Eigenvector Methods
 in

 Information Retrieval

 Information Retrieval}

Amy Langville
Carl Meyer

SAMSI Institute
Department of Mathematics North Carolina State University

Outline

Part 1: Traditional IR

- Vector Space Model (1960s and 1970s)
- Latent Semantic Indexing (1990s)

Part 2: Web IR

- PageRank (1998)
- HITS (1998)

Vector Space Model (ngoss and 19ros)

Gerard Salton's Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn n textual documents into n document vectors $\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{n}$
- create term-by-document matrix $\mathbf{A}_{m \times n}=\left[\mathbf{d}_{1}\left|\mathbf{d}_{2}\right| \cdots \mid \mathbf{d}_{n}\right]$
- to retrieve info., create query vector \mathbf{q}, which is a pseudo-doc

Vector Space Model (ngobs and 19ros)

Gerard Salton's Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn n textual documents into n document vectors $\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{n}$
- create term-by-document matrix $\mathbf{A}_{m \times n}=\left[\mathbf{d}_{1}\left|\mathbf{d}_{2}\right| \cdots \mid \mathbf{d}_{n}\right]$
- to retrieve info., create query vector \mathbf{q}, which is a pseudo-doc

GOAL: find doc. \mathbf{d}_{i} closest to \mathbf{q}

- angular cosine measure used: $\delta_{i}=\cos \theta_{i}=\mathbf{q}^{T} \mathbf{d}_{i} /\left(\|\mathbf{q}\|_{2}\left\|\mathbf{d}_{i}\right\|_{2}\right)$

Example from Berry's book

Terms

T1: Bab(y,ies,y's)
T2: Child(ren's)
T3: Guide
T4: Health
T5: Home
T6: Infant
T7: Proofing
T8: Safety
T9: Toddler

Documents

D1: Infant \& Toddler First Aid
D2: Babies \& Children's Room (For Your Home)
D3: Child Safety at Home
D4: Your Baby's Health \& Safety : From Infant to Toddler
D5: Baby Proofing Basics
D6: Your Guide to Easy Rust Proofing
D7: Beanie Babies Collector's Guide

Example from Berry's book

Terms

T1: Bab(y,ies,y's)
T2: Child(ren's)
T3: Guide
T4: Health
T5: Home
T6: Infant
T7: Proofing
T8: Safety
T9: Toddler

Latent Semantic Indexing (!sese)

Susan Dumais's improvement to VSM = LSI
Idea: use low-rank approximation to \boldsymbol{A} to filter out noise

- Use truncated SVD as low-rank approximation to A

SVD

$\mathbf{A}_{m \times n}$: rank r term-by-document matrix

SVD: $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$
LSI: use $\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ in place of \mathbf{A}

- Why?
- reduce storage when $k \ll r$
- filter out uncertainty, so that performance on text mining tasks (e.g., query processing and clustering) improves

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$

- Original Basis: docs represented in Term Space using Standard Basis $S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\}$

New Basis: docs represented in smaller Latent Semantic Space using Basis $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$

- Original Basis: docs represented in Term Space using Standard Basis $S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\}$
- New Basis: docs represented in smaller Latent Semantic Space using Basis $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$

- still use angular cosine measure

$$
\begin{aligned}
\delta_{i}=\cos \theta_{i} & =\mathbf{q}^{T} \mathbf{d}_{i} /\left(\|\mathbf{q}\|_{\mathbf{2}}\left\|\mathbf{d}_{i}\right\|_{\mathbf{2}}\right)=\mathbf{q}^{T} \mathbf{A}_{k} \mathbf{e}_{i} /\left(\|\mathbf{q}\|_{\mathbf{2}}\left\|\mathbf{A}_{k} \mathbf{e}_{i}\right\|_{\mathbf{2}}\right) \\
& =\mathbf{q}^{T} \mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T} \mathbf{e}_{i} /\left(\|\mathbf{q}\|_{\mathbf{2}}\left\|\boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T} \mathbf{e}_{i}\right\|_{\mathbf{2}}\right)
\end{aligned}
$$

Strengths and Weaknesses of LSI

Strengths

- using \mathbf{A}_{k} in place of \mathbf{A} gives improved performance
- dimension reduction considers only essential components of term-by-document matrix, filters out noise
- best rank- k approximation: $\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}=\min _{\operatorname{rank}(\mathbf{B}) \leq k}\|\mathbf{A}-\mathbf{B}\|_{F}$

Weaknesses

- storage- \mathbf{U}_{k} and \mathbf{V}_{k} are usually completely dense
- interpretation of basis vectors \mathbf{u}_{i} is impossible due to mixed signs
- good truncation point k is hard to determine
- orthogonality restriction

Web Information Retrieval

IR before the Web = traditional IR
IR on the Web = web IR

Web Information Retrieval

IR before the $\mathrm{Web}=$ traditional IR IR on the Web = web IR

How is the Web different from other document collections?

Web Information Retrieval

IR before the $\mathrm{Web}=$ traditional IR
 IR on the Web = web IR

How is the Web different from other document collections?

- It's huge.
- over 10 billion pages, average page size of 500 KB
- 20 times size of Library of Congress print collection
- Deep Web - 550 billion pages

Web Information Retrieval

IR before the $\mathrm{Web}=$ traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

- It's huge.
- over 10 billion pages, average page size of 500 KB
- 20 times size of Library of Congress print collection
- Deep Web - 550 billion pages
- It's dynamic.
- content changes: 40% of pages change in a week, 23% of .com change daily
- size changes: billions of pages added each year

Web Information Retrieval

IR before the $\mathrm{Web}=$ traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

- It's huge.
- over 10 billion pages, average page size of 500 KB
- 20 times size of Library of Congress print collection
- Deep Web - 550 billion pages
- It's dynamic.
- content changes: 40% of pages change in a week, 23% of .com change daily
- size changes: billions of pages added each year
- It's self-organized.
- no standards, review process, formats
- errors, falsehoods, link rot, and spammers!

Web Information Retrieval

IR before the $\mathrm{Web}=$ traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

- It's huge.
- over 10 billion pages, average page size of 500 KB
- 20 times size of Library of Congress print collection
- Deep Web - 550 billion pages
- It's dynamic.
- content changes: 40% of pages change in a week, 23% of .com change daily
- size changes: billions of pages added each year
- It's self-organized.
- no standards, review process, formats
- errors, falsehoods, link rot, and spammers!

> A Herculean Task!

Web Information Retrieval
 IR before the $\mathrm{Web}=$ traditional IR IR on the Web = web IR

How is the Web different from other document collections?

- It's huge.
- over 10 billion pages, each about 500KB
- 20 times size of Library of Congress print collection
- Deep Web - 550 billion pages
- It's dynamic.
- content changes: 40\% of pages change in a week, 23% of .com change daily
- size changes: billions of pages added each year
- It's self-organized.
- no standards, review process, formats
- errors, falsehoods, link rot, and spammers!
- Ah, but it's hyperlinked !
- Vannevar Bush's 1945 memex

Term-by-Document Matrix for Web

Too big for factorizations

- \Rightarrow fast inverted file + link analysis

Elements of a Web Search Engine

Structure Index

Query Processing

Step 1: User enters query, i.e., aztec baby
Step 2: Inverted file consulted

- term 1 (aardvark) - 3, 117, 3961
- term 10 (aztec) - 3, 15, 19, 101, 673, 1199
- term 11 (baby) - 3, 31, 56, 94, 673, 909, 11114, 253791
- term m (zymurgy) - 1159223

Step 3: Relevant set identified, i.e. (3, 673)
Simple traditional engines stop here.

Link Analysis

- uses hyperlink structure to focus the relevant set
- combine IR score with popularity or importance score

HITS - Kleinberg \Rightarrow

The Web as a Graph

Nodes = webpages
Arcs $=$ hyperlinks

How to Use Web Graph for Search

Hyperlink $=$ Recommendation

- page with 20 recommmendations (inlinks) must be more important than page with 2 inlinks.
- but status of recommender matters.

EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people

- but what if recommender is generous with recommendations?

EX: suppose Trump has written over 40,000 letters.

- each inlink should be weighted to account for status of recommender and \# of outlinks from that recommender

How to Use Web Graph for Search

Hyperlink $=$ Recommendation

- page with 20 recommmendations (inlinks) must be more important than page with 2 inlinks.
- but status of recommender matters.

EX: letters of recommendation: 1 letter from Trump vs. 20 from unknown people

- but what if recommender is generous with recommendations?

EX: suppose Trump has written over 40,000 letters.

- each inlink should be weighted to account for status of recommender and \# of outlinks from that recommender

PAGERANK - importance/popularity score given to each page

Ranking by PageRank

- Ranking is preassigned
- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not just number, but quality of in-links
- role of outlinks relegated
- much less sensitive to spamming

PageRank

The Definition

$$
\text { - } r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad-|P|=\text { number of out links from } P
$$

Successive Refinement

- Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
- Iteratively refine rankings for each page

$$
\begin{aligned}
& -r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& -r_{\mathbf{2}}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|} \\
& \quad \ddots \\
& \quad-r_{j+1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{j}(P)}{|P|}
\end{aligned}
$$

In Matrix Notation

After Step j

$$
\begin{aligned}
& \boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{H} \quad \text { where } \quad h_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
\mathbf{0} & \text { o.w. }\end{cases}
\end{aligned}
$$

In Matrix Notation

After Step j

$$
\begin{aligned}
& \pi_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{H} \quad \text { where } \quad h_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
\mathbf{0} & \text { o.w. }\end{cases} \\
& \mathbf{H}=\begin{array}{c}
\\
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{4} \\
p_{5} \\
p_{6}
\end{array}\left(\begin{array}{cccccc}
p_{2} & p_{3} & p_{4} & p_{5} & p_{6} \\
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

In Matrix Notation

After Step j

$$
\begin{aligned}
& \boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{H} \quad \text { where } \quad h_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
0 & \text { o.w. }\end{cases}
\end{aligned}
$$

$$
\mathbf{H}=\begin{aligned}
& \\
& p_{1} \\
& p_{2} \\
& p_{3} \\
& p_{4} \\
& p_{5} \\
& p_{6}
\end{aligned}\left(\begin{array}{cccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} \\
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

PageRank $=\lim _{j \rightarrow \infty} \pi_{j}^{T}=\pi^{T}$

It's Almost a Markov Chain

H has row sums $=1$ for ND nodes, row sums $=0$ for D nodes

In Matrix Notation

It's Almost a Markov Chain

- H has row sums = 1 for ND nodes, row sums $=0$ for D nodes

In Matrix Notation

It's Almost a Markov Chain

- H has row sums = 1 for ND nodes, row sums $=0$ for D nodes Stochasticity Fix: S = H+av ${ }^{T}$. ($a_{i}=1$ for $i \in D, 0$, o.w.)

In Matrix Notation

It's Almost a Markov Chain

- H has row sums = 1 for ND nodes, row sums $=0$ for D nodes Stochasticity Fix: $\mathrm{S}=\mathbf{H}+\mathbf{a v}^{T}$.
($a_{i}=1$ for $i \in D, 0$, o.w.)

$$
\mathrm{S}=\left[\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \text {,where } a=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{v}^{T}=1 / 6 \mathbf{e}^{T}
$$

In Matrix Notation

It's Almost a Markov Chain

- H has row sums $=1$ for ND nodes, row sums $=0$ for D nodes Stochasticity Fix: S = H+av ${ }^{T}$.

$$
\mathrm{S}=\left[\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \text {,where } a=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{v}^{T}=1 / 6 \mathbf{e}^{T}
$$

- Each π_{j}^{T} is a probability distribution vector
- $\pi_{j+1}^{T}=\pi_{j}^{T} \mathrm{~S}$ is random walk on the graph defined by links
- $\boldsymbol{\pi}^{T}=\lim _{j \rightarrow \infty} \boldsymbol{\pi}_{j}^{T}=$ stationary probability distribution

Random Surfer

Could still encounter Convergence Problems

(dangling nodes, cycles, reducibility)
Irreducibility Fix: $\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E} \quad e_{i j}=1 / n \quad \alpha \approx .85$

$$
\mathbf{G}=\alpha \mathbf{H}+\alpha \mathbf{a} \mathbf{v}^{T}+(1-\alpha) \mathbf{E} \quad \text { (trivially irreducible) }
$$

π^{T} is now guaranteed to exist and be unique and power method is guaranteed to converge to π^{T}.

Random Surfer

Could still encounter Convergence Problems

Irreducibility Fix: $\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E} \quad e_{i j}=1 / n \quad \alpha \approx .85$

$$
\mathbf{G}=\alpha \mathbf{H}+\alpha \mathbf{a} \mathbf{v}^{T}+(1-\alpha) \mathbf{E} \quad \text { (trivially irreducible) }
$$

- π^{T} is now guaranteed to exist and be unique and power method is guaranteed to converge to $\boldsymbol{\pi}^{T}$.
- Different $\mathbf{E}=\mathbf{e v}^{T}$ and α allow customization \& speedup, yet rank-one update maintained; $\mathbf{G}=\alpha \mathbf{H}+(\alpha \mathbf{a}+(1-\alpha) \mathbf{e}) \mathbf{v}^{T}$

$$
\mathrm{G}=\alpha \mathrm{S}+(1-\alpha) \mathrm{E}=\left[\begin{array}{cccccc}
1 / 60 & 7 / 15 & 7 / 15 & 1 / 60 & 1 / 60 & 1 / 60 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
19 / 60 & 19 / 60 & 1 / 60 & 1 / 60 & 19 / 60 & 1 / 60 \\
1 / 60 & 1 / 60 & 1 / 60 & 1 / 60 & 7 / 15 & 7 / 15 \\
1 / 60 & 1 / 60 & 1 / 60 & 7 / 15 & 1 / 60 & 7 / 15 \\
1 / 60 & 1 / 60 & 1 / 60 & 11 / 12 & 1 / 60 & 1 / 60
\end{array}\right]
$$

PageRank Example

$\pi^{T}=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ .03721 & .05396 & .04151 & .3751 & .206 & .2862\end{array}\right)$
Global ranking of pages $=\left[\begin{array}{llllll}4 & 6 & 5 & 2 & 3 & 1\end{array}\right]$
Query-independent way of ranking relevant set

Ranking by HITS

- give each page 2 scores (hub and authority scores) instead of just 1.
- DEFN:

Authorities

- pages can be both hubs and authorities (EX: ATL airport)
- Good hub pages point to good authority pages, and good authorities are pointed to by good hubs.

HITS - hub and authority score given to each page
HITS - (Hypertext Induced Topic Search) \Rightarrow Teoma

HITS Algorithm

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for $P_{i} \quad$ - $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}(0)=1$ for all pages P_{i}

$$
\mathbf{L}_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

- Successively refine rankings
- For $k=1,2, \ldots$

$$
\begin{aligned}
& a_{i}(k)=\sum_{j: P_{j} \rightarrow P_{i}} h_{j}(k-1) \quad \Rightarrow \mathbf{a}_{k}=\mathbf{L}^{T} \mathbf{h}_{k-1} \\
& h_{i}(k)=\sum_{j: P_{i} \rightarrow P_{j}} a_{j}(k) \quad \Rightarrow \mathbf{h}_{k}=\mathbf{L a}_{k}
\end{aligned}
$$

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L} \quad \mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-1} \rightarrow \mathbf{e}$-vector
$-\mathbf{H}=\mathbf{L L}^{T} \quad \mathbf{h}_{k}=\mathbf{H h}_{k-1} \rightarrow \mathbf{e}$-vector

HITS Neighborhood Graph

1. Find relevant set by consulting inverted file
2. Build neighborhood graph

3. Compute authority \& hub scores for just the neighborhood

HITS Example

1. Relevant set $=[1,6]$
2. Neighborhood graph N
3. Compute authority \& hub scores.

Adjacency matrix for $N=L=$| 1 |
| :--- |
| 2 |
| 3 |
| 5 |
| 6 |
| 10 |\(\left(\begin{array}{cccccc}1 \& 2 \& 3 \& 5 \& 6 \& 10

0 \& 0 \& 1 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 0\end{array}\right)\)

HITS Example (cont.)

Authority matrix $\mathbf{A}=\mathbf{L}^{T} \mathbf{L} \quad$ Hub matrix $\mathbf{H}=\mathbf{L L}^{T}$

		12	23	5	6	10				12	2	3	5	6	10
	$1{ }^{1}$	10	0		0	0			(2			1	0		
	2	0	0			0									0
	30	0	- 2			0									1
	5	0	1		0	0									0
		0	1		3	0									
	10			0	0	0)					0	1	0	0	

Authority score vector a

$$
\mathrm{a}^{T}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 5 & 6 & 10 \\
0 & 0 & .3660 & .1340 & .5 & 0
\end{array}\right)
$$

Hub score vector h

$$
\mathrm{h}^{T}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 5 & 6 & 10 \\
.3660 & 0 & .2113 & 0 & .2113 & .2113
\end{array}\right)
$$

Conclusions

- These three information retrieval methods rely on eigenvector calculations.
- Large-scale matrices involved.
- Robust, efficient algorithms are essential.

