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Data Mining

The process of extracting meaningful information from
data.

Who does this, why?

Search Engines, Stock Services, Banks, Retail Chains, etc.
Data mining offers a huge potential for increased profits.
Why doesn’t everyone use data mining?

Not enough resources, not enough potential for gain for the
cost, more pressing short term concerns.
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Linear Regression

One of the most common procedures in data mining.

A very simple and cheap way of mining data.

Often seen more in statistics books than math books.

We would be more used to seeing the linear system
Ax = b.
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Ax = b

There are many methods for solving including:

Gaussian Elimination, Multiplying by Inverse, Conjugate
Gradient Method, GMRES, etc.

For Conjugate Gradient, for example, we need A from
Ax = b to be symmetric, positive-definite (spd).

A = AT

x tAx > 0 for all x > 0 (each entry in x is positive).
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Why do Linear Algebraists love Eigenvalues and
Eigenvectors more than their wives?

Lots of beautiful theory - and it’s everywhere!

Ax = λx : λ is the eigenvalue corresponding to the
eigenvector x

Used in Principal Component Analysis, studying the
behavior of Markov Chains, (differential equations), other
clustering methods.
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Principal Component Analysis

X is the data matrix, and the mean of the each row is
stored in the vector u

B = X − u ∗ eT (e is the vector of all ones)

Find the eigenvalues and eigenvector of the covariance
matrix C = BT B

Google finds over 4 million for a normal search, and over 3
million for a scholar search

Used in clustering, categorizing, finding direction of
maximal variance
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Latent Semantic Indexing

Precursor to modern search engines

Finds ‘latent’ semantic meaning

Makes use of the Singular Value Decomposition (SVD)
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