
ReorderingandUpdating
for the

PageRankProblem

Amy Langville
Carl Meyer

Department of Mathematics
North Carolina State University Bertinoro, Italy
Raleigh, NC Mathematics of Web Search 6/23/04

Outline

• PageRank Solution Methods

• A Reordering for PageRank

• Updating PageRank

Google
Indexing

• Must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl,
Ranking

• Determine a “PageRank” for each page Pi, Pj, Pk, Pl, . . .
Query independent — Based only on link structure

• Query matching
Q = Term1, T erm2, . . . produces Pi, Pj, Pk, Pl, . . .

• Return Pi, Pj, Pk, Pl, . . . to user in order of PageRank

Google’s PageRank Idea
(Sergey Brin & Lawrence Page 1998)

• Rankings are not query dependent

Depend only on link structure

Off-line calculations

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

One link to P from Yahoo! is important

Many links to P from me is not

• Yahoo! points many places — value of link to P is diluted

PageRank
The Definition

r(P) =
∑

P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

r2(Pi) =
∑

P∈BPi

r1(P)
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P)
|P |

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

πT
j+1 = πT

j P where pij =
{

1/|Pi| if i → j

0 otherwise
PageRank = lim

j→∞
πT

j = πT
(provided limit exists)

It’s Almost a Markov Chain

P has row sums = 1 for ND nodes, row sums = 0 for D nodes

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

πT
j+1 = πT

j P where pij =
{

1/|Pi| if i → j

0 otherwise
PageRank = lim

j→∞
πT

j = πT
(provided limit exists)

It’s Almost a Markov Chain

P has row sums = 1 for ND nodes, row sums = 0 for D nodes

Stochasticity Fix: P̄ = P + avT . (ai=1 for i∈D, 0, o.w.)

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

πT
j+1 = πT

j P where pij =
{

1/|Pi| if i → j

0 otherwise
PageRank = lim

j→∞
πT

j = πT
(provided limit exists)

It’s Almost a Markov Chain

P has row sums = 1 for ND nodes, row sums = 0 for D nodes

Stochasticity Fix: P̄ = P + avT . (ai=1 for i∈D, 0, o.w.)

Each πT
j is a probability distribution vector

(∑
i
rj(Pi)=1

)

πT
j+1 = πT

j P̄ is random walk on the graph defined by links

πT = lim
j→∞

πT
j = stationary probability distribution

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) (πT not well defined)

Could get trapped into a cycle (Pi → Pj → Pi) (No convergence)

Convergence
Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Irreducibility Fix: ¯̄P = αP̄ + (1 − α)E eij = 1/n α ≈ .85

¯̄P = αP + α a vT + (1 − α)E

Different E = evT and α allow customization & speedup,

yet rank-one update maintained; ¯̄P = αP+(α a+(1−α) e)vT

Computing πT

A Big Problem

Solve πT = πT ¯̄P (stationary distribution vector)

πT (I − ¯̄P) = 0 (too big for direct solves)

Computing πT

A Big Problem

Solve πT = πT ¯̄P (stationary distribution vector)

πT (I − ¯̄P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j

¯̄P (power method)

Power Method to compute PageRank

πT
0 = eT/n

until convergence, do

πT
j+1 = πT

j
¯̄P (dense computation)

end

Power Method to compute PageRank

πT
0 = eT/n

until convergence, do

X πT
j+1 = πT

j
¯̄P (dense computation)

• πT
j+1 = α πT

j P̄ + (1 − α) πT
j e vT (sparser computation)

end

Power Method to compute PageRank

πT
0 = eT/n

until convergence, do

X πT
j+1 = πT

j
¯̄P (dense computation)

X πT
j+1 = α πT

j P̄ + (1 − α) πT
j e vT (sparser computation)

• πT
j+1 = α πT

j P + (α πT
j a + (1− α)) vT (even less computation)

end

• P is very, very sparse with about 3-10 nonzeros per row.

• ⇒ one vector-matrix mult. is O(nnz(P)) ≈ O(n).

Convergence

Can prove λ2(¯̄P) = α

(⇒ asymptotic rate of convergence of PageRank method is rate at which αk → 0)

Google

– uses α = .85 (5/6, 1/6 interpretation)

– report 50-100 iterations til convergence

– still takes days to converge

Enhancements to the PR power method

• Kamvar et al. Extrapolation

• Kamvar et al. Adaptive PageRank

• Kamvar et al. BlockRank

• Lee et al. Lumpability of Dangling Nodes

• Langville/Meyer: Updating PageRank

• Ipsen/Kirkland: more theory for Langville/Meyer

Linear System Formulation

For ¯̄P

πT (I − ¯̄P) = 0T and πT e = 1.

For P̄

πT (I − αP̄) = (1 − α)vT and πT e = 1.

For P

πT (I − αP) = vT and πT e = 1.
(P is very sparse, 3-10 nonzeros per row)

Properties of (I − α P):

1. (I − αP) is nonsingular.

2. (I − αP) is an M-matrix.

3. The row sums of (I − αP) are either 1 − α for ND nodes
or 1 for D nodes.

4. ‖I − αP‖∞ = 1 + α.

5. Since (I − αP) is an M-matrix, (I − αP)−1 ≥ 0.

6. The row sums of (I − αP)−1 are equal to 1 for the D nodes
and less than or equal to 1/(1 − α) for the ND nodes.

7. The condition number κ∞(I − αP) ≤ (1 + α)/(1 − α).

8. The row of (I − αP)−1 corresponding to D node i is eT
i .

ND-D Reordering

P =
(ND D

ND P11 P12

D 0 0

)
.

(I − αP) =
[

I − αP11 −αP12

0 I

]
.

(I − αP)−1 =
[

(I − αP11)−1 α(I − αP11)−1P12

0 I

]
.

Algorithm 1: ND-D Reordering
Solve πT (I − αP) = vT and πT e = 1.

Algorithm 1:

1. Solve for πT
1 in πT

1 (I − αP11) = vT
1 .

2. Compute πT
2 = απT

1P12 + vT
2 .

3. Normalize πT = [πT
1 πT

2]/‖[πT
1 πT

2]‖1.

Pro: one small system solve, plus forward substitution.

Analog: Lee et al. lumpable D node Markov formulation.

Extension of ND-D Reordering
• Continue locating 0 rows in submatrices of (I − αP) until no

0 rows remain. Amounts to a reordering of indices.

Before Reordering After Reordering

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773

Algorithm 2: Recursive ND-D Reordering
Solve πT (I − αP) = vT and πT e = 1.

Algorithm 2:

1. Reorder the states of the original Markov chain, so that the
reordered matrix has the 0 block structure. O(nnz(P))≈1 power iter.

2. Solve for πT
1 in πT

1 (I − αP11) = vT
1 . Jacobi method with rate of conv. ≤ α

3. Compute πT
2 = απT

1P12 + vT
2 .

4. Compute πT
3 = απT

1P13 + απT
2P23 + vT

3 .

5. Compute πT
b = απT

1P1b + απT
2P2b + . . . + απT

b−1Pb−1,b + vT
b . O(nnz(P))

6. Normalize πT = [πT
1 πT

2
. . . πT

b]/‖[πT
1 πT

2
. . . πT

b]‖1.

Pro: even smaller system solve, plus forward substitution.

Speedup: by factor of nnz(P)/nnz(P11) (estimated)

Results of Reordered PageRank
EPA.dat CA.dat NCS.dat ND.dat SU450k.dat

PR Time 3.80 6.63 13.17 177.16 237.37
Iter. 159 176 162 166 164
n(P) 5,042 9,664 10,000 325,729 451,237
nz(P) 9,563 16,873 101,118 1,497,134 1,082,604

RePR Time .59 1.42 7.65 130.54 52.84
Iter. 155 169 160 170 145

b 10 9 5 18 12
n(P11) 704 2,622 7,136 127,472 84,861
nz(P11) 1,330 5,238 79,230 1,191,761 267,566

Speed Est. 7.2 3.2 1.3 1.3 4.0
Up Act. 6.4 4.7 1.7 1.4 4.5

• can do no worse than original PR power method

• Speedup is dataset-dependent

Langville/Meyer Updating
Motivation

– Updating PR is huge problem. Currently done monthly, but
web changes hourly.

– Chien et al. use aggregation to focus on pages whose PR
is most likely to change.

Idea

– Use iterative aggregation to extend Chien idea.

– Focus on bad states, aggregate good, fast-converging states
into one superstate.

– ⇒ only work on much smaller aggregated chain.

Results

– speedup by factor of 5-10 on some datasets.

Issue

– Partitioning into good and bad states is hard, and IAD is very
sensitive to partition.

Idea behind Aggregation
Best for NCD systems (Simon and Ando (1960s), Courtois (1970s))

C1

C 1

2C

C3

C 3

2C C 3

2C

C 1

ξ1 ξ2 ξ3~~

i ja = Π P eji
Τ

ξ1 ξ2 ξ3
ξ

Τ
=

C 1 C C2 3

Π

Π

τ

Τ

Π
Τ

Π
Τ

Π
Τ

Π
Τ

A =

P =

Pro
exploits structure to reduce work

Con
produces an approximation, quality is dependent on degree

of coupling

Iterative Aggregation

• Problem: repeated aggregation leads to fixed point.

• Solution: Do a power step to move off fixed point.

• Do this iteratively. Approximations improve and approach
exact solution.

• Success with NCD systems, not in general.

Π
T
Π

T
Π T

Π
T

Π
T

Π
T

Input: approximation to
get censored distributions
get coupling constants

Output: move off fixed point with power step
Output: get approximate global stationary distribution

Π

Π

T

T
ξ i

= ξ ξ ξ1 2 3

Exact Aggregation
(Meyer 1989)

C 1

C 3

2C C 3

2C

C 1

ξ1 ξ2 ξ3

i ja = P eji
Τ

ξ1 ξ2 ξ3
ξ

Τ
=

C 1 C C2 3

Π
Τ

Τ Τ Τ

A =

P =

s i

s = censored (stat.) dist. of
 stochastic complement

i
T

Si

S = P + P (I - P) Pi i i i i* * *

-1

For 2-level partition,

S = P + P (I - P) P11 11 1

-1

2 22 2

s s 321s=

Pro
only one step needed to produce exact global vector

Con
SC matrices Si are very expensive to compute

Back to Updating . . .

P =

C1

C2

C3

Cg-1g-1

Cg

Cg+1g+1

A =

C1

C1

C2

C2

C3

C3

Cg-1g-1

Cg-1g-1

Cg

Cg

Cg+1g+1

Cg+1g+1

Aggregation
Partitioned Matrix

Pn×n =

(G G
G P11 P12

G P21 P22

)
=





p11
. . . p1g rT

1

...
. . .

...
...

pg1
. . . pgg rT

g

c1
. . . cg P22





πT = (π1, . . .πg |πg+1, . . ., πn)
Advantages of this Partition

p11
. . .pgg are 1 × 1 =⇒ Stochastic complements = 1

=⇒ censored distributions = 1

Only one significant complement S2 = P22 + P21(I − P11)−1P12

Only one significant censored dist sT
2S2 = sT

2

A/D Theorem =⇒ sT
2 = (πg+1, . . ., πn)/

∑n
i=g+1 πi

Aggregation Matrix

A =





p11
. . . p1g rT

1e
...

. . .
...

...

pg1
. . . pgg rT

g e

sT
2c1

. . . sT
2cg sT

2P22e





(g+1)×(g+1)

=
[

P11 P12e

sT
2P21 1 − sT

2P21e

]

The Aggregation/Disaggregation Theorem

If αT = (α1, . . ., αg, αg+1) = stationary dist for A

Then πT =
(
α1, . . ., αg |αg+1sT

2

)
= stationary dist for P

Trouble! Always A Big Problem

G small ⇒ G big ⇒ S2 = P22 + P21(I − P11)−1P12 large

G big ⇒ A large

Approximate Aggregation
Assumption

Updating involves relatively few states

G small ⇒ A =
[

P11 P12e

sT
2P21 1 − sT

2P21e

]

(g+1)×(g+1)

small

Approximation (πg+1, . . ., πn) ≈ (φg+1, . . ., φn),
where φT

is old PageRank vector and πT is new, updated PageRank

sT
2 =

(πg+1, . . ., πn)∑n

i=g+1
πi

≈ (φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

(avoids computing s̃T
2 for large S2)

A ≈ Ã =
[

P11 P12e

s̃T
2P21 1 − s̃T

2P21e

]

αT ≈ α̃T =
(
α̃1, . . ., α̃g, α̃g+1

)

πT ≈ π̃T =
(
α̃1, . . ., α̃g | α̃g+1s̃T

2

)
(not bad)

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution
˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Approximate A/D step generates approximation π̃T

Smooth the result ˜̃πT = π̃TP

Use ˜̃πT as input to another approximate aggregation step
...

How to Partition for Updating Problem?

Intuition

• There are some bad states (G) and some good states (G).

• Give more attention to bad states. Each state in G forms
a partitioning level. Much progress toward correct
PageRank is made during aggregation step.

• Lump good states in G into 1 superstate. Progress
toward correct PageRank is made during smoothing
step (power iteration).

Definitions for “Good” and “Bad”

1. Good = states least likely to have πi change

Bad = states most likely to have πi change

2. Good = states with smallest πi after k transient steps

Bad = states “nearby”, with largest πi after k transient steps

3. Good = smallest πi from old PageRank vector

Bad = largest πi from old PageRank vector

4. Good = fast–converging states

Bad = slow–converging states

Determining “Fast” and “Slow”
Consider power method and its rate of convergence

πT
k+1 = πT

k P = πT
k eπT + λk

2π
T
k x2yT

2 + λk
3π

T
k x3yT

3 + . . . + λk
nπ

T
k xnyT

n

Asymptotic rate of convergence is rate at which λk
2 → 0

Consider convergence of elements

Some states converge to stationary value faster than λ2–rate,
due to LH e–vector yT

2 .

Partitioning Rule

Put states with largest |yT
2 |i values in bad group G, where

they receive more individual attention in aggregation method.

Practicality

yT
2 expensive, but for PageRank problem, Kamvar et al. show

states with large πi are slow-converging. ⇒ inexpensive soln =
use old πT to determine G. (adaptively approximate yT

2)

Implications of Web’s scale-free nature

Facts:

(1) πT follows power law since WWW is scale-free

(experimental and theoretical justification)

(2) not all pages converge to their PageRanks at same rate

(3) pages with high PR are slow-converging

⇒ very few pages are slow-converging, but these are the

pages that cause power method to drag on

Power law for PageRank
Scale-free Model of Web network creates power laws

(Kamvar, Barabasi, Raghavan)

0 200 400 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
censorship

0 200 400 600
0

0.01

0.02

0.03

0.04
movies

0 200 400 600
0

0.01

0.02

0.03

0.04

0.05
mathworks

0 1000 2000
0

0.005

0.01

0.015

0.02

0.025
abortion

0 1000 2000 3000
0

0.005

0.01

0.015

0.02

0.025
genetic

Convergence
Theorem

Always converges to stationary dist πT for P

Converges for all partitions S = G ∪ G

Rate of convergence is rate at which Sn
2 converges

S2 = P22+P21(I−P11)−1P12

Dictated by Jordan structure of λ2(S2)

λ2(S2) simple =⇒ πT
k → πT at the rate at which λn

2 → 0

The Game

Goal now is to find a relatively small G that minimizes λ2(S2)

Ipsen/Kirkland Updating Theory

Motivation

– L/M prove updating method converges at rate (λ2(S2))k → 0.

– Ipsen/Kirkand wonder: can λ2(S2) > α ?

Results

– λ2(S2) ≤ α for all partitions.

– λ2(S2) < α under two trivial assumptions on P.
(P is reducible, and at least one page in each essential class does not self-link)

Ipsen/Kirkland Updating Theory

Motivation

– L/M prove updating method converges at rate (λ2(S2))k → 0.

– Ipsen/Kirkand wonder: can λ2(S2) > α ?

Results

– λ2(S2) ≤ α for all partitions.

– λ2(S2) < α under two trivial assumptions on P.
(P is reducible, and at least one page in each essential class does not self-link)

But ... how do we find partition so that λ2(S2) << α ?

Experiments

Test Networks From Crawl Of Web

NCState (NCSU internal crawl)

10,000 nodes 101,118 links

California (Sites concerning “california” query)

9,664 nodes 16,150 links

Parameters
Number Of Nodes (States) Added

50

Number Of Nodes (States) Removed

30

Number Of Links Added (Different values have little effect on results)

300

Number Of Links Removed

200

Stopping Criterion

1-norm of residual < 10−10

NC State

Power Method Iterative Aggregation

Iterations Time

162 9.79

|G| Iterations Time

500 160 10.18
1000 51 3.92
1500 33 2.82

2500 16 2.15
3000 13 1.99
5000 7 1.77

nodes = 10,000 links = 101,118

NC State

Power Method Iterative Aggregation

Iterations Time

162 9.79

|G| Iterations Time

500 160 10.18
1000 51 3.92
1500 33 2.82
2000 21 2.22
2500 16 2.15
3000 13 1.99
5000 7 1.77

nodes = 10,000 links = 101,118

California

Power Method Iterative Aggregation

Iterations Time

176 5.85

|G| Iterations Time

500 19 1.12
1000 15 .92
1250 20 1.04

2000 13 1.17
5000 6 1.25

nodes = 9,664 links = 16,150

California

Power Method Iterative Aggregation

Iterations Time

176 5.85

|G| Iterations Time

500 19 1.12
1000 15 .92
1250 20 1.04
1500 14 .90
2000 13 1.17
5000 6 1.25

nodes = 9,664 links = 16,150

Advantage
— updating algorithm can be combined with other PR acceleration

methods.

Power Power+Quad(10) Iter. Agg. Iter.Agg.+Quad(10)

Iter. Time Iter. Time

162 9.69 81 5.93

|G| Iter. Time Iter. Time

500 160 10.18 57 5.25
1000 51 3.92 31 2.87
1500 33 2.82 23 2.38
2000 21 2.22 16 1.85
2500 16 2.15 12 1.88
3000 13 1.99 11 1.91
5000 7 1.77 6 1.86

nodes = 10,000 links = 101,118

Residual Plot for NC State

0 20 40 60 80 100 120 140 160 180
 12

 10

 8

 6

 4

 2

0

iteration

lo
g 10

 r
es

id
ua

l

power method
power method with quad. extrap.
iterative aggregation
iterative aggregation with quad. extrap.

Large-Scale Implementation

Partitioning

— need more theoretical work on good partitioning.

IAD’s Aggregated System Solve

— direct vs. sparse methods

Simulating updates to Web

— how to do this accurately, and keep scale-free properties of
web

— need collections of the web over time.

Conclusions

• An appropriate reordering of the pages of the web can
greatly speed the PageRank computation.

• Aggregation methods reduce PageRank computation for
the updating problem. However, partitioning is a difficult,
unresolved issue.

• many of these methods can be combined to achieve even
greater speedups.

• We are moving closer to lofty goal of computing real-time
personalized PageRank.

