Applying theory of Markov chains to the problem of ranking

A. Govan C. Meyer

Department of Mathematics North Carolina State University

First ACES workshop, December 2006

(日)

Overview of the Markov Chains

Ranking with Markov Chains - Google's PageRank

Ranking with Markov Chains - extending to Football

Summary

A. Govan, C. Meyer Applying theory of Markov chains to the problem of ranking

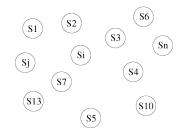
・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

Ranking with Markov Chains - Google's PageRank Ranking with Markov Chains - extending to Football Summary

Markov Chains Basics

States-finite:



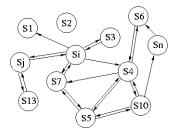
< □ > < □ > < □ > < □ > < □ >

4

Ranking with Markov Chains - Google's PageRank Ranking with Markov Chains - extending to Football Summary

Markov Chains Basics

Transitioning between states:



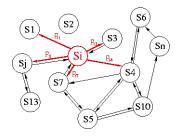
< □ > < □ > < □ > < □ > < □ >

-2

Ranking with Markov Chains - Google's PageRank Ranking with Markov Chains - extending to Football Summary

Markov Chains Basics

Transition probabilities:



-2

Markov Chains Basics-Probability

Restrictions on the transition probabilities:

Memoryless (Markov property)

▶
$$p_{i_i j} = P(X_{t+1} = S_j | X_t = S_{i_t}, X_{t-1} = S_{i_{t-1}}, ..., X_0 = S_{j_0}) = P(X_{t+1} = S_j | X_t = S_{i_t})$$

(日)

Markov Chains Basics-Probability

Restrictions on the transition probabilities:

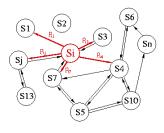
Memoryless (Markov property)

►
$$p_{i_i j} = P(X_{t+1} = S_j | X_t = S_{i_t}, X_{t-1} = S_{i_{t-1}}, ..., X_0 = S_{j_0}) = P(X_{t+1} = S_j | X_t = S_{i_t})$$

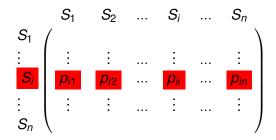
- Homogeneous
 - *p_{ij}* has no time dependence

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Markov Chains Basics-Matrices



Transition probability matrix-stochastic matrix



< 17 ×

Summary

Markov Chains-Stochastic Matrices

- Markov Chain:
 - ► {p(0), p(1), p(2), ...} such that p(i) is a probability distribution vector and p^T(i) = p^T(0)Pⁱ

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Overview of the Markov Chains Ranking with Markov Chains - Google's PageRank

Ranking with Markov Chains - Google's PageRank Ranking with Markov Chains - extending to Football Summary

Markov Chains-Stochastic Matrices

- Markov Chain:
 - ► { $\mathbf{p}(0), \mathbf{p}(1), \mathbf{p}(2), ...$ } such that $\mathbf{p}(i)$ is a probability distribution vector and $\mathbf{p}^{T}(i) = \mathbf{p}^{T}(0)\mathbf{P}^{i}$

some Stochastic Matrices are:

・ロト ・四ト ・ヨト ・ヨト

Ranking with Markov Chains - Google's PageRank Ranking with Markov Chains - extending to Football Summary

Markov Chains-Stochastic Matrices

- Markov Chain:
 - ► { $\mathbf{p}(0), \mathbf{p}(1), \mathbf{p}(2), ...$ } such that $\mathbf{p}(i)$ is a probability distribution vector and $\mathbf{p}^{T}(i) = \mathbf{p}^{T}(0)\mathbf{P}^{i}$
- some Stochastic Matrices are:
 - Irreducible
 - from any state to any state

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ranking with Markov Chains - Google's PageRank Ranking with Markov Chains - extending to Football Summary

Markov Chains-Stochastic Matrices

- Markov Chain:
 - ► { $\mathbf{p}(0), \mathbf{p}(1), \mathbf{p}(2), ...$ } such that $\mathbf{p}(i)$ is a probability distribution vector and $\mathbf{p}^{T}(i) = \mathbf{p}^{T}(0)\mathbf{P}^{i}$
- some Stochastic Matrices are:
 - Irreducible
 - from any state to any state
 - Primitive
 - $\lambda = 1$ is the only one on the spectral circle
 - can use power method to compute stationary distribution vector (eigenvector corresponding to λ = 1)

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Making Google Matrix

Webpages are states

A. Govan, C. Meyer Applying theory of Markov chains to the problem of ranking

-2

Making Google Matrix

- Webpages are states
- Hyperlink Matrix H

$$\mathbf{H}(i,j) = \begin{cases} 1/|i| & \text{there is a link from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-2

Making Google Matrix

- Webpages are states
- Hyperlink Matrix H
 - $\mathbf{H}(i,j) = \begin{cases} 1/|i| & \text{there is a link from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$
- Stochastic matrix S
 - ► Replace the zero rows of **H** with (1/n)e^T, where **e** is a column vector of ones.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Making Google Matrix

- Webpages are states
- Hyperlink Matrix H
 - $\mathbf{H}(i,j) = \begin{cases} 1/|i| & \text{there is a link from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$
- Stochastic matrix S
 - ► Replace the zero rows of **H** with (1/n)e^T, where **e** is a column vector of ones.
- Google Matrix G.
 - Convex combination: $\mathbf{G} = \alpha \mathbf{S} + (1 \alpha) \mathbf{e} \mathbf{v}^T$, $\alpha \in (0, 1)$ and $\mathbf{v}^T > \mathbf{0}$
 - Personalization vector v.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

PageRank vector π .

$$\mathbf{G} = lpha \mathbf{S} + (\mathbf{1} - lpha) \mathbf{e} \mathbf{v}^T$$

G is the transition probability matrix.

A. Govan, C. Meyer Applying theory of Markov chains to the problem of ranking

PageRank vector π .

$$\mathbf{G} = lpha \mathbf{S} + (\mathbf{1} - lpha) \mathbf{e} \mathbf{v}^T$$

- **G** is the transition probability matrix.
- **G** is irreducible (and primitive).

$$\boldsymbol{\pi}^{\mathsf{T}} = \boldsymbol{\pi}^{\mathsf{T}} \mathbf{G}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

PageRank vector π .

$$\mathbf{G} = lpha \mathbf{S} + (\mathbf{1} - lpha) \mathbf{e} \mathbf{v}^T$$

- G is the transition probability matrix.
- **G** is irreducible (and primitive).

$$\boldsymbol{\pi}^{\mathsf{T}} = \boldsymbol{\pi}^{\mathsf{T}} \mathbf{G}$$

• π is the stationary probability distribution vector.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

PageRank vector π .

$$\mathbf{G} = lpha \mathbf{S} + (\mathbf{1} - lpha) \mathbf{e} \mathbf{v}^T$$

- G is the transition probability matrix.
- **G** is irreducible (and primitive).

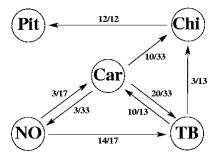
$$\boldsymbol{\pi}^{\mathsf{T}} = \boldsymbol{\pi}^{\mathsf{T}} \mathbf{G}$$

- π is the stationary probability distribution vector.
- π is unique (up to a scalar multiple).

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

NFL set up.





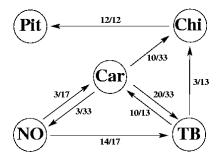
A. Govan, C. Meyer Applying theory of Markov chains to the problem of ranking

< □ > < □ > < □ > < □ > < □ >

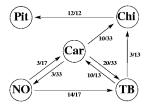
-2

NFL set up.

- Each NFL team is a state.
- Score differences determine transition probability



NFL Matrix

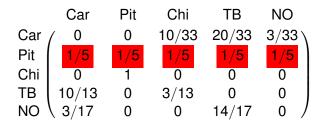


	Car	Pit	Chi	ΤВ	NO
Car	/ 0	0	<u>10</u> 33	20 33 0	$\begin{pmatrix} \frac{3}{33}\\ 0 \end{pmatrix}$
Pit	0	0	Õ	Õ	õ
Chi	0	1	0	0	0
ΤB	$\frac{10}{13}$	0	<u>3</u> 13	0	0
NO	$\sqrt{\frac{3}{17}}$	0	0	$\frac{14}{17}$	0/

2

NFL Matrix-Stochastic

Dealing with an undefeated team:



< 17 ▶

NFL Matrix-Irreducible and Primitive

Adding stats:

$$\mathbf{F} = \alpha \mathbf{S} + (\mathbf{1} - \alpha) \mathbf{e} \mathbf{s}^{\mathsf{T}}$$

where **s** is based on teams statistical data.

A. Govan, C. Meyer Applying theory of Markov chains to the problem of ranking

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

NFL Matrix-Irreducible and Primitive

Adding stats:

$$\mathbf{F} = \alpha \mathbf{S} + (1 - \alpha) \mathbf{es}^T$$

where **s** is based on teams statistical data.

Adding more stats?

$$\mathbf{F} = \alpha_0 \mathbf{S} + \alpha_1 \mathbf{e} \mathbf{s}_1^T + \dots + \alpha_k \mathbf{e} \mathbf{s}_k^T$$

where \mathbf{s}_i is statistics based and $\sum \alpha_i = 1$.

<ロト <回 > < 回 > < 回 > .

Current and Future Work:

- Determining the "important" statistics vectors $\mathbf{s}_1^T, ..., \mathbf{s}_k^T$
- Automate the selection of the best α_i for a specified s_i^T.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト