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Outline

Part 1: Traditional IR

• Vector Space Model (1960s and 1970s)

• Latent Semantic Indexing (1990s)

Part 2: Web IR

• PageRank (1998)

• HITS (1998)



Vector Space Model (1960s and 1970s)

Gerard Salton’s Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text

(Salton’s Magical Automatic Retriever of Text)

• turn n textual documents into n document vectors d1, d2, . . ., dn

• create term-by-document matrix Am×n = [ d1|d2|. . .|dn ]

• to retrieve info., create query vector q, which is a pseudo-doc
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Gerard Salton’s Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text

(Salton’s Magical Automatic Retriever of Text)

• turn n textual documents into n document vectors d1, d2, . . ., dn

• create term-by-document matrix Am×n = [ d1|d2|. . .|dn ]

• to retrieve info., create query vector q, which is a pseudo-doc

GOAL: find doc. di closest to q

— angular cosine measure used: δi = cos θi = qTdi/(‖q‖2‖di‖2)



Example from Berry’s book
Terms Documents

T1: Bab(y,ies,y’s) D1: Infant & Toddler First Aid

T2: Child(ren’s) D2: Babies & Children’s Room (For Your Home )

T3: Guide D3: Child Safety at Home

T4: Health D4: Your Baby’s Health & Safety : From Infant to Toddler

T5: Home D5: Baby Proofing Basics

T6: Infant D6: Your Guide to Easy Rust Proofing

T7: Proofing D7: Beanie Babies Collector’s Guide

T8: Safety

T9: Toddler
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Latent Semantic Indexing (1990s)

Susan Dumais’s improvement to VSM = LSI

Idea: use low-rank approximation to A to filter out noise

• Use truncated SVD as low-rank approximation to A



SVD

Am×n: rank r term-by-document matrix

• SVD: A = UΣ VT =
∑r

i=1
σiuiv

T
i

• LSI: use Ak =
∑k

i=1
σiuiv

T
i in place of A

• Why?

— reduce storage when k << r

— filter out uncertainty, so that performance on text mining
tasks (e.g., query processing and clustering) improves



What’s Really Happening?
Change of Basis

using truncated SVD Ak = UkΣkVT
k

• Original Basis: docs represented in Term Space using Standard
Basis S = {e1, e2, . . ., em}

• New Basis: docs represented in smaller Latent Semantic Space
using Basis B = {u1, u2, . . ., uk} (k<<min(m,n))
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• still use angular cosine measure

δi = cos θi = qTdi/(‖q‖2‖di‖2) = qTAkei/(‖q‖2‖Akei‖2)

= qTUkΣkVT
k ei/(‖q‖2‖ΣkVT

k ei‖2)



Strengths and Weaknesses of LSI

Strengths

• using Ak in place of A gives improved performance

• dimension reduction considers only essential components of
term-by-document matrix, filters out noise

• best rank-k approximation: ‖A − Ak‖F = minrank(B)≤k ‖A − B‖F

Weaknesses

• storage—Uk and Vk are usually completely dense

• interpretation of basis vectors ui is impossible due to mixed
signs

• good truncation point k is hard to determine
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A Herculean Task!



Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

• It’s huge.
– over 10 billion pages, each about 500KB

– 20 times size of Library of Congress print collection

– Deep Web - 550 billion pages

• It’s dynamic.
– content changes: 40% of pages change in a week, 23% of .com change daily

– size changes: billions of pages added each year

• It’s self-organized.
– no standards, review process, formats

– errors, falsehoods, link rot, and spammers!

• Ah, but it’s hyperlinked !
– Vannevar Bush’s 1945 memex



Term-by-Document Matrix for Web

• Too big for factorizations

• ⇒ fast inverted file + link analysis



Elements of a Web Search Engine
WWW

Crawler Module User

Indexing Module

Indexes

Query Module
Ranking Module

Content Index

Structure Index

Special-purpose indexes

Page Repository
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Query Processing

Step 1: User enters query, i.e., aztec baby

Step 2: Inverted file consulted

• term 1 (aardvark) - 3, 117, 3961

         .

         .

         .

• term 10 (aztec) - 3, 15, 19, 101, 673, 1199

• term 11 (baby) - 3, 31, 56, 94, 673, 909, 11114, 253791

         .

         .

         .

• term m (zymurgy) - 1159223

Step 3: Relevant set identified, i.e. (3,673)

Simple traditional engines stop here.



Link Analysis

• uses hyperlink structure to focus the relevant set

• combine IR score with popularity or importance score

PageRank - Brin and Page ⇒

HITS - Kleinberg ⇒



The Web as a Graph
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1 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 2

Nodes = webpages Arcs = hyperlinks



How to Use Web Graph for Search

Hyperlink = Recommendation

• page with 20 recommmendations (inlinks) must be more
important than page with 2 inlinks.

• but status of recommender matters.
EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people

• but what if recommender is generous with recommendations?
EX: suppose Trump has written over 40,000 letters.

• each inlink should be weighted to account for status of
recommender and # of outlinks from that recommender



How to Use Web Graph for Search

Hyperlink = Recommendation

• page with 20 recommmendations (inlinks) must be more
important than page with 2 inlinks.

• but status of recommender matters.
EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people

• but what if recommender is generous with recommendations?
EX: suppose Trump has written over 40,000 letters.

• each inlink should be weighted to account for status of
recommender and # of outlinks from that recommender

PAGERANK - importance/popularity score given to each page



Ranking by PageRank

The PageRank Idea (Sergey Brin & Lawrence Page 1998)

• Ranking is preassigned (An off-line calculation)

• Your page P has some rank r(P )

• Adjust r(P ) higher or lower depending on ranks of pages that
point to P

• Importance is not just number, but quality of in-links

— role of outlinks relegated

— much less sensitive to spamming



PageRank
The Definition

• r(P ) =
∑

P∈BP

r(P )

|P |

— BP = {all pages pointing to P}

— |P | = number of out links from P

Successive Refinement

• Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

• Iteratively refine rankings for each page

— r1(Pi) =
∑

P∈BPi

r0(P )

|P |

— r2(Pi) =
∑

P∈BPi

r1(P )

|P |

.
.
.

— rj+1(Pi) =
∑

P∈BPi

rj(P )

|P |



In Matrix Notation

After Step j

πT
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

πT
j+1

= πT
j H where hij =

{

1/|Pi| if i → j

0 o.w.



In Matrix Notation

After Step j

πT
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

πT
j+1

= πT
j H where hij =

{

1/|Pi| if i → j

0 o.w.

3

6 5

4

1 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 2

H =

















p1 p2 p3 p4 p5 p6

p1 0 1/2 1/2 0 0 0

p2 0 0 0 0 0 0

p3 1/3 1/3 0 0 1/3 0

p4 0 0 0 0 1/2 1/2
p5 0 0 0 1/2 0 1/2
p6 0 0 0 1 0 0



















In Matrix Notation

After Step j

πT
j =

[

rj(P1), rj(P2), . . ., rj(Pn)
]

πT
j+1

= πT
j H where hij =

{

1/|Pi| if i → j

0 o.w.

3

6 5

4

1 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 2

H =

















p1 p2 p3 p4 p5 p6

p1 0 1/2 1/2 0 0 0

p2 0 0 0 0 0 0

p3 1/3 1/3 0 0 1/3 0

p4 0 0 0 0 1/2 1/2
p5 0 0 0 1/2 0 1/2
p6 0 0 0 1 0 0

















PageRank = lim
j→∞

π
T
j = π

T
(provided limit exists)
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In Matrix Notation

It’s Almost a Markov Chain

• H has row sums = 1 for ND nodes, row sums = 0 for D nodes
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• Each πT
j is a probability distribution vector

(
∑

i
rj(Pi)=1

)

• πT
j+1

= πT
j S is random walk on the graph defined by links

• π
T = lim

j→∞
π

T
j = stationary probability distribution



Random Surfer

Could still encounter Convergence Problems
(dangling nodes, cycles, reducibility)

Irreducibility Fix: G = αS + (1 − α)E eij = 1/n α ≈ .85

G = αH + α a vT + (1 − α)E (trivially irreducible)

• πT is now guaranteed to exist and be unique and power
method is guaranteed to converge to πT .



Random Surfer

Could still encounter Convergence Problems

Irreducibility Fix: G = αS + (1 − α)E eij = 1/n α ≈ .85

G = αH + α a vT + (1 − α)E (trivially irreducible)

• πT is now guaranteed to exist and be unique and power
method is guaranteed to converge to πT .

• Different E = evT and α allow customization & speedup,
yet rank-one update maintained; G = αH + (α a + (1 − α) e)vT
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PageRank Example

3

6 5

4

1 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 2

πT =
(

1 2 3 4 5 6

.03721 .05396 .04151 .3751 .206 .2862

)

Global ranking of pages = [ 4 6 5 2 3 1 ]

Query-independent way of ranking relevant set



Ranking by HITS

• give each page 2 scores (hub and authority scores) instead
of just 1.

• DEFN: Authorities Hubs

• pages can be both hubs and authorities (EX: ATL airport)

• Good hub pages point to good authority pages, and good
authorities are pointed to by good hubs.

HITS - hub and authority score given to each page

HITS - (Hypertext Induced Topic Search) ⇒ Teoma



HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =

{

1 Pi → Pj

0 Pi 6→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

hi(k) =
∑

j:Pi→Pj

aj(k) ⇒ hk = Lak

— A = LTL ak = Aak−1 → e-vector

— H = LLT hk = Hhk−1 → e-vector



HITS Neighborhood Graph

1. Find relevant set by consulting inverted file

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood



HITS Example

1. Relevant set = [1,6]

2. Neighborhood graph N
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��

3. Compute authority & hub scores.

Adjacency matrix for N = L =
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1 2 3 5 6 10

1 0 0 1 0 1 0
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3 0 0 0 0 1 0

5 0 0 0 0 0 0

6 0 0 1 1 0 0

10 0 0 0 0 1 0
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HITS Example (cont.)
Authority matrix A = LTL Hub matrix H = LLT

LTL =
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2 0 1 0 0 0 0

3 1 0 1 0 0 1

5 0 0 0 0 0 0
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Authority score vector a

aT =
(

1 2 3 5 6 10

0 0 .3660 .1340 .5 0

)

Hub score vector h

hT =
(

1 2 3 5 6 10

.3660 0 .2113 0 .2113 .2113

)



Conclusions

• These three information retrieval methods rely on eigenvector
calculations.

• Large-scale matrices involved.

• Robust, efficient algorithms are essential.


