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Document Clustering

For document clustering, we create a term-document matrix, A, as follows:

Doc 1 Doc j Doc n

Am×n =

Term 1

Term i

Term m

0BBBBB@
|
|
|

− − − fij

1CCCCCA
Where fi,j is the frequency of term i in document j .

Various types of term-weighting can be used in place of raw frequencies. For our
experiments, we simply normalized the columns.

Each column of A represents the coordinates of a document in the
m-dimensional “term-space", where each standard basis vector represents one
term from the dictionary.
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Singular Value Decomposition (SVD)

Decomposes A = U ΣVT where U and V are orthogonal matrices and Σ is a
diagonal matrix of singular values.

The truncated SVD yields the closest rank r approximation to A in the 2-norm.

aj ≈
rX

i=1

[V T ]i,jσi ui

Thus, a column vj of the truncated VT is the coordinates of aj once projected into
the lower dimensional space spanned by the orthogonal basis

(σ1u1, σ2u2, . . . σr ur )

.

We’ll use the columns of VT as a lower dimensional representation of the
columns of A for the purposes of clustering.
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Geometry of Singular Vectors when A is centered

The first left-hand singular vector, u1, of the centered matrix C = A− µeT is the
direction along which the variance of the data is maximal.
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Geometry of Singular Vectors when A is centered

The second left singular vector of C, u2, is the direction orthogonal to u1 along
which the variance is maximal.
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Geometry of SVD when A is uncentered

The first left singular vector of A is the direction of the
least-squares line through the origin.

u (C )
u (A )

  (Zero intercept total least squares line)T = uα* (A )

u (C )
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Principal Direction Divisive Partitioning (PDDP)

Algorithm proposed by Daniel Boley at Univ. of MN in 2002

Iterative process partitions data into 2 clusters with each iteration,
based upon their projection onto the direction of maximal variance.

PDDP can be adapted to use more than just the principal singular
vector.

We will often use the results from PDDP to seed the k -means algorithm
with an initial guess
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Illustration of one iteration of PDDP
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Signs of the entries in v  tell us 
whether the projected data fall 
to the left or right of the origin.
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Figure: Data Cloud Projected onto the span of u1(C)
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Nonnegative Matrix Factorization

The nonnegative matrix factorization (NMF) seeks to decompose a
nonnegative matrix into the product of two nonnegative matrices:
Am×n = Wm×r Hr×n.

The decomposition is created by solving the following nonlinear
optimization problem:

min ‖A−WH‖2
F such that W ≥ 0 and H ≥ 0

The inner dimension of the factorization, r , must be input by the user.

The result is an additive, parts-based approximation to each data
column aj in the form of a linear combination of “feature" vectors, wi , as
follows:

aj ≈
rX

i=1

hi,jwi
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NMF for Dimension Reduction

Columns of H represent the coordinates of each document
after projection into the lower dimensional “feature-space"
spanned by the columns of W .
We’ll use the columns of H as a lower dimensional
representation of the columns of A for the purposes of
clustering. 

a1
a2
a3
...

am

 −→


h1
h2
h3
...

hr


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Combination Algorithms
Iterating to Reach Consensus

New Algorithms out of Old

SVD NMF

centered matrix C uncentered  matrix A

PDDP
k-means

H
first r (or k) columns of V

Data
Matrix

 A

Cluster Solution

T

Shaina Race, Carl Meyer Dimension Reduction and Iterative Consensus Clustering



Outline
Introduction

Nonnegative Matrix Factorization
Consensus Clustering
Experimental Results

Conclusion

Combination Algorithms
Iterating to Reach Consensus

New Algorithms out of Old

SVD NMF

centered matrix C uncentered  matrix A

PDDP

k-means

H
first r (or k) columns of V

Data
Matrix

 A

Cluster Solution

T

One Possible 
Clustering Algorithm

un.SVDr.PDDP-kmeans
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New Algorithms out of Old

Clustering Algorithm
w/ 2 Dimension Reductions

(H.SVDk.PDDP-kmeans)

SVD NMF

centered matrix C uncentered  matrix A

PDDP
k-means

H
first r (or k) columns of V

Data
Matrix

 A

Cluster Solution

T
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Consensus Clustering

Since no single algorithm will perform better than all others on a given
class of data, we propose using several algorithms to find agreement
upon clusters.

We create an adjacency matrix for each clustering, whose (i, j)th entry
is 1 if ai and aj were clustered together and 0 otherwise.

We sum the adjacency matrices from various algorithms to create a
consensus matrix, M whose (i, j)th entry reveals the number of times
ai and aj were clustered together.

Entries in the consensus matrix that are below a certain tolerance may
be changed to zero.

This consensus matrix is then clustered using the same algorithms to
see if the algorithms will agree upon a solution.
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Iterating to Reach Consensus

Iterating the Consensus Process

Clustering
Algorithm 1

Clustering
Algorithm 2

Clustering
Algorithm n

Clustering
Algorithm 1

Clustering
Algorithm 2

Clustering
Algorithm n

Data Matrix

Consensus Matrix

cluster solution
1

cluster solution
2

cluster solution
n

cluster solution
1

cluster solution
2

cluster solution
n

Consensus Matrix
If no consensus reached
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Medlars/Cranfield/CISI
Benchmark Data Set by Sinka and Corne

Medlars/Cranfield/CISI - Medical and Scientific
Abstracts - 4000 docs/11000 terms -k = 3 clusters

Accuracies for Med/Cran/CISI after Dimension Reduction to r = 3
Algorithm r=k=3 Consensus 1 Consensus 2 Consensus 3

NMF Basic 0.70084811 0.89771267 0.9306091 0.89719866

PDDP 0.83012079 0.89437163 0.89437163 0.89719866

PDDP-kmeans 0.96376253 0.89282961 0.89282961 0.89719866

SVDr-PDDP-kmeans 0.81624261 0.72834747 0.769211 0.89719866

un.SVDr-PDDP-kmeans 0.75970188 0.89719866 0.89719866 0.89719866

H-PDDP 0.59650475 0.89437163 0.89874068 0.89719866

H-PDDP-kmeans 0.71626831 0.89719866 0.89719866 0.89719866
H-SVDk-PDDP-kmeans 0.8234387 0.89334361 0.89334361 0.9308661

H-un.SVDk-PDDP-kmeans 0.71446929 0.9308661 0.9308661 0.89719866

Shaina Race, Carl Meyer Dimension Reduction and Iterative Consensus Clustering
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Medlars/Cranfield/CISI
Benchmark Data Set by Sinka and Corne

Medlars/Cranfield/CISI - Medical and Scientific
Abstracts - 4000 doc, 11000 terms - k = 3 clusters

Accuracies for Med/Cran/CISI after dimension reduction to r = 15
Algorithm r=15 Consensus 1 Consensus 2 Consensus 3

NMF Basic [] 0.96530455 0.95334439 0.96453354
PDDP 0.83012079 0.94962735 0.94962735 0.96376253

PDDP-kmeans 0.96376253 0.96530455 0.96530455 0.96453354
SVDr-PDDP-kmeans 0.94500129 0.71652531 0.61783603 0.73477255

un.SVDr-PDDP-kmeans 0.78026214 0.61578001 0.92572603 0.83320483
H-PDDP 0.86096119 0.94962735 0.97044462 0.96376253

H-PDDP-kmeans 0.97584169 0.96530455 0.96556155 0.96453354
H-SVDk-PDDP-kmeans 0.86533025 0.96067849 0.95451041 0.96530455

H-un.SVDk-PDDP-kmeans 0.60164482 0.96530455 0.96453354 0.96453354

Shaina Race, Carl Meyer Dimension Reduction and Iterative Consensus Clustering
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Medlars/Cranfield/CISI
Benchmark Data Set by Sinka and Corne

Benchmark Data Set Collected by Sinka and Corne

11000 documents proposed as a benchmark collection for
document clustering.

Documents pertain to 4 broad topics (banking/finance,
programming, science, and sport)
Each topic contains 2 or 3 subtopics (commercial banks,
insurance agencies, java, astronomy, biology, etc).
Documents were extracted automatically from the web.

Some long detailed articles
Some just list of words, addresses, or links.
→ Noisy Data!
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Benchmark Data - subset BCFG - k = 4 clusters

Cluster Accuracies for BenchmarkBCFG after Dimension Reduction to r = 4
Algorithm r=4 Consensus 1 Consensus 2 Consensus 3

NMF Basic 0.62725 0.69275 0.57725 0.69425

PDDP 0.4505 0.67775 0.69325 0.69425

PDDP-kmeans 0.34025 0.69325 0.69375 0.69425

SVDr-PDDP-kmeans 0.69825 0.549 0.51575 0.69425

un.SVDr-PDDP-kmeans 0.74725 0.69475 0.6945 0.69425

H-PDDP 0.582 0.67775 0.5665 0.69425

H-PDDP-kmeans 0.65775 0.69275 0.5745 0.69425

H-SVDk-PDDP-kmeans 0.66125 0.67075 0.695 0.69425

H-un.SVDk-PDDP-kmeans 0.6825 0.69475 0.57825 0.69425
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Benchmark Data - subset BCFG-k = 4 clusters

Experiment 3: Cluster Accuracies for BenchmarkBCFG after Dimension Reduction to
r = 10

Algorithm r=10 Consensus 1 Consensus 2 Consensus 3 Consensus 5

NMF Basic 0.74725 0.75225 0.58025 0.74775

PDDP 0.4505 0.74275 0.75125 0.74775 0.74775

PDDP-kmeans 0.34025 0.75275 0.748 0.75225 0.74775
SVDr-PDDP-kmeans 0.71975 0.5945 0.49725 0.6395 0.72225

un.SVDr-PDDP-kmeans 0.67325 0.703 0.51575 0.52225 0.63225

H-PDDP 0.71 0.74275 0.752 0.74775 0.74775

H-PDDP-kmeans 0.7635 0.74725 0.75225 0.58025 0.74775
H-SVDk-PDDP-kmeans 0.7255 0.736 0.748 0.7455 0.76525

H-un.SVDk-PDDP-kmeans 0.788 0.74975 0.748 0.58 0.74775
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The choices for the size of dimension reduction, r , and the various combinations
of algorithms produce hundreds of clusterings for the consensus approach.

Consensus Clustering shows potential as a technique to determine a final
clustering solution through many different algorithms.

Although the final clustering solution determined through Consensus Clustering
is not guaranteed to be optimal, experiments suggest that the technique provides
a solution that is well above the average of the algorithms used.
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