
WebSearch
and Beyond

Carl Meyer

Department of Mathematics
North Carolina State University
Raleigh, NC

Institute Of Advanced Analytics

Raleigh, NC

April 14, 2010

Short History of IR

IR = search within doc. coll. for particular info. need (query)

B. C. cave paintings

12th cent. A.D. invention of paper, monks in scriptoriums

1450 Gutenberg’s printing press

1700s Franklin’s public libraries

1872 Dewey’s decimal system

Card catalog

1940s-1950s Computer

System for the Mechanical Analysis and Retrieval ofText

Gerard Salton

Harvard 1962 – 1965

Cornell 1965 – 1970

• Implemented on IBM 7094 & IBM 360

• Based on matrix methods

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count fij = # times term i appears in document j

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count fij = # times term i appears in document j

Term–Document Matrix

⎛
⎜⎜⎜⎝

Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

⎞
⎟⎟⎟⎠ = Am×n

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol

Susan Dumais’s Improvement

� Approximate A with a lower rank matrix

� Effect is to compress data in A

• 2 patents for Bell/Telcordia

— Computer information retrieval using latent semantic structure. U.S. Patent No.

4,839,853, June 13, 1989.

— Computerized cross-language document retrieval using latent semantic indexing.

U.S. Patent No. 5,301,109, April 5, 1994.

• LATENT SEMANTIC INDEXING

Latent Semantic Indexing
Use a finite Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Latent Semantic Indexing
Use a finite Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Latent Semantic Indexing
Use a finite Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

Latent Semantic Indexing
Use a finite Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— Doc2 forced closer to Doc1 =⇒ better chance of finding Doc2

Latent Semantic Indexing
Use a finite Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— Doc2 forced closer to Doc1 =⇒ better chance of finding Doc2

“Best” mathematical solution
— SVD: A = UDVT =

∑
σiuivT

i Zi = uivT
i

Strengths & Weaknesses
Pros

• Finds hidden connections

Strengths & Weaknesses
Pros

• Finds hidden connections

• Can be adapted to identify document clusters

— Data mining applications

Strengths & Weaknesses
Pros

• Finds hidden connections

• Can be adapted to identify document clusters

— Data mining applications

• Performs well on document collections that are

� Small + Homogeneous + Static

Strengths & Weaknesses
Pros

• Finds hidden connections

• Can be adapted to identify document clusters

— Data mining applications

• Performs well on document collections that are

� Small + Homogeneous + Static
Cons

• Rankings are query dependent

— Rank of each doc is recomputed for each query

Strengths & Weaknesses
Pros

• Finds hidden connections

• Can be adapted to identify document clusters

— Data mining applications

• Performs well on document collections that are

� Small + Homogeneous + Static
Cons

• Rankings are query dependent

— Rank of each doc is recomputed for each query

• Only semantic content used

— Susceptible to malicious manipulation

Strengths & Weaknesses
Pros

• Finds hidden connections

• Can be adapted to identify document clusters

— Data mining applications

• Performs well on document collections that are

� Small + Homogeneous + Static
Cons

• Rankings are query dependent

— Rank of each doc is recomputed for each query

• Only semantic content used

— Susceptible to malicious manipulation

• Difficult to add & delete documents

Strengths & Weaknesses
Pros

• Finds hidden connections

• Can be adapted to identify document clusters

— Data mining applications

• Performs well on document collections that are

� Small + Homogeneous + Static
Cons

• Rankings are query dependent

— Rank of each doc is recomputed for each query

• Only semantic content used

— Susceptible to malicious manipulation

• Difficult to add & delete documents

• Finding optimal compression requires empirical tuning

Web Documents
Different from other document collections

• It’s huge
– Billions of pages, where average page size ≥ 500KB

– Many-many times the size of Library of Congress print collection

Web Documents
Different from other document collections

• It’s huge
– Billions of pages, where average page size ≥ 500KB

– Many-many times the size of Library of Congress print collection

• It’s dynamic
– 40% of all pages change in a week

– 23% of .com pages change daily

– Billions of pages added each year

Web Documents
Different from other document collections

• It’s huge
– Billions of pages, where average page size ≥ 500KB

– Many-many times the size of Library of Congress print collection

• It’s dynamic
– 40% of all pages change in a week

– 23% of .com pages change daily

– Billions of pages added each year

• It’s self-organized
– No standards, review process, formats

– Errors, falsehoods, link rot, and spammers!

Web Documents
Different from other document collections

• It’s huge
– Billions of pages, where average page size ≥ 500KB

– Many-many times the size of Library of Congress print collection

• It’s dynamic
– 40% of all pages change in a week

– 23% of .com pages change daily

– Billions of pages added each year

• It’s self-organized
– No standards, review process, formats

– Errors, falsehoods, link rot, and spammers!

• It has many users
– Google alone processes more than 620 million queries per day

Web Search Components

Web Crawlers Software robots
gather web pages

Web Search Components

Web Crawlers Software robots
gather web pages

Doc Server Stores docs
and snippits

Web Search Components

Web Crawlers Software robots
gather web pages

Doc Server Stores docs
and snippits

Index Server

Scans pages and does term indexing
Terms −→ Pages (similar to book index)

The Ranking Module

• Measure the importance of each page

The Ranking Module

• Measure the importance of each page

• The measure should be Independent of any query

The Ranking Module

• Measure the importance of each page

• The measure should be Independent of any query

• Compute these measures off-line before queries are processed

The Ranking Module

• Measure the importance of each page

• The measure should be Independent of any query

• Compute these measures off-line before queries are processed

• Google’s PageRank c© distinguishes it from all competitors

— Primarily determined by the link structure of the Web

— Tempered by some content considerations

The Ranking Module

• Measure the importance of each page

• The measure should be Independent of any query

• Compute these measures off-line before queries are processed

• Google’s PageRank c© distinguishes it from all competitors

— Primarily determined by the link structure of the Web

— Tempered by some content considerations

Google’s PageRank = Google’s $$$$$

The Process

The Process

The Process

The Process

The Process

How To Measure “Importance”

Landmark Result Paper Survey Paper—Big Bib

How To Measure “Importance”

Landmark Result Paper Survey Paper—Big Bib

Authorities Hubs

How To Measure “Importance”

Landmark Result Paper Survey Paper—Big Bib

Authorities Hubs

• Good hubs point to good authorities

• Good authorities are pointed to by good hubs

HITS
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

HITS
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

HITS
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

• Define Authority Scores (on the first pass)

ai =
∑

j:Pj→Pi

hj

HITS
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

• Define Authority Scores (on the first pass)

ai =
∑

j:Pj→Pi

hj ⇒ a1 =

⎡
⎢⎢⎣

a1

a2...
an

⎤
⎥⎥⎦ = LTh0

Lij =
{

1 Pi → Pj

0 Pi �→ Pj

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

• a2 = LTh1

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

• a2 = LTh1

• h2 = La2

. . .

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

• a2 = LTh1

• h2 = La2

. . .
Combined Iterations

• A = LTL (authority matrix)

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

• a2 = LTh1

• h2 = La2

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1 → e-vector (direction)

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

• a2 = LTh1

• h2 = La2

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1 → e-vector (direction)

• H = LLT (hub matrix) hk = Hhk−1 → e-vector (direction)

HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

• a2 = LTh1

• h2 = La2

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1 → e-vector (direction)

• H = LLT (hub matrix) hk = Hhk−1 → e-vector (direction)

!! A lot of work !!

Compromise

1. Do direct query matching

Compromise

1. Do direct query matching

2. Build neighborhood graph

Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

Disadvantages

• Too much has to happen while client is waiting

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

• Scores can be manipulated by creating artificial hubs

HITS Applied

−→ −→

Wall Street Journal May 24, 2007

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P) that is not query dependent

� Off-line calculations — No query time computation

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P) that is not query dependent

� Off-line calculations — No query time computation

• Let the Web vote with in-links

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P) that is not query dependent

� Off-line calculations — No query time computation

• Let the Web vote with in-links

� But not by simple link counts

— One link to P from Yahoo! is important

— Many links to P from me is not

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P) that is not query dependent

� Off-line calculations — No query time computation

• Let the Web vote with in-links

� But not by simple link counts

— One link to P from Yahoo! is important

— Many links to P from me is not

• Share The Vote

� Yahoo! casts many “votes”

— value of vote from Yahoo! is diluted

� If Yahoo! “votes” for n pages

— Then P receives only r(Y)/n credit from Y

PageRank
Google’s Original Idea

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

PageRank
Google’s Original Idea

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

PageRank
Google’s Original Idea

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

PageRank
Google’s Original Idea

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

r2(Pi) =
∑

P∈BPi

r1(P)
|P |

PageRank
Google’s Original Idea

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

r2(Pi) =
∑

P∈BPi

r1(P)
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P)
|P |

In Matrix Notation

After Step k

— πT
k = [rk(P1), rk(P2), . . ., rk(Pn)]

In Matrix Notation

After Step k

— πT
k = [rk(P1), rk(P2), . . ., rk(Pn)]

— πT
k+1 = πT

k H where hij =
{

1/|Pi| if i → j

0 otherwise

In Matrix Notation

After Step k

— πT
k = [rk(P1), rk(P2), . . ., rk(Pn)]

— πT
k+1 = πT

k H where hij =
{

1/|Pi| if i → j

0 otherwise

— PageRank vector = πT = lim
k→∞

πT
k = eigenvector for H

πT = πTH

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1

P2

P3

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2

P3

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� A random walk on the Web Graph

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� A random walk on the Web Graph

� PageRank = πi = amount of time spent at Pi

Tiny Web

3

6 5

4

1

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� A random walk on the Web Graph

� PageRank = πi = amount of time spent at Pi

� Dead end page (nothing to click on) — a “dangling node”

Tiny Web

3

6 5

4

1

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� A random walk on the Web Graph

� PageRank = πi = amount of time spent at Pi

� Dead end page (nothing to click on) — a “dangling node”

� πT = (0,1,0,0,0,0) =⇒ Page P2 is a “rank sink”

The Fix
Allow Web Surfers To Make Random Jumps

The Fix
Allow Web Surfers To Make Random Jumps

— Replace zero rows with eT

n =
(

1

n
,
1

n
, . . . ,

1

n

)

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 1/6 1/6 1/6 1/6 1/6 1/6

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Nasty Problem
The Web Graph Is Not Strongly Connected

Nasty Problem
The Web Graph Is Not Strongly Connected

— i.e., S is a reducible matrix

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 1/6 1/6 1/6 1/6 1/6 1/6

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Irreducibility Is Not Enough

Could Get Trapped Into A Cycle

Pi → Pj → Pi

πT = (0 .. . 1/2 0 .. . 1/2 0 .. . 0)
↑ ↑
i j

The Google Fix
Allow A Random Jump From Any Page

— G = αS + (1 − α)E > 0, 0 < α < 1 (α ≈ .85)

E =
1

n

⎡
⎢⎢⎣

1 1 .. . 1
1 1 . . . 1...

...
. . .

...
1 1 . . . 1

⎤
⎥⎥⎦ πTG = πT

The Google Fix
Allow A Random Jump From Any Page

— G = αS + (1 − α)E > 0, 0 < α < 1 (α ≈ .85)

E =
1

n

⎡
⎢⎢⎣

1 1 .. . 1
1 1 . . . 1...

...
. . .

...
1 1 . . . 1

⎤
⎥⎥⎦ πTG = πT

E = uvT =

⎡
⎢⎢⎣

u1

u2...
un

⎤
⎥⎥⎦ [v1 v2

. . . vn] =

⎡
⎢⎢⎣

u1v1 u1v2
. . . u1vn

u2v1 u2v2
. . . u2vn...

...
. . .

...
unv1 unv2

. . . unvn

⎤
⎥⎥⎦

Personalization is Coming

Always Changing
PR Augmented With Content Scores For Final Rankings

“Metrics” Are Proprietary — But Known Examples

— Whether query terms appear in the title or the body

— Number of times query terms appear in a page

— Proximity of multiple query words to one another

— Appearance of query terms in a page (e.g., headings in bold font score higher)

— Content of neighboring web pages

Always Changing
PR Augmented With Content Scores For Final Rankings

“Metrics” Are Proprietary — But Known Examples

— Whether query terms appear in the title or the body

— Number of times query terms appear in a page

— Proximity of multiple query words to one another

— Appearance of query terms in a page (e.g., headings in bold font score higher)

— Content of neighboring web pages

Every Thursday Wired March 2010 http://www.wired.com

— Three dozen engineers, product managers, and executives make Google smarter

— This year (2010), Google plans to introduce about 550 improvements

Improvement History
Backrub [September 1997]

— Had run on Stanford servers for almost two years—renamed Google.

New algorithm [August 2001]

— Search algorithm completely revamped—incorporated additional ranking criteria

Local connectivity analysis [February 2003]

— Gives more weight to links from authoritative sites

Fritz [Summer 2003]

— Update the index constantly instead of in big batches

Personalization [June 2005]

— Mine search behavior to provide individualized results

Bigdaddy [December 2005]

— Engine update allows for more-comprehensive Web crawling

Universal search [May 2007]

— Provide links to any medium (image, news, books) on the same results page

Real-Time Search [December 2009]

— Results from Twitter and blogs as they are published

Conclusion

Google and PageRank Ixsx Changixnxgxed The World

Thank You

