Ranking National Football League Teams Using Google's PageRank.

A. Govan C. Meyer R. Albright

North Carolina State University, SAS Institute Inc.

INFORMS Annual Meeting, November 2007

Outline of PageRank

•
$$\mathbf{G} = \alpha [\mathbf{H} + (1/n)\mathbf{a}\mathbf{e}^T] + (1-\alpha)\mathbf{e}\mathbf{v}^T$$

- H is a hyperlink matrix,
- $0 < \alpha < 1$, e is a vector of 1's
- $\mathbf{a}_i = 0$ if \mathbf{H}_i^T is nonzero and $\mathbf{a}_i = 1$ otherwise,
- $\mathbf{v} > 0$ is a probability distribution vector.
- The vector containing the ratings of each web page is *π* such that

$$oldsymbol{\pi}^T = oldsymbol{\pi}^T \mathbf{G}$$

Use rating scores in π to rank web pages.

Generalizing PageRank, GeM

$$\bullet \mathbf{G} = \alpha_0 \mathbf{S}_0 + \alpha_1 \mathbf{S}_1 + \dots + \alpha_p \mathbf{S}_p$$

 Each S_i is stochastic (derived from sports statistics),

•
$$0 \le \alpha_i \le 1$$
 and $\Sigma \alpha_i = 1$.

 The vector π contains the rating scores of each team, such that

$$\boldsymbol{\pi}^T = \boldsymbol{\pi}^T \mathbf{G}$$

Use rating scores in π to rank teams.

Gem1 - Basic model

$\mathbf{G} = \alpha [\mathbf{H} + \mathbf{a} \mathbf{u}^T] + (1 - \alpha) \mathbf{e} \mathbf{e}^T$

- $0 < \alpha < 1$,
- H is based on game scores,
- $\mathbf{a}_i = 0$ if row *i* of H is nonzero and $\mathbf{a}_i = 1$ otherwise,

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

• **u** is a probability distribution.

Gem2 - Feature vectors model

$$\mathbf{G} = \alpha_0 [\mathbf{H} + \mathbf{a} \mathbf{u}^T] + \alpha_1 \mathbf{e} \mathbf{v}_1^T + \dots + \alpha_p \mathbf{e} \mathbf{v}_p^T$$

•
$$0 \le \alpha_i \le 1$$
, $\Sigma \alpha_i = 1$.

- H is derived using game scores,
- $\mathbf{a}_i = 0$ if row *i* of H is nonzero and $\mathbf{a}_i = 1$ otherwise,
- \mathbf{u} and \mathbf{v}_i are probability distribution vectors.
- Compute v_i using nonnegative matrix factorization of a matrix containing all of the statistics.

Gem3 - Offense-defense model

$$\mathbf{G} = \alpha_0 [\mathbf{H} + \mathbf{a} \mathbf{u}^T] + \alpha_1 \mathbf{e} \mathbf{o}^T + \alpha_2 \mathbf{e} \mathbf{d}^T$$

•
$$0 \le \alpha_i \le 1$$
, $\Sigma \alpha_i = 1$,

- H is derived using game scores.
- $\mathbf{a}_i = 0$ if row *i* of **H** is nonzero and $\mathbf{a}_i = 1$ otherwise,
- u is a probability distribution vector.
- Compute offense vector o and defense vector d using modified HITS.

Gem4 - Feature matrices model

$$\mathbf{G} = \alpha_0 [\mathbf{H}_0 + \mathbf{a}_0 \mathbf{u}_0^T] + \dots + \alpha_p [\mathbf{H}_p + \mathbf{a}_p \mathbf{u}_p^T]$$

•
$$0 \le \alpha \le 1$$
, $\Sigma \alpha_i = 1$,

- H_j is derived using statistic j (e.g. scores, yards, etc.),
- $\mathbf{a}_{i_j} = 0$ if row i of \mathbf{H}_j is nonzero and $\mathbf{a}_{i_j} = 1$ otherwise,

• **u**_{*i*} is a probability distribution vector.

Game Prediction Results

Results of NFL game predictions.

