbf{E} = \mathbf{e}\mathbf{v}^T$ and α allow customization & speedup, yet rank-one update maintained; $\mathbf{G} = \alpha \mathbf{H} + (\alpha \mathbf{a} + (1 - \alpha) \mathbf{e})\mathbf{v}^T$

$$\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha) \mathbf{E} = \begin{bmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 1/60 & 7/15 \\ 1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/60 \end{bmatrix}$$

Ranking by HITS

 give each page 2 scores (hub and authority scores) instead of just 1.

- pages can be both hubs and authorities (EX: ATL airport)
- Good hub pages point to good authority pages, and good authorities are pointed to by good hubs.
- HITS hub and authority score given to each page
 HITS (Hypertext Induced Topic Search) ⇒ Teoma

HITS Algorithm Hypertext Induced Topic Search

Determine Authority & Hub Scores

• $a_i =$ authority score for P_i • $h_i =$ hub score for P_i

(J. Kleinberg 1998)

 $\mathbf{L}_{ij} = \begin{cases} \mathbf{1} & P_i \to P_j \\ \mathbf{0} & P_i \not\to P_j \end{cases}$

Successive Refinement

- Start with $h_i(0) = 1$ for all pages P_i
- Successively refine rankings

$$- \text{ For } k = 1, 2, \dots$$

$$a_i(k) = \sum_{j:P_j \to P_i} h_j(k-1) \implies a_k = \mathsf{L}^T \mathsf{h}_{k-1}$$

$$h_i(k) = \sum_{j:P_i \to P_j} a_j(k) \implies \mathsf{h}_k = \mathsf{L} a_k$$

 $- A = L^{T}L \quad a_{k} = Aa_{k-1} \rightarrow e\text{-vector}$ $- H = LL^{T} \quad h_{k} = Hh_{k-1} \rightarrow e\text{-vector}$

HITS Neighborhood Graph

- 1. Find relevant set by consulting inverted file
- 2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood

HITS Example

2

3

1

10

6

5

- 1. Relevant set = [1, 6]
- 2. Neighborhood graph N

3. Compute authority & hub scores.

Authority score vector a

$$\mathbf{a}^{T} = \begin{pmatrix} 1 & 2 & 3 & 5 & 6 & 10 \\ 0 & 0 & .3660 & .1340 & .5 & 0 \end{pmatrix}$$

Hub score vector h

$$\mathbf{h}^{T} = \begin{pmatrix} .3660 & 0 & .2113 & 0 & .2113 \end{pmatrix}$$

Conclusions

- These three information retrieval methods rely on eigenvector calculations.
- Large-scale matrices involved.
- Robust, efficient algorithms are essential.