Outline Introduction Nonnegative Matrix Factorization Consensus Clustering Experimental Results Conclusion

Dimension Reduction and Iterative Consensus Clustering

Shaina Race, Carl Meyer

Southeastern Clustering and Ranking Workshop

August 24, 2009

- Introduction
 - Document Clustering
 - Geometry of the SVD
 - Centered SVD
 - Uncentered SVD
 - Principal Direction Divisive Partitioning
- Nonnegative Matrix Factorization
- Consensus Clustering
 - Combination Algorithms
 - Iterating to Reach Consensus
- Experimental Results
 - Medlars/Cranfield/CISI
 - Benchmark Data Set by Sinka and Corne
- Conclusion

Document Clustering

For document clustering, we create a term-document matrix, A, as follows:

Term 1
$$A_{m \times n} = \begin{array}{c} \text{Term 1} \\ \text{Term } i \\ \text{Term } m \end{array} \left(\begin{array}{cccc} \text{Doc 1} & \text{Doc } j & \text{Doc } n \\ & & | & \\ & & | & \\ & - & - & - & f_{ij} \end{array} \right)$$

Where $f_{i,j}$ is the frequency of term i in document j.

- Various types of term-weighting can be used in place of raw frequencies. For our experiments, we simply normalized the columns.
- Each column of A represents the coordinates of a document in the m-dimensional "term-space", where each standard basis vector represents one term from the dictionary.

Geometry of the SVD Principal Direction Divisive Partitioning

Singular Value Decomposition (SVD)

 Decomposes A = U ΣV^T where U and V are orthogonal matrices and Σ is a diagonal matrix of singular values.

Singular Value Decomposition (SVD)

- Decomposes A = U ΣV^T where U and V are orthogonal matrices and Σ is a diagonal matrix of singular values.
- The truncated SVD yields the closest rank *r* approximation to **A** in the 2-norm.

$$\mathbf{a}_{j} \approx \sum_{i=1}^{r} \left[V^{T} \right]_{i,j} \sigma_{i} \mathbf{u}_{i}$$

Singular Value Decomposition (SVD)

- Decomposes A = U ΣV^T where U and V are orthogonal matrices and Σ is a diagonal matrix of singular values.
- The truncated SVD yields the closest rank r approximation to A in the 2-norm.

$$\mathbf{a}_{j} \approx \sum_{i=1}^{r} \left[V^{T} \right]_{i,j} \sigma_{i} \mathbf{u}_{i}$$

ullet Thus, a column $oldsymbol{v}_j$ of the truncated $oldsymbol{V}^T$ is the coordinates of $oldsymbol{a}_j$ once projected into the lower dimensional space spanned by the orthogonal basis

$$(\sigma_1\mathbf{u}_1,\sigma_2\mathbf{u}_2,\ldots\sigma_r\mathbf{u}_r)$$

.

Singular Value Decomposition (SVD)

- Decomposes $\mathbf{A} = \mathbf{U} \ \mathbf{\Sigma} \mathbf{V}^T$ where \mathbf{U} and \mathbf{V} are orthogonal matrices and $\mathbf{\Sigma}$ is a diagonal matrix of singular values.
- The truncated SVD yields the closest rank *r* approximation to **A** in the 2-norm.

$$\mathbf{a}_{j} \approx \sum_{i=1}^{r} \left[V^{T} \right]_{i,j} \sigma_{i} \mathbf{u}_{i}$$

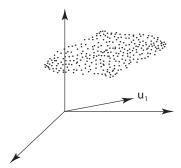
ullet Thus, a column $oldsymbol{v}_j$ of the truncated $oldsymbol{V}^T$ is the coordinates of $oldsymbol{a}_j$ once projected into the lower dimensional space spanned by the orthogonal basis

$$(\sigma_1\mathbf{u}_1,\sigma_2\mathbf{u}_2,\ldots\sigma_r\mathbf{u}_r)$$

 We'll use the columns of V^T as a lower dimensional representation of the columns of A for the purposes of clustering.

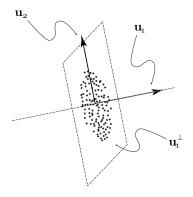
Geometry of Singular Vectors when A is centered

• The first left-hand singular vector, \mathbf{u}_1 , of the centered matrix $\mathbf{C} = \mathbf{A} - \mu \mathbf{e}^T$ is the direction along which the variance of the data is maximal.



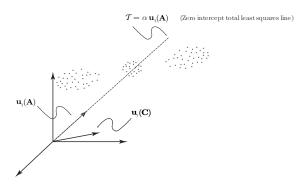
Geometry of Singular Vectors when A is centered

 The second left singular vector of C, u₂, is the direction orthogonal to u₁ along which the variance is maximal.



Geometry of SVD when A is uncentered

 The first left singular vector of A is the direction of the least-squares line through the origin.



Algorithm proposed by Daniel Boley at Univ. of MN in 2002

- Algorithm proposed by Daniel Boley at Univ. of MN in 2002
- Iterative process partitions data into 2 clusters with each iteration, based upon their projection onto the direction of maximal variance.

- Algorithm proposed by Daniel Boley at Univ. of MN in 2002
- Iterative process partitions data into 2 clusters with each iteration, based upon their projection onto the direction of maximal variance.
- PDDP can be adapted to use more than just the principal singular vector.

- Algorithm proposed by Daniel Boley at Univ. of MN in 2002
- Iterative process partitions data into 2 clusters with each iteration, based upon their projection onto the direction of maximal variance.
- PDDP can be adapted to use more than just the principal singular vector.
- We will often use the results from PDDP to seed the k-means algorithm with an initial guess

Illustration of one iteration of PDDP

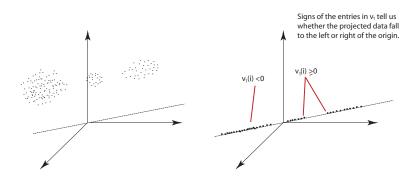


Figure: Data Cloud Projected onto the span of $\mathbf{u}_1(\mathbf{C})$

 The nonnegative matrix factorization (NMF) seeks to decompose a nonnegative matrix into the product of two nonnegative matrices:
 A_{m×n} = W_{m×r}H_{r×n}.

- The nonnegative matrix factorization (NMF) seeks to decompose a nonnegative matrix into the product of two nonnegative matrices:
 A_{m×n} = W_{m×r}H_{r×n}.
- The decomposition is created by solving the following nonlinear optimization problem:

$$\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$$
 such that $\mathbf{W} \ge 0$ and $\mathbf{H} \ge 0$

- The nonnegative matrix factorization (NMF) seeks to decompose a nonnegative matrix into the product of two nonnegative matrices:
 A_{m×n} = W_{m×r}H_{r×n}.
- The decomposition is created by solving the following nonlinear optimization problem:

$$\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$$
 such that $\mathbf{W} \ge 0$ and $\mathbf{H} \ge 0$

• The inner dimension of the factorization, *r*, must be input by the user.

- The nonnegative matrix factorization (NMF) seeks to decompose a nonnegative matrix into the product of two nonnegative matrices:
 A_{m×n} = W_{m×r}H_{r×n}.
- The decomposition is created by solving the following nonlinear optimization problem:

$$\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$$
 such that $\mathbf{W} \ge 0$ and $\mathbf{H} \ge 0$

- The inner dimension of the factorization, r, must be input by the user.
- The result is an additive, parts-based approximation to each data column a_j in the form of a linear combination of "feature" vectors, w_i, as follows:

- The nonnegative matrix factorization (NMF) seeks to decompose a nonnegative matrix into the product of two nonnegative matrices:
 A_{m×n} = W_{m×r}H_{r×n}.
- The decomposition is created by solving the following nonlinear optimization problem:

$$\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$$
 such that $\mathbf{W} \ge 0$ and $\mathbf{H} \ge 0$

- The inner dimension of the factorization, r, must be input by the user.
- The result is an additive, parts-based approximation to each data column a_j in the form of a linear combination of "feature" vectors, w_i, as follows:

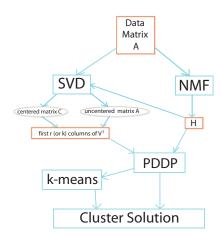
$$\mathbf{a}_{j} pprox \sum_{i=1}^{r} \mathbf{h}_{i,j} \mathbf{w}_{i}$$

NMF for Dimension Reduction

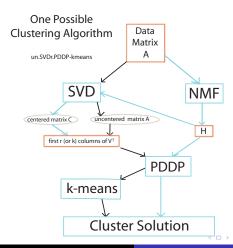
- Columns of H represent the coordinates of each document after projection into the lower dimensional "feature-space" spanned by the columns of W.
- We'll use the columns of H as a lower dimensional representation of the columns of A for the purposes of clustering.

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_m \end{pmatrix} \longrightarrow \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ \vdots \\ h_r \end{pmatrix}$$

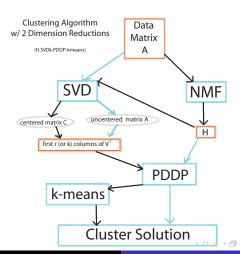
New Algorithms out of Old



New Algorithms out of Old



New Algorithms out of Old



 Since no single algorithm will perform better than all others on a given class of data, we propose using several algorithms to find agreement upon clusters.

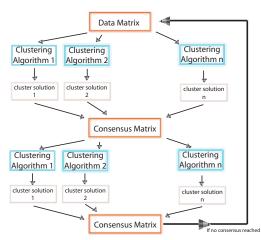
- Since no single algorithm will perform better than all others on a given class of data, we propose using several algorithms to find agreement upon clusters.
- We create an adjacency matrix for each clustering, whose $(i,j)^{th}$ entry is 1 if \mathbf{a}_i and \mathbf{a}_j were clustered together and 0 otherwise.

- Since no single algorithm will perform better than all others on a given class of data, we propose using several algorithms to find agreement upon clusters.
- We create an adjacency matrix for each clustering, whose $(i, j)^{th}$ entry is 1 if \mathbf{a}_i and \mathbf{a}_j were clustered together and 0 otherwise.
- We sum the adjacency matrices from various algorithms to create a **consensus matrix**, **M** whose $(i,j)^{th}$ entry reveals the number of times \mathbf{a}_i and \mathbf{a}_j were clustered together.

- Since no single algorithm will perform better than all others on a given class of data, we propose using several algorithms to find agreement upon clusters.
- We create an adjacency matrix for each clustering, whose $(i, j)^{th}$ entry is 1 if \mathbf{a}_i and \mathbf{a}_i were clustered together and 0 otherwise.
- We sum the adjacency matrices from various algorithms to create a consensus matrix, M whose (i, j)th entry reveals the number of times a_i and a_j were clustered together.
- Entries in the consensus matrix that are below a certain tolerance may be changed to zero.

- Since no single algorithm will perform better than all others on a given class of data, we propose using several algorithms to find agreement upon clusters.
- We create an adjacency matrix for each clustering, whose $(i,j)^{th}$ entry is 1 if \mathbf{a}_i and \mathbf{a}_i were clustered together and 0 otherwise.
- We sum the adjacency matrices from various algorithms to create a consensus matrix, M whose (i, j)th entry reveals the number of times a_i and a_i were clustered together.
- Entries in the consensus matrix that are below a certain tolerance may be changed to zero.
- This consensus matrix is then clustered using the same algorithms to see if the algorithms will agree upon a solution.

Iterating the Consensus Process



Medlars/Cranfield/CISI - Medical and Scientific Abstracts - 4000 docs/11000 terms -k = 3 clusters

Accuracies for	Med/Cran/CISI r=k=3		n Reduction Consensus 2	to $r = 3$
NMF Basic	0.70084811	0.89771267	0.9306091	0.89719866
PDDP	0.83012079	0.89437163	0.89437163	0.89719866
PDDP-kmeans	0.96376253	0.89282961	0.89282961	0.89719866
SVDr-PDDP-kmeans	0.81624261	0.72834747	0.769211	0.89719866
un.SVDr-PDDP-kmeans	0.75970188	0.89719866	0.89719866	0.89719866
H-PDDP	0.59650475	0.89437163	0.89874068	0.89719866
H-PDDP-kmeans	0.71626831	0.89719866	0.89719866	0.89719866
H-SVDk-PDDP-kmeans	0.8234387	0.89334361	0.89334361	0.9308661
H-un.SVDk-PDDP-kmeans	0.71446929	0.9308661	0.9308661	0.89719866

Medlars/Cranfield/CISI

Medlars/Cranfield/CISI - Medical and Scientific Abstracts - 4000 doc, 11000 terms - k = 3 clusters

Accuracies for Med/Cran/CISI after dimension reduction to $r = 15$						
Algorithm	<u>r=15</u>	Consensus 1	Consensus 2	Consensus 3		
NMF Basic	0	0.96530455	0.95334439	0.96453354		
PDDP	0.83012079	0.94962735	0.94962735	0.96376253		
PDDP-kmeans	0.96376253	0.96530455	0.96530455	0.96453354		
SVDr-PDDP-kmeans	0.94500129	0.71652531	0.61783603	0.73477255		
un.SVDr-PDDP-kmeans	0.78026214	0.61578001	0.92572603	0.83320483		
H-PDDP	0.86096119	0.94962735	0.97044462	0.96376253		
H-PDDP-kmeans	0.97584169	0.96530455	0.96556155	0.96453354		
H-SVDk-PDDP-kmeans	0.86533025	0.96067849	0.95451041	0.96530455		
H-un.SVDk-PDDP-kmeans	0.60164482	0.96530455	0.96453354	0.96453354		

 11000 documents proposed as a benchmark collection for document clustering.

- 11000 documents proposed as a benchmark collection for document clustering.
- Documents pertain to 4 broad topics (banking/finance, programming, science, and sport)

- 11000 documents proposed as a benchmark collection for document clustering.
- Documents pertain to 4 broad topics (banking/finance, programming, science, and sport)
- Each topic contains 2 or 3 subtopics (commercial banks, insurance agencies, java, astronomy, biology, etc).

- 11000 documents proposed as a benchmark collection for document clustering.
- Documents pertain to 4 broad topics (banking/finance, programming, science, and sport)
- Each topic contains 2 or 3 subtopics (commercial banks, insurance agencies, java, astronomy, biology, etc).
- Documents were extracted automatically from the web.

- 11000 documents proposed as a benchmark collection for document clustering.
- Documents pertain to 4 broad topics (banking/finance, programming, science, and sport)
- Each topic contains 2 or 3 subtopics (commercial banks, insurance agencies, java, astronomy, biology, etc).
- Documents were extracted automatically from the web.
 - Some long detailed articles
 - Some just list of words, addresses, or links.
 - → Noisy Data!

Benchmark Data - subset BCFG - k = 4 clusters

Cluster Accuracies for BenchmarkBCFG after Dimension Reduction to r = 4

Algorithm	<u>r=4</u>	Consensus 1	Consensus 2	Consensus 3
NMF Basic	0.62725	0.69275	0.57725	0.69425
PDDP	0.4505	0.67775	0.69325	0.69425
PDDP-kmeans	0.34025	0.69325	0.69375	0.69425
SVDr-PDDP-kmeans	0.69825	0.549	0.51575	0.69425
un.SVDr-PDDP-kmeans	0.74725	0.69475	0.6945	0.69425
H-PDDP	0.582	0.67775	0.5665	0.69425
H-PDDP-kmeans	0.65775	0.69275	0.5745	0.69425
H-SVDk-PDDP-kmeans	0.66125	0.67075	0.695	0.69425
H-un.SVDk-PDDP-kmeans	0.6825	0.69475	0.57825	0.69425

Benchmark Data - subset BCFG-k = 4 clusters

Experiment 3: Cluster Accuracies for BenchmarkBCFG after Dimension Reduction to

Algorithm	r=10	r = 10 Consensus 1	Consensus 2	Consensus 3	Consensus 5
NMF Basic		0.74725	0.75225	0.58025	0.74775
PDDP	0.4505	0.74275	0.75125	0.74775	0.74775
PDDP-kmeans	0.34025	0.75275	0.748	0.75225	0.74775
SVDr-PDDP-kmeans un.SVDr-PDDP-kmeans	0.71975 0.67325	0.5945 0.703	0.49725 0.51575	0.6395 0.52225	0.72225 0.63225
H-PDDP	0.71	0.74275	0.752	0.74775	0.74775
H-PDDP-kmeans	0.7635	0.74725	0.75225	0.58025	0.74775
H-SVDk-PDDP-kmeans	0.7255	0.736	0.748	0.7455	0.76525
H-un.SVDk-PDDP-kmeans	0.788	0.74975	0.748	0.58	0.74775

Outline Introduction Nonnegative Matrix Factorization Consensus Clustering Experimental Results Conclusion

- The choices for the size of dimension reduction, r, and the various combinations
 of algorithms produce hundreds of clusterings for the consensus approach.
- Consensus Clustering shows potential as a technique to determine a final clustering solution through many different algorithms.
- Although the final clustering solution determined through Consensus Clustering is not guaranteed to be optimal, experiments suggest that the technique provides a solution that is well above the average of the algorithms used.