WebSearch and Beyond

Carl Meyer

Department of Mathematics
North Carolina State University
Raleigh, NC
Institute Of Advanced Analytics
Raleigh, NC
April 14, 2010

Short History of IR

IR = search within doc. coll. for particular info. need (query)
B. C.
cave paintings
12th cent. A.D.
1450
1700s
1872
Dewey's decimal system
Card catalog
1940s-1950s
Computer

Harvard 1962 - 1965

Cornell 1965-1970

Gerard Salton

- Implemented on IBM 7094 \& IBM 360
- Based on matrix methods

Term-Document Matrices

Start with dictionary of terms Words or phrases (e.g., landing gear)

Term-Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document
Humans scour pages and mark key terms

Term-Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document
Humans scour pages and mark key terms
Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count $f_{i j}=$ \# times term i appears in document j
Term-Document Matrix

$$
\left.\begin{array}{ccccc}
& \text { Doc } 1 & \text { Doc } 2 & \cdots & \text { Doc } \mathrm{n} \\
\text { Term } 1 \\
\text { Term } 2 \\
\vdots \\
\text { Term m } \\
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \cdots & f_{m n}
\end{array}\right)=\boldsymbol{A}_{m \times n}
$$

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}\mathbf{1} & \text { if Term } i \text { is requested } \\ \mathbf{0} & \text { if not }\end{cases}
$$

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?

i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?

i.e., how close is q to each column \mathbf{A}_{i} ?

Use $\delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?
i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

$$
\text { Use } \delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}
$$

Rank documents by size of δ_{i}
Return Document i to user when $\delta_{i} \geq$ tol

Susan Dumais's Improvement

\triangleright Approximate A with a lower rank matrix
\triangleright Effect is to compress data in \mathbf{A}

2 patents for Bell/Telcordia

- Computer information retrieval using latent semantic structure. U.S. Patent No. 4,839,853, June 13, 1989.
- Computerized cross-language document retrieval using latent semantic indexing. U.S. Patent No. 5,301,109, April 5, 1994.
- LATENT SEMANTIC INDEXING

Latent Semantic Indexing

Use a finite Fourier expansion of \mathbf{A}

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{\mathbf{2}}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Latent Semantic Indexing

Use a finite Fourier expansion of A

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$

- Project \mathbf{A} onto span $\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Latent Semantic Indexing

Use a finite Fourier expansion of \mathbf{A}

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$

- Project \mathbf{A} onto span $\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Truncate: $\quad \mathbf{A}_{k}=P(\mathbf{A})=\sigma_{1} \mathbf{Z}_{1}+\sigma_{2} \mathbf{Z}_{2}+\cdots+\sigma_{k} \mathbf{Z}_{k}$

Latent Semantic Indexing

Use a finite Fourier expansion of A

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$

- Project \mathbf{A} onto $\operatorname{span}\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Truncate: $\quad \mathbf{A}_{k}=P(\mathbf{A})=\sigma_{1} \mathbf{Z}_{1}+\sigma_{2} \mathbf{Z}_{2}+\cdots+\sigma_{k} \mathbf{Z}_{k}$
LSI: Query matching with \mathbf{A}_{k} in place of \mathbf{A}

- $D o c_{2}$ forced closer to $D o c_{1} \Longrightarrow$ better chance of finding $D o c_{2}$

Latent Semantic Indexing

Use a finite Fourier expansion of \mathbf{A}

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$

- Project \mathbf{A} onto $\operatorname{span}\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Truncate: $\quad \mathbf{A}_{k}=P(\mathbf{A})=\sigma_{1} \mathbf{Z}_{1}+\sigma_{2} \mathbf{Z}_{2}+\cdots+\sigma_{k} \mathbf{Z}_{k}$
LSI: Query matching with \mathbb{A}_{k} in place of \mathbb{A}

- $D o c_{2}$ forced closer to $D o c_{1} \Longrightarrow$ better chance of finding $D o c_{2}$
"Best" mathematical solution
- SVD: $\mathbf{A}=\mathbf{U D V}{ }^{T}=\sum \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad \mathbf{Z}_{i}=\mathbf{u}_{i} \mathbf{v}_{i}^{T}$

Strengths \& Weaknesses

Pros

- Finds hidden connections

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters
- Data mining applications

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters
- Data mining applications
- Performs well on document collections that are
\triangleright Small + Homogeneous + Static

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters
- Data mining applications
- Performs well on document collections that are
\triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters
- Data mining applications
- Performs well on document collections that are \triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query
- Only semantic content used
- Susceptible to malicious manipulation

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters
- Data mining applications
- Performs well on document collections that are \triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query
- Only semantic content used
- Susceptible to malicious manipulation
- Difficult to add \& delete documents

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters
- Data mining applications
- Performs well on document collections that are \triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query
- Only semantic content used
- Susceptible to malicious manipulation
- Difficult to add \& delete documents
- Finding optimal compression requires empirical tuning

Web Documents

Different from other document collections

- It's huge
- Billions of pages, where average page size $\geq 500 \mathrm{~KB}$
- Many-many times the size of Library of Congress print collection

Web Documents

Different from other document collections

- It's huge
- Billions of pages, where average page size $\geq 500 \mathrm{~KB}$
- Many-many times the size of Library of Congress print collection
- It's dynamic
- 40% of all pages change in a week
- 23% of .com pages change daily
- Billions of pages added each year

Web Documents

Different from other document collections

- It's huge
- Billions of pages, where average page size $\geq 500 \mathrm{~KB}$
- Many-many times the size of Library of Congress print collection
- It's dynamic
- 40% of all pages change in a week
- 23% of.$c o m$ pages change daily
- Billions of pages added each year
- It's self-organized
- No standards, review process, formats
- Errors, falsehoods, link rot, and spammers!

Web Documents

Different from other document collections

- It's huge
- Billions of pages, where average page size $\geq 500 \mathrm{~KB}$
- Many-many times the size of Library of Congress print collection
- It's dynamic
- 40% of all pages change in a week
- 23% of.$c o m$ pages change daily
- Billions of pages added each year
- It's self-organized
- No standards, review process, formats
- Errors, falsehoods, link rot, and spammers!
- It has many users
- Google alone processes more than 620 million queries per day

Web Search Components

Web Crawlers

Software robots gather web pages

Web Search Components

Web Crawlers

Software robots gather web pages

Stores docs and snippits

Web Search Components

Web Crawlers

Software robots gather web pages

Stores docs and snippits

Doc Server

Index Server

Scans pages and does term indexing Terms \longrightarrow Pages (similar to book index)

The Ranking Module

- Measure the importance of each page

The Ranking Module

- Measure the importance of each page

The measure should be Independent of any query

The Ranking Module

- Measure the importance of each page

- The measure should be Independent of any query
- Compute these measures off-line before queries are processed

The Ranking Module

- Measure the importance of each page

- The measure should be Independent of any query
- Compute these measures off-line before queries are processed
- Google's PageRank ${ }^{\text {© }}$ distinguishes it from all competitors
- Primarily determined by the link structure of the Web
- Tempered by some content considerations

The Ranking Module

- Measure the importance of each page

- The measure should be Independent of any query
- Compute these measures off-line before queries are processed
- Google's PageRank ${ }^{\text {© }}$ distinguishes it from all competitors
- Primarily determined by the link structure of the Web
- Tempered by some content considerations

Google's PageRank = Google's \$\$\$\$\$

The Process

Web Server

The Process

The Process

The Process

The Process

Search

1.8 million

Google shares given to Stanford University for an exclusive license of the PageRank patent (owned by the university). They were sold in 2005 for $\$ 336$ million.

Daily page views for Google.com

7.2.

Monthly worldwide searches on Google sites 87,

Daily visitors to Google.com 620

Google.com's global website ranking

1
The amount of data processed daily by Google 20_{n}

Google Search support for fictional languages:

Leetspeak (H4xOr), Klingon, Pig Latin, Elmer Fudd and Bork, bork, bork!

Take Your Pick

Amount of Internet search results that Web surfers typically scan before selecting one

*Top results without reading through the whole page Note: Sample size is 2,369 people Sources: JupiterResearch; iProspect

Web Images Video News Maps moren
business intelligence Search Advanced Search Preferences

Web

SAS Business Intelligence

www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages
Business Intelligence .com :: The Resource for Business Intelligence
The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages

Business Intelligence and Performance Management Software ...

Business intelligence and business performance management software. Reporting,
analytics software, budgeting software, balanced scorecard software, ...
\pm Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ - 18k - Cached - Similar pages

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{\text {me }}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive
www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How. www.Sybase.com
$\pi \mathrm{BOO}$

Web Images Video News Maps moren

business intelligence Search Advanced Sear
WebResults 1 - 10 of about $122,000,000$ for business intelligence. (0.10 seconds)

SAS Business Intelligence

www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages
Business Intelligence .com :: The Resource for Business Intelligence
The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages
Business Intelligence and Performance Management Software ...
Business intelligence and business performance management software. Reporting,
analytics software, budgeting software, balanced scorecard software, ...
\oplus Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business_intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ - 18k - Cached - Similar pages
Intelligent Enternrise: Better Insiaht for Business Decisions

Sponsored Links

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{\text {Th }}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive
www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How.
www. Svbase.com

Web Images Video News Maps moren
business intelligence
Advanced Search Preferences

Web

Results 1-10 of about 122,000,000 for business intelligence. (0.10 seconds)

SAS Business Intelligence

Sponsored Link
www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages
Business Intelligence .com:: The Resource for Business Intelligence
The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages

Business Intelligence and Performance Management Software ...

Business intelligence and business performance management software. Reporting,
analytics software, budgeting software, balanced scorecard software, ...
\pm Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business_intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ - 18k - Cached - Similar pages
Intelligent Enternrise: Better Insiaht for Business Decisions

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{\text {the }}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How. www.Sybase.com

Money

\$2,718,281,828

The target for Google's IPO on April 29, 2004. This somewhat strange number is the equivalent of the mathematical constant e in billions ($\mathbf{e} \approx \mathbf{2 . 7 1 8 2 8 1 8 2 8}$).

Web Images Video News Maps moren
business intelligence Search Advanced Search Preferences

Web

SAS Business Intelligence

www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages
Business Intelligence .com :: The Resource for Business Intelligence
The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages

Business Intelligence and Performance Management Software ...

Business intelligence and business performance management software. Reporting,
analytics software, budgeting software, balanced scorecard software, ...
\pm Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ - 18k - Cached - Similar pages

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{\text {me }}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive
www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How. www.Sybase.com

How To Measure "Importance"

Landmark Result Paper

Survey Paper—Big Bib

How To Measure "Importance"

Landmark Result Paper

Authorities

Survey Paper-Big Bib

Hubs

How To Measure "Importance"

Landmark Result Paper

Authorities

Survey Paper-Big Bib

Hubs

- Good hubs point to good authorities
- Good authorities are pointed to by good hubs

HITS

Determine Authority \& Hub Scores

Jon Kleinberg

- $h_{i}=$ hub score for P_{i}

HITS

Hypertext Induced Topic Search (1998)

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i}

Jon Kleinberg

- $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}=1$ for all pages $P_{i} \Rightarrow \mathbf{h}_{0}=$
$\Rightarrow h_{0}=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]$

HITS

Hypertext Induced Topic Search (1998)

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i}
- $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}=1$ for all pages $P_{i} \Rightarrow \mathbf{h}_{0}=$
- Define Authority Scores (on the first pass)

Jon Kleinberg

$$
a_{i}=\sum_{j: P_{j} \rightarrow P_{i}} h_{j}
$$

HITS

Hypertext Induced Topic Search (1998)

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i}
- $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}=1$ for all pages $P_{i} \Rightarrow \mathbf{h}_{0}=$
- Define Authority Scores (on the first pass)

Jon Kleinberg
$\Rightarrow \quad h_{0}=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]$

$$
a_{i}=\sum_{j: P_{j} \rightarrow P_{i}} h_{j} \Rightarrow \mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
a_{\mathbf{1}} \\
a_{\mathbf{2}} \\
\vdots \\
a_{n}
\end{array}\right]=\mathbf{L}^{T} \mathbf{h}_{\mathbf{0}} \quad \begin{aligned}
& L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\
\mathbf{0} & P_{i} \nrightarrow P_{j}\end{cases}
\end{aligned}
$$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L} \mathbf{a}_{\mathbf{1}} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ \mathbf{0} & P_{i} \nrightarrow P_{j}\end{cases}
$$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L} \mathbf{a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$
- $\mathbf{h}_{1}=\mathbf{L a}_{1}$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\boldsymbol{L}^{T} \mathbf{h}_{0}$
- $\mathbf{h}_{1}=\mathbf{L a}_{1}$
$\mathbf{a}_{\mathbf{2}}=\boldsymbol{L}^{T} \mathbf{h}_{1}$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

$$
\begin{aligned}
\bullet \mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0} & \\
\qquad \circ \mathbf{h}_{1}=L \mathbf{a}_{1} & \\
& \bullet \mathbf{a}_{2}=\mathbf{L}^{T} \mathbf{h}_{1} \\
& \circ \mathbf{h}_{\mathbf{2}}=\mathbf{L} \mathbf{a}_{\mathbf{2}}
\end{aligned}
$$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L} \mathbf{a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$
- $\mathbf{h}_{1}=L \mathbf{a}_{1}$

$$
\mathbf{a}_{\mathbf{2}}=\mathbf{L}^{T} \mathbf{h}_{1}
$$

- $h_{2}=L a_{2}$

Combined Iterations

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L}$ (authority matrix)

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{\mathbf{1}}=\mathbf{L}^{T} \mathbf{h}_{\mathbf{0}}$
- $h_{1}=L \mathbf{a}_{1}$

$$
\mathbf{a}_{\mathbf{2}}=\mathbf{L}^{T} \mathbf{h}_{1}
$$

- $h_{2}=L a_{2}$

Combined Iterations

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L}$ (authority matrix) $\quad \mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-1} \rightarrow \mathbf{e}$-vector (direction)

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{\mathbf{1}}=\mathbf{L}^{T} \mathbf{h}_{\mathbf{0}}$
- $\mathbf{h}_{1}=L \mathbf{a}_{1}$

$$
\mathbf{a}_{\mathbf{2}}=\mathbf{L}^{T} \mathbf{h}_{1}
$$

- $h_{2}=L a_{2}$

Combined Iterations

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L}$ (authority matrix) $\quad \mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-\mathbf{1}} \rightarrow \mathbf{e}$-vector
- $\mathbf{H}=\mathbf{L} \mathbf{L}^{T}$ (hub matrix) $\quad \mathbf{h}_{k}=\mathbf{H h}_{k-1} \rightarrow \mathbf{e}$-vector

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L} \mathbf{a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

$$
\text { - } \mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}
$$

$$
\begin{aligned}
\bullet \mathbf{h}_{1}= & \mathbf{L} \mathbf{a}_{1} \\
& \bullet \mathbf{a}_{2}=\mathbf{L}^{T} \mathbf{h}_{1} \\
& \bullet \mathbf{h}_{2}=\mathbf{L a}_{\mathbf{2}}
\end{aligned}
$$

Combined Iterations

$$
\begin{array}{ll}
\text { - } \mathbf{A}=\mathbf{L}^{T} \mathbf{L} \text { (authority matrix) } & \mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-1} \rightarrow \mathbf{e} \text {-vector } \\
\text { - } \mathbf{H}=\mathbf{L L}^{T} \text { (hub matrix) } & \mathbf{h}_{k}=\mathbf{H h}_{k-1} \rightarrow \text { e-vector } \\
\text { (direction) }
\end{array}
$$

Compromise

1. Do direct query matching

Compromise

1. Do direct query matching

2. Build neighborhood graph

Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority \& hub scores for just the neighborhood

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores

Pros \& Cons

Advantages

- Returns satisfactory results

- Client gets both authority \& hub scores

Disadvantages

- Too much has to happen while client is waiting

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores

Disadvantages

- Too much has to happen while client is waiting
- Custom built neighborhood graph needed for each query

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores

Disadvantages

- Too much has to happen while client is waiting
- Custom built neighborhood graph needed for each query
- Two eigenvector computations needed for each query

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores

Disadvantages

- Too much has to happen while client is waiting
- Custom built neighborhood graph needed for each query
- Two eigenvector computations needed for each query
- Scores can be manipulated by creating artificial hubs

HITS Applied

Google's PageRank

(Lawrence Page \& Sergey Brin 1998)
The Google Goals

- Create a PageRank $r(P)$ that is not query dependent
\triangleright Off-line calculations - No query time computation

Google's PageRank

(Lawrence Page \& Sergey Brin 1998)
The Google Goals

- Create a PageRank $r(P)$ that is not query dependent \triangleright Off-line calculations - No query time computation

Let the Web vote with in-links

Google's PageRank

(Lawrence Page \& Sergey Brin 1998)
The Google Goals

- Create a PageRank r(P) that is not query dependent
\triangleright Off-line calculations - No query time computation
- Let the Web vote with in-links
\triangleright But not by simple link counts
- One link to P from Yahoo! is important
- Many links to P from me is not

Google's PageRank

The Google Goals

- Create a PageRank r(P) that is not query dependent
\triangleright Off-line calculations - No query time computation
- Let the Web vote with in-links
\triangleright But not by simple link counts
- One link to P from Yahoo! is important
- Many links to P from me is not
- Share The Vote
\triangleright Yahoo! casts many "votes"
- value of vote from Yahoo! is diluted
\triangleright If Yahoo! "votes" for n pages
- Then P receives only $r(Y) / n$ credit from Y

PageRank

Google's Original Idea

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

PageRank

Google's Original Idea

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P
Successive Refinement
Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$

PageRank

Google's Original Idea

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
Iteratively refine rankings for each page

$$
r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|}
$$

PageRank

Google's Original Idea

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
Iteratively refine rankings for each page

$$
\begin{aligned}
r_{1}\left(P_{i}\right)= & \sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|}
\end{aligned}
$$

PageRank

Google's Original Idea

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$ Iteratively refine rankings for each page

$$
\begin{gathered}
r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|} \\
\ddots \\
\\
\quad r_{j+1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{j}(P)}{|P|}
\end{gathered}
$$

In Matrix Notation

After Step k

$$
-\pi_{k}^{T}=\left[r_{k}\left(P_{1}\right), r_{k}\left(P_{2}\right), \cdots, r_{k}\left(P_{n}\right)\right]
$$

In Matrix Notation

After Step k

$$
\begin{aligned}
& -\pi_{k}^{T}=\left[r_{k}\left(P_{1}\right), r_{k}\left(P_{2}\right), \cdots, r_{k}\left(P_{n}\right)\right] \\
& \text { - } \boldsymbol{\pi}_{k+1}^{T}=\boldsymbol{\pi}_{k}^{T} \mathbf{H} \quad \text { where } \quad h_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\
\mathbf{0} & \text { otherwise }\end{cases}
\end{aligned}
$$

In Matrix Notation

After Step k

$$
\begin{aligned}
& \text { - } \boldsymbol{\pi}_{k}^{T}=\left[r_{k}\left(P_{1}\right), r_{k}\left(P_{2}\right), \cdots, r_{k}\left(P_{n}\right)\right] \\
& \text { - } \boldsymbol{\pi}_{k+1}^{T}=\boldsymbol{\pi}_{k}^{T} \mathbf{H} \quad \text { where } \quad h_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- PageRank vector $=\boldsymbol{\pi}^{T}=\lim _{k \rightarrow \infty} \pi_{k}^{T}=$ eigenvector for \mathbf{H}

$$
\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{H}
$$

Tiny Web

Tiny Web

\triangleright A random walk on the Web Graph

Tiny Web

(2)
\triangleright A random walk on the Web Graph
\triangleright PageRank $=\pi_{i}=$ amount of time spent at P_{i}

Tiny Web

\triangleright Dead end page (nothing to click on) — a "dangling node"

Tiny Web

The Fix

Allow Web Surfers To Make Random Jumps

The Fix

Allow Web Surfers To Make Random Jumps

- Replace zero rows with $\frac{\mathbf{e}^{T}}{n}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$

$$
\mathbf{S}=\begin{gathered}
\\
P_{1} \\
P_{2} \\
P_{\mathbf{3}} \\
P_{4} \\
P_{5} \\
P_{6}
\end{gathered}\left(\begin{array}{cccccc}
P_{1} & P_{\mathbf{2}} & P_{\mathbf{3}} & P_{4} & P_{5} & P_{6} \\
\mathbf{0} & \mathbf{1} / \mathbf{2} & \mathbf{1} / \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
\mathbf{1 / 3} & \mathbf{1 / 3} & \mathbf{0} & \mathbf{0} & \mathbf{1 / 3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1 / 2} & \mathbf{1 / 2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1 / 2} & \mathbf{0} & \mathbf{1 / 2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

Nasty Problem

The Web Graph Is Not Strongly Connected

Nasty Problem

The Web Graph Is Not Strongly Connected

- i.e., S is a reducible matrix

$\mathrm{S}=$| |
| :---: |
| P_{1} |
| P_{2} |
| P_{3} |
| P_{4} |
| P_{5} |
| P_{6} |\(\left(\begin{array}{cccccc}P_{1} \& P_{2} \& P_{3} \& P_{4} \& P_{5} \& P_{6}

0 \& 1 / 2 \& 1 / 2 \& 0 \& 0 \& 0

1 / 6 \& 1 / 6 \& 1 / 6 \& 1 / 6 \& 1 / 6 \& 1 / 6

1 / 3 \& 1 / 3 \& 0 \& 0 \& 1 / 3 \& 0

0 \& 0 \& 0 \& 0 \& 1 / 2 \& 1 / 2

0 \& 0 \& 0 \& 1 / 2 \& 0 \& 1 / 2

0 \& 0 \& 1 \& 0 \& 0\end{array}\right)\)

Irreducibility Is Not Enough

Could Get Trapped Into A Cycle

$$
\begin{gathered}
P_{i} \rightarrow P_{j} \rightarrow P_{i} \\
\pi^{T}=\left(\begin{array}{llcllllll}
0 & \cdots & 1 / 2 & 0 & \cdots & 1 / 2 & 0 & \cdots & 0
\end{array}\right) \\
\\
\\
\\
\\
\\
i
\end{gathered}
$$

The Google Fix

Allow A Random Jump From Any Page

$$
\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>\mathbf{0}, \quad \mathbf{0}<\alpha<\mathbf{1}
$$

$$
\mathbf{E}=\frac{1}{n}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right] \quad \boldsymbol{\pi}^{T} \mathbf{G}=\boldsymbol{\pi}^{T}
$$

The Google Fix

Allow A Random Jump From Any Page

$$
\begin{gathered}
-\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>\mathbf{0}, \quad \mathbf{0}<\alpha<\mathbf{1} \\
\mathbf{E}=\frac{1}{n}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right] \quad \boldsymbol{\pi}^{T} \mathbf{G}=\boldsymbol{\pi}^{T} \\
\mathbf{E}=\mathbf{u v}^{T}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{cccc}
u_{1} v_{1} & u_{1} v_{2} & \cdots & u_{1} v_{n} \\
u_{2} v_{1} & u_{2} v_{2} & \cdots & u_{2} v_{n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n} v_{1} & u_{n} v_{2} & \cdots & u_{n} v_{n}
\end{array}\right]
\end{gathered}
$$

Personalization is Coming

The Wall Street Journal
 Search Engines Seek to Get Inside Your Head

Google, Others Start to Comb Users' Online Habits to Tailor Results to Personal Interests

By Jessica E. Vascellaro

And Kevin J. Delaney

SEARCH ENGINES have long generated the same results for queries whether the person searching was a mom, mathematician or movie star. Now, who you are and what you're interested in is starting to affect the outcome of your search.

Google Inc. and a wide range of start-ups are trying to translate factors like where you live, the ads you click on and the types of restaurants you search for into more-relevant search results. A chef who searched for "beef," for example, might be more likely to find recipes than encyclopedia

entries about livestock. And a film buff who searched for a new movie might see detailed articles about the making of the film, rather than ticket-buying sites.

Google has been enhancing and more widely deploying its search-personalization technology. Within coming weeks, Google users who are logged in will begin having their search results reordered based oninformationthey have provided to Google. For instance, they may have entered a city to receive weather forecasts on a personalized Google home page. As a result, a user in New York who types in "Giants" might see higher search results for the football team than a user in San Francisco, who might be more interested in the Giants baseball team.

Consumers who use its Web-history service to track previous search queries currently get results that are influenced by those queries and the sites they have clicked on. The company plans eventually to offer personalization based on a user's Web-browsing history-including sites people visited without going through Google-when users agree to let Google track it.

Also, within three to five years, Google will
Please turn to page D8

Always Changing

PR Augmented With Content Scores For Final Rankings

"Metrics" Are Proprietary — But Known Examples

- Whether query terms appear in the title or the body
- Number of times query terms appear in a page
- Proximity of multiple query words to one another
- Appearance of query terms in a page (e.g., headings in bold font score higher)
- Content of neighboring web pages

Always Changing

PR Augmented With Content Scores For Final Rankings

"Metrics" Are Proprietary — But Known Examples

- Whether query terms appear in the titte or the body
- Number of times query terms appear in a page
- Proximity of multiple query words to one another
- Appearance of query terms in a page (e.g., headings in bold font score higher)
- Content of neighboring web pages

Every Thursday

- Three dozen engineers, product managers, and executives make Google smarter
- This year (2010), Google plans to introduce about 550 improvements

Improvement History

Backrub [September 1997]

- Had run on Stanford servers for almost two years-renamed Google.

New algorithm [August 2001]

- Search algorithm completely revamped-incorporated additional ranking criteria

Local connectivity analysis [February 2003]

- Gives more weight to links from authoritative sites

Fritz [Summer 2003]

- Update the index constantly instead of in big batches

Personalization [June 2005]

- Mine search behavior to provide individualized results

Bigdaddy [December 2005]

- Engine update allows for more-comprehensive Web crawling

Universal search [May 2007]

- Provide links to any medium (image, news, books) on the same results page

Real-Time Search [December 2009]

- Results from Twitter and blogs as they are published

Conclusion

Google and PageRank is Changinged The World

Thank You

