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Markov Chains Basics-Probability

Restrictions on the transition probabilities:
I Memoryless (Markov property)

I pit j = P(Xt+1 = Sj |Xt = Sit , Xt−1 = Sit−1 , ..., X0 = Sj0) =
P(Xt+1 = Sj |Xt = Sit )

I Homogeneous
I pij has no time dependence
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Markov Chains Basics-Matrices

Transition probability
matrix-stochastic matrix
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Markov Chains-Stochastic Matrices

I Markov Chain:
I {p(0), p(1), p(2), ...}

such that p(i) is a probability distribution vector and
pT (i) = pT (0)Pi

I some Stochastic Matrices are:

I Irreducible
I from any state to any state

I Primitive
I λ = 1 is the only one on the spectral circle
I can use power method to compute stationary distribution

vector (eigenvector corresponding to λ = 1)
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Making Google Matrix

I Webpages are states

I Hyperlink Matrix H

I H(i , j) =

{
1/|i | there is a link from i to j
0 otherwise

I Stochastic matrix S
I Replace the zero rows of H with (1/n)eT , where e is a

column vector of ones.
I Google Matrix G.

I Convex combination: G = αS + (1 − α)evT ,
α ∈ (0, 1) and vT > 0

I Personalization vector v.
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PageRank vector π.

G = αS + (1 − α)evT

I G is the transition probability matrix.

I G is irreducible (and primitive).

πT = πT G

I π is the stationary probability distribution vector.
I π is unique (up to a scalar multiple).
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NFL set up.

I Each NFL team is a
state.

I Score differences
determine transition
probability
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NFL Matrix



Car Pit Chi TB NO
Car 0 0 10

33
20
33

3
33

Pit 0 0 0 0 0
Chi 0 1 0 0 0
TB 10

13 0 3
13 0 0

NO 3
17 0 0 14

17 0
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NFL Matrix-Stochastic

Dealing with an undefeated team:



Car Pit Chi TB NO
Car 0 0 10/33 20/33 3/33
Pit 1/5 1/5 1/5 1/5 1/5
Chi 0 1 0 0 0
TB 10/13 0 3/13 0 0
NO 3/17 0 0 14/17 0
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NFL Matrix-Irreducible and Primitive

I Adding stats:
F = αS + (1 − α)esT

where s is based on teams statistical data.

I Adding more stats?

F = α0S + α1esT
1 + ... + αkesT

k

where si is statistics based and
∑

αi = 1.
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Current and Future Work:

I Determining the “important” statistics vectors sT
1 , ..., sT

k
I Automate the selection of the best αi for a specified sT

i .
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