Updating
PageRank

Amy Langville
Carl Meyer

Department of Mathematics
North Carolina State University
Raleigh, NC

Emory 1/30/04

) 4

Google

Must index key terms on each page
Robots crawl the web — software does indexing

Inverted file structure (like book index: terms to pages)
Termy — P, Pj, ...
Termo — P, P, ...

Determine a “PageRank” for each page P, P;, P, B, ...
Query independent — Based only on link structure

Query matching
Q = Termy, Terms, ... produces P, P;, P, B,...

Return P;, P;, Py, P, ... to user in order of PageRank

) 4

Google’s PageRank Idea

(Sergey Brin & Lawrence Page 1998)
Rankings are not query dependent

Depend only on link structure
Off-line calculations

Your page P has some rank 7r(P)

Adjust r(P) higher or lower depending on ranks of pages
that point to P

Importance is not number of in-links or out-links
One link to P from Yahoo! is important
Many links to P from me is not

Yahoo! points many places — value of link to P is diluted

) 4

PageRank

Start with ro(P;) =1/n for all pages Py, Ps, ...,

lteratively reflne rankings for each page

7“1(Pz') = Z TOI(DP)

PEBpi ‘ |

r(P) Bp = {all pages pointing to P}

| P| = number of out links from P

Py

) 4

In Matrix Notation

i = [r(P), ri(Pa), oo, (P
1/|P| ifi—j

T T
m..,=m:P where p--={ _
" / N 0 otherwise

PageRank = |lim «! = =!

j—ooo 7

P = |p;;] is a stochastic matrix
Each w]T IS a probability distribution vector

wi,, =7;P is random walk on the graph defined by links
T _

m' = lim 7]

J—09

stationary probability distribution

) 4

Random Surfer

Long-run proportion of time on page P, is

Dead end page (nothing to click on)

7' not well defined
Could get trapped into a cycle (P, — P; — F;)

No convergence

Markov chain must be irreducible and aperiodic

~

Replace P by P=aP+(1-a)E ¢;=1/n a= .85
Different E =ev! and o allow customization & speedup

G

Computing 7*

A Big Problem

Solve 7TT = 7TTP (stationary distribution vector)

m'1-P)=0 (too big for direct solves)

CLEVE’S
CORNER

Google’s PageRank is an eigenvector of a
matrix of order 2.7 billion.

One of the reasons why Googleis such an effective search engine is
the PageRank™ algorithm, developed by Google’s founders, Larry
Page and Sergey Brin, when they were graduate students at Stanford
University. PageRank is determined entirely by the link structure of
the Web. It is recomputed about once a month and does not involve
any of the actual content of Web pages or of any individual query.
Then, for any particular query, Google finds the pages on the

Web that match that query and lists those pages in the order of
their PageRank.

Imagine surfing the Web, going from page to page by randomly
choosing an outgoing link from one page to get to the next. This can
lead to dead ends at pages with no outgoing links, or cycles around
cliques of interconnected pages. So, a certain fraction of the time,
simply choose a random page from anywhere on the Web. This
theoretical random walk of the Web is a Markov chain or Markov
process. The limiting probability that a dedicated random surfer visits
any particular page is its PageRank. A page has high rank if it has
links to and from other pages with high rank.

Let W be the set of Web pages that can reached by following a chain

of hyperlinks starting from a page at Google and let 7 be the number
of pages in W. The set W actually varies with time, but in May 2002,

n was about 2.7 billion. Let G be the n-bv-# connectivity matrix of

THE WORLD’S LARGEST
MATRIX COMPUTATION

BY CLEVE MOLER

It tells us that the largest eigenvalue of A is equal to one and that the
corresponding eigenvector, which satisfies the equation

x=Ax,

exists and is unique to within a scaling factor. When this scaling
factor is chosen so that

Z,ixi: 1

then x is the state vector of the Markov chain. The elements of x are
Google’s PageRank.

If the matrix were small enough to fit in MATLAB, one way to
compute the eigenvector x would be to start with a good approximate
solution, such as the PageRanks from the previous month, and
simply repeat the assignment statement

X = AX

until successive vectors agree to within specified tolerance. This

is known as the power method and is about the only possible
approach for very large n. 'm not sure how Google actually computes
PageRank, but one step of the power method would require one

pass over a database of Web pages, updating weighted reference
counts generated by the hyperlinks between pages.

Gk
@ Computing 7
A Big Problem
Solve ! = w!P
7l (1-P)=0

Start with 7j =e/n and iterate =, = P

G

Power Method to compute PageRank

w) =el/n
until convergence, do
71'?_'_1 = 71'? ﬁ (dense computation)

end

G

Power Method to compute PageRank

w) =el/n

until convergence, do

T _ TP .

X 7Tj+1 = 7Tj P (dense computation)
T _ T T T .

® 7Tj+1 = 71']- P+ (1 — a) 7Tj ev (sparse computation)

end

G

Power Method to compute PageRank

w) =el/n
until convergence, do

T _. TP
iy =T P

T _ T T T

o Wf+1=aW?P+(1—a)vT

end

Convergence

— uses a = .85
— report 50-100 iterations til convergence

— still takes days to converge

exploits structure to reduce work

produces an approximation, quality is dependent on degree
of coupling

Iterative Aggregation

Problem: repeated aggregation leads to fixed point.
Solution: Do a power step to move off fixed point.

Do this iteratively. Approximations improve and approach
exact solution.

Success with NCD systems, not in general.

Input: approximation to IT"

get censored distributions TI' II'

get coupling constants § ;
Output: get approximate global stationary distribution I'= I:Ell'IT §2HT
Output: move off fixed point with power step

s .T= censored (stat.) dist. of
stochastic complement §.
-1

Si = Pii+ PM‘ (I B R) P*i

For 2-level partition,

Sl = El + Rz(l - 1)22)‘11)21

only one step needed to produce exact global vector

SC matrices S, are very expensive to compute

) 4

Aggregation

G G D11 XX P1g ri
p B G (P11 Pio °. .
nxn — 2l —
G P21 P22 pgl oo pgg rg
i cl *ee cg P22 1
!l = (7, .. g | Mgty e e, Th)
p11°°pgg are 1 x1 Stochastic complements= 1
censored distributions =1

Only one significant complement S = Pay + Po1 (I — P11) 1Py
Only one significant censored dist s1S, = sl

A/D Theorem =— sl = (Tga1y e ey)/ Z?=g+1 e

Aggregation Matrix

- P11 D1y rie |
A — : B Pi1 P.e
B rie ~ |sIPy; 1 -—sIPye
Pg1 Pgg q 2 F21 o F21
T e T T
| S3C1 S2Cy S2 P22e_ (g+1)x(g+1)

if o’ =(aq,..., a4 ay41) = stationary dist for A

Then «! = (aq,..., 04| ay183) = stationary dist for P

G small G blg 82 = Pos + Pgl(l — P11)_1P12 Iarge
G big A large

Gk
: Approximate Aggregation

Updating involves relatively few states

P11 PlZe
G small A=| T small
S5 P21 1 — S5 PZle (g+1) x(g+1)

(7Tg+17 ©o 0y 7T’n) ~ (¢g+17 ©oy ¢n),
where qu is old PageRank vector and 7TT is new, updated PageRank

ST= (7Tg+]_7-.oy7Tn) ~ (¢g+1,...,¢n) =§T
Zi:g+1 i Zi=g+1 ¢Z 2
A~ A= P11 Pice

Sgpzl 1— sngle

~ |~ QT
Oél, ...,Oég ‘ Q{g+1sz)

) 4

Iterative Aggregation

NO
Can’t do A/D twice — a fixed point emerges

Perturb A/D output to move off of fixed point
Move it in direction of solution

o~ ~T
' =7'P

Determine the “G-set” partition S=G UG

Approximate A/D step generates approximation 7

Smooth the result 77 = 7P
Use = as input to another approximate aggregation step

G

How to Partition for Updating Problem?

There are some bad states (G) and some good states (G).

Give more attention to bad states. Each state in G forms
a partitioning level. Much progress toward correct
PageRank is made during aggregation step.

Lump good states in G into 1 superstate. Progress
toward correct PageRank is made during smoothing
step (power iteration).

G

Definitions for “Good” and “Bad”

Good = states least likely to have w; change
Bad = states most likely to have w; change

Good = states with smallest «; after k transient steps
Bad = states “nearby”, with largest =, after £ transient steps

Good = smallest 7; from old PageRank vector
Bad = largest «; from old PageRank vector

Good = fast—converging states
Bad = —converging states

i

Determining “Fast” and “Slow”

T k_ Ty T
T = T} I'p = T Ter! +)\27rk x2y2 +)\37Tk x3y3 C+ N, T XY

Asymptotic rate of convergence is rate at which \; — 0

Some states converge to stationary value faster than \y—rate,
due to LH e-vector y..

Put states with largest |y.|; values in bad group G, where
they receive more individual attention in aggregation method.

y. expensive, but for PageRank problem, Kamvar et al. show

states with large mr; are slow-converging. = inexpensive soln =
use old 7! to determine G.

G

Implications of Web’s scale-free nature

(1) =! follows power law since WWW is scale-free

(2) not all pages converge to their PageRanks at same rate

(3) pages with high PR are slow-converging

= very few pages are slow-converging, but these are the

pages that cause power method to drag on

0.035
0.08
0.025
0.02
0.015
0.01
0.005

Power law for PageRank

censorship

movies

0.04
0.03
0.02
0.01 J

0

0 200 400 600
genetic

0.025 0.025
0.02 0.02
0.015 0.015
0.01 0.01
0.005 J 0.005
% 1000 2000 0

0.05

0.04

0.03

0.02

0.01

mathworks

1000 2000 3000

) 4

Convergence

Always converges to stationary dist =/ for P
Converges for all partitions S=GUG

Rate of convergence is rate at which S converges

Sy = P32+P21(1-P11) P12
Dictated by Jordan structure of \2(S5)

A2(S2) simple mi — «w!l at the rate at which \} — 0

Goal now is to find a relatively small G that minimizes \3(S-)

G

Convergence Findings of Ipsen/Kirkland

+ For any partition, the convergence rate of |IAD is at least as good
as that of the power method for the Google matrix. (A2 (S3) <)

+ Under two rather trivial assumptions, there is always a partition so
that the convergence rate of IAD is strictly smaller that that of the
power method. (A2 (S2) <)

G

Convergence Findings of Ipsen/Kirkland

+ For any partition, the convergence rate of |IAD is at least as good
as that of the power method for the Google matrix. (A2 (S3) <)

+ Under two rather trivial assumptions, there is always a partition so
that the convergence rate of IAD is strictly smaller that that of the
power method. (A2 (S2) <)

A2(S2) << «

) 4

Experiments

Censorship (Sites concerning “censorship on the net”)
562 nodes 736 links

Movies (Sites concerning “movies”)
451 nodes 713 links

MathWorks
517 nodes 13,531 links

Abortion (Sites concerning “abortion”)
1,693 nodes 4,325 links

Genetics (Sites concerning “genetics”)
2,952 nodes 6,485 links

G
Parameters
Number Of Nodes (States) Added

3

Number Of Nodes (States) Removed
o

Number Of Links Added (Different values have little effect on results)

10

Number Of Links Removed

20

Stopping Criterion

1-norm of residual < 10719

lterations Time

Censorship
lterations Time G|
38 1.40 5 38
10 38
15 38
20 20
25 20
510) 10
100 8
300 6
400 5

1.68
1.66
1.56
1.06
1.05
.69
09D

.65
.70

lterations Time

Censorship
lterations Time G|
38 1.40 5 38
10 38
15 38
20 20
25 20
50 10
100 8
200 6
300 6
400 5

1.68
1.66
1.56
1.06
1.05
.69
R515)
03
.65
.70

) 4

Movies

lterations Time |G| Iterations Time
17 .40 5 12 .39
10 12 37

15 11 .30

20 11 3D

100 9 .33

200 8 .35

300 7 .39

400 §) A7

) 4

lterations Time

17

.40

Movies

G|

lterations Time

5)
10
15
20
25
o0

100
200
300
400

12
12
11
11
11

GO N ow © O

.39
37
.36
.35
31
31
33
35
.39
A7

lterations Time

54

1.25

MathWorks

G|

lterations Time

5)
10
15
20
25

300
400

53
52
52
42
20

11
10

1.18
1.29
1.23
1.05
1.13

.83
1.01

lterations Time

54

1.25

MathWorks

G|

lterations Time

5)
10
15
20
25
o0

100
200
300
400

53
52
52
42
20
18
16
13
11
10

1.18
1.29
1.23
1.05
1.13
70
70
.70
.83
1.01

) 4

lterations Time

106

37.08

Abortion

|G| Ilterations Time

5) 109
10 105
15 107
20 107
25 97
50 93
250 12
500 6

750 5
1000 5]

38.56
36.02
38.05
38.45
34.81
18.80

5.62

5.21
10.22
14.61

) 4

lterations Time

106

37.08

Abortion

G|

lterations Time

10
15
20
25
50
100
250
500
750
1000

109
105
107
107
97
93
13
12
6
5]
5]

38.56
36.02
38.05
38.45
34.81
18.80
5.18
5.62
5.21
10.22
14.61

) 4

lterations Time

92

91.78

Genetics

G|

lterations Time

10

20

50
100
250

1000
1500

91
92
71
25
19
13

5]
5]

88.22
92.12
72.53
25.42
20.72
14.97

17.76
31.84

) 4

lterations Time

92

91.78

Genetics

G|

lterations Time

10
20
50
100
250
500
1000
1500

91
92
71
25
19
13
7
5
5]

88.22
92.12
72.53
25.42
20.72
14.97
11.14
17.76
31.84

G

Large-Scale Implementation

— replacing 0 rows with v! takes too much storage.
— must be done implicitly in power method.

— direct vs. sparse methods

— how to do this accurately, and keep scale-free properties of
web

— need collections of the web over time.

) 4

Conclusions

First updating algorithm to handle both element— and state—updates.
Algorithm is very sensitive to partition.

For PageRank problem, partition can be determined cheaply from old
PageRanks.

For general Markov updating, use y5 to determine partition. When
too expensive, approximate adaptively with Aitken’s §2 or difference of
successive iterates.

Improvements
Practical
Optimize G-set
Accelerate Smoothing
Theoretical
Relationship between partitioning by yZ and \,(S-)
not well-understood.

Predict algorithm and partitioning by old 7/ will work very well on
other scale-free networks.

