

Information Retrieval

and

Web Search

Amy Langville

Carl Meyer

Department of Mathematics North Carolina State University Raleigh, NC

Outline

Part 1: Traditional IR

- Vector Space Model (1960s and 1970s)
- Latent Semantic Indexing (1990s)
- Other VSM decompositions (1990s)
- Nonnegative Matrix Factorization (2000)

Part 2: Web IR

Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn n textual documents into n document vectors $\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n$
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector q, which is a pseudo-doc

Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- ullet turn n textual documents into n document vectors ${f d}_1, {f d}_2, \ldots, {f d}_n$
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector q, which is a pseudo-doc

GOAL: find doc. \mathbf{d}_i closest to \mathbf{q}

— angular cosine measure used: $\delta_i = \cos \theta_i = \mathbf{q}^T \mathbf{d}_i / (\|\mathbf{q}\|_2 \|\mathbf{d}_i\|_2)$

Example from Berry's book

Terms

Documents

T1: Bab(y,ies,y's)

D1: Infant & Toddler First Aid

T2: Child(ren's)

D2: Babies & Children's Room (For Your Home)

T3: Guide

D3: Child Safety at Home

T4: Health

D4: Your Baby's Health & Safety: From Infant to Toddler

T5: Home

D5: Baby Proofing Basics

T6: Infant

D6: Your Guide to Easy Rust Proofing

T7: Guide

D7: Beanie Babies Collector's Guide

T8: Safety

T9: Toddler

Example from Berry's book

Terms

T1: Bab(y,ies,y's)

T2: Child(ren's)

T3: Guide

T4: Health

T5: Home

T6: Infant

T7: Guide

T8: Safety

T9: Toddler

Documents

D1: Infant & Toddler First Aid

D2: Babies & Children's Room (For Your Home)

q =

 $\mathbf{0}$

 $\mathbf{0}$

D3: Child Safety at Home

D4: Your Baby's Health & Safety: From Infant to Toddler

D5: Baby Proofing Basics

D6: Your Guide to Easy Rust Proofing

D7: Beanie Babies Collector's Guide

$$\boldsymbol{\delta} = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \\ \delta_4 \\ \delta_5 \\ \delta_6 \\ \delta_7 \end{bmatrix} = \begin{bmatrix} 0 \\ .5774 \\ 0 \\ .8944 \\ .7071 \\ 0 \\ .7071 \end{bmatrix}$$

VSM Performance

Measuring Performance

• Precision =
$$\left[\frac{\# \text{ REL. DOCS RETRIEVED}}{\# \text{ DOCS RETRIEVED}} \right]$$
 Ex: 3/10

- Time
 - normalize cols of A and q to speed cosine computation
 - now relevancy vector $\delta = \mathbf{q}^T \mathbf{A}$ (just 1 V-M mult. at query time)

VSM Performance

Measuring Performance

- Precision = $\left[\frac{\# \text{ REL. DOCS RETRIEVED}}{\# \text{ DOCS RETRIEVED}} \right]$
- Recall = $\left[\frac{\text{\# REL. DOCS RETRIEVED}}{\text{\# REL. DOCS}}\right]$
- Time
 - normalize cols of A and q to speed cosine computation
 - now relevancy vector $\delta = \mathbf{q}^T \mathbf{A}$ (just 1 V-M mult. at query time)

Enhancing Performance

- angle cutoff value: $\delta_i \geq .7$ vs $\delta_i \geq .8$
- weighting elements of A: tf-idf, b-idf, etc.
- stemming, stoplisting, etc.

```
(Resource: Text to Matrix Generator http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/)
```

(Resource: Porter Stemmer Demo http://snowball.tartarus.org/demo.php)

(Resource: VSM Demo http://kt2.exp.sis.pitt.edu:8080/VectorModel/main.html)

Strengths and Weaknesses of VSM

Strengths

- A is sparse
- $\mathbf{q}^T \mathbf{A}$ is fast and can be done in parallel
- relevance feedback: $\tilde{\mathbf{q}} = \delta_1 \mathbf{d}_1 + \delta_3 \mathbf{d}_3 + \delta_7 \mathbf{d}_7$

Weaknesses

- synonyms and polysems—noise in A
- decent performance
- basis vectors are standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$, which are orthogonal \Rightarrow independence of terms

VSM Resources

- Gerard Salton. Automatic information organization and retrieval. McGraw-Hill, 1968.
- Gerard Salton and Michael J. McGill. Introduction to modern information retrieval.
 McGraw-Hill, 1983.
- Gerard Salton. Automatic text processing: the transformation, analysis, and retrieval of information by computer. Addison-Wesley, 1989.
- Michael W. Berry and Murray Browne. Understanding search engines: mathematical modeling and text retrieval. SIAM, 1999.
- Amy N. Langville. The Linear Algebra behind Search Engines. JOMA. http://mac04-204ha.math.ncsu.edu/ langville/JOMA/JOMAIntro.html, 2005.
- Michael W. Berry. LSI Website. http://www.cs.utk.edu/lsi/

Latent Semantic Indexing (1990s)

Susan Dumais's improvement to VSM = LSI

Idea: use low-rank approximation to A to filter out noise

Great Idea! 2 patents for Bell/Telcordia

- Computer information retrieval using latent semantic structure. U.S. Patent No. 4,839,853, June 13, 1989.
- Computerized cross-language document retrieval using latent semantic indexing.
 U.S. Patent No. 5,301,109, April 5, 1994.

(Resource: USPTO http://patft.uspto.gov/netahtml/srchnum.htm)

SVD

 $A_{m \times n}$: rank r term-by-document matrix

- SVD: $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \ \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- LSI: use $\mathbf{A}_{k} = \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ in place of \mathbf{A}
- Why?
 - reduce storage when k << r
 - filter out uncertainty, so that performance on text mining tasks (e.g., query processing and clustering) improves

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\varSigma}_k \mathbf{V}_k^T$

- Original Basis: docs represented in Term Space using Standard Basis $S = \{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e}_m\}$
- New Basis: docs represented in smaller Latent Semantic Space using Basis $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ $(k < \min(m,n))$

$$doc_1$$
 $nonneg. \left(\begin{array}{c} \vdots \\ \mathbf{A}_{*1} \\ \vdots \end{array} \right)_{m \times 1} pprox \left[\begin{array}{c} \vdots \\ \mathbf{u}_1 \\ \vdots \end{array} \right] \sigma_1 v_{11} + \left[\begin{array}{c} \vdots \\ \mathbf{u}_2 \\ \vdots \end{array} \right] \sigma_2 v_{12} + \cdots + \left[\begin{array}{c} \vdots \\ \mathbf{u}_k \\ \vdots \end{array} \right] \sigma_k v_{1k}$

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\varSigma}_k \mathbf{V}_k^T$

- Original Basis: docs represented in Term Space using Standard Basis $S = \{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e}_m\}$
- New Basis: docs represented in smaller Latent Semantic Space using Basis $B = \{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}\}$ $(k < \min(m,n))$

$$doc_1$$
 $nonneg. \left(\begin{array}{c} \vdots \\ \mathbf{A}_{*1} \\ \vdots \end{array} \right)_{m \times 1} pprox \left[\begin{array}{c} \vdots \\ \mathbf{u}_1 \\ \vdots \end{array} \right] \sigma_1 v_{11} + \left[\begin{array}{c} \vdots \\ \mathbf{u}_2 \\ \vdots \end{array} \right] \sigma_2 v_{12} + \cdots + \left[\begin{array}{c} \vdots \\ \mathbf{u}_k \\ \vdots \end{array} \right] \sigma_k v_{1k}$

still use angular cosine measure

$$\delta_i = \cos \theta_i = \mathbf{q}^T \mathbf{d}_i / (\|\mathbf{q}\|_2 \|\mathbf{d}_i\|_2) = \mathbf{q}^T \mathbf{A}_k \mathbf{e}_i / (\|\mathbf{q}\|_2 \|\mathbf{A}_k \mathbf{e}_i\|_2)$$

$$= \mathbf{q}^T \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T \mathbf{e}_i / (\|\mathbf{q}\|_2 \|\boldsymbol{\Sigma}_k \mathbf{V}_k^T \mathbf{e}_i\|_2)$$

Properties of SVD

- basis vectors \mathbf{u}_i are orthogonal
- u_{ij} , v_{ij} are mixed in sign

$$\mathbf{A}_k = \mathbf{U}_k \quad \boldsymbol{\Sigma}_k \quad \mathbf{V}_k^T$$

$$nonneg \quad mixed \quad nonneg \quad mixed$$

- U, V are dense
- uniqueness—while there are many SVD algorithms, they all create the same (truncated) factorization
- of all rank-k approximations, \mathbf{A}_k is optimal (in Frobenius norm) $\|\mathbf{A} \mathbf{A}_k\|_F = \min_{rank(\mathbf{B}) < k} \|\mathbf{A} \mathbf{B}\|_F$

A =								
	0	0.5774	0	0.4472	0.7071	0	0.7071	
		0.5774	0.5774	0	0		0	
	0	0	0	0	0		0.7071	
	0	0	0	0.4472	0	0	0	
		0.5774	0.5774	0	0	0	0	
0.7		0	0	0.4472	0	0	0	
•••	0	0	0	0	0.7071	0.7071	0	
	0	0	0.5774	0.4472	00.2	0	0	
0.7		0	0	0.4472	0	0	0	
A4 =								
-0.0	018	0.5958	-0.0148	0.4523	0.6974	0.0102	0.6974	
-0.0		0.4938	0.6254	0.0743	0.0121	-0.0133	0.0121	
0.0	002 -	0.0067	0.0052	-0.0013	0.3569	0.7036	0.3569	
0.1		0.0512	0.0064	0.2179	0.0532	-0.0540	0.0532	
-0.0		0.4938	0.6254	0.0743	0.0121	-0.0133	0.0121	
0.6		0.0598	0.0288	0.5291	-0.0008	0.0002		
0.0		0.0067	0.0052	-0.0013	0.3569		0.3569	
0.2		0.2483	0.4347		-0.0359		-0.0359	
0.6		0.0598	0.0288		-0.0008	0.0002	-0.0008	
A5 =								
-0.0	018	0.5958	-0.0148	0.4523	0.6974	0.0102	0.6974	
-0.0		0.4938	0.6254	0.0743	0.0121		0.0121	
0.0		0.0067	0.0052	-0.0013	0.0033	0.7036	0.7105	
0.1		0.0512	0.0064	0.2179	0.0532	-0.0540	0.0532	
-0.0		0.4938	0.6254	0.0743	0.0121	-0.0133	0.0121	
0.6		0.0598	0.0288	0.5291	-0.0008	0.0002	-0.0008	
0.0		0.0067	0.0052	-0.0013	0.7105	0.7036	0.0033	
0.2		0.2483	0.4347	0.2262	-0.0359	0.0394	-0.0359	
0.6		0.0598	0.0288	0.5291	-0.0008	0.0002	-0.0008	
A6 =								
-0.0	069	0.5915	-0.0126	0.4577	0.6975	0.0100	0.6975	
0.0	075	0.5619	0.5911	-0.0114	0.0105	-0.0109	0.0105	
0.0		0.0048	0.0043	-0.0036	0.0033	0.7037	0.7104	
0.0		0.0824	0.0736	0.3861	0.0563		0.0563	
0.0		0.5619	0.5911	-0.0114	0.0105	-0.0109	0.0105	
0.7		0.0033	-0.0030	0.4497	-0.0023	0.0024	-0.0023	
0.0		0.0048	0.0043		0.7104		0.0033	
-0.0		0.0457		0.4811	-0.0312			
0.7		0.0033	-0.0030			0.0024	-0.0023	
A7 =								
	000	0.5774	-0.0000	0.4472	0.7071	0.0000	0.7071	
				- · · · -	- · · · - · -		- · · · · · ·	

-0.0000 -0.0000 -0.0000 -0.0000 0.7071 -0.0000	0.5774 -0.0000 -0.0000 0.5774 0.0000 0.0000	0.5774 -0.0000 -0.0000 0.5774 -0.0000 -0.0000	-0.0000 -0.0000 0.4472 0.0000 0.4472 -0.0000	-0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.7071	-0.0000 0.7071 0.0000 -0.0000 0.0000 0.7071	0.0000 0.7071 -0.0000 0.0000 0.0000
-0.0000	0.0000	-0.0000	-0.0000	0.7071	0.7071	0.0000
-0.0000	0.0000	0.5774	0.4472	-0.0000	-0.0000	0.0000
0.7071	0.0000	-0.0000	0.4472	0.0000	0.0000	0.0000

LSI Demos

- Telcordia LSI Demo: http://lsi.research.telcordia.com/lsi-bin/lsiQuery
- Netlib LSI Demo: http://www.netlib.org/cgi-bin/lsiBook

Strengths and Weaknesses of LSI

Strengths

- using \mathbf{A}_k in place of \mathbf{A} gives improved performance
- dimension reduction considers only essential components of term-by-document matrix, filters out noise
- best rank-k approximation

Weaknesses

- storage— \mathbf{U}_k and \mathbf{V}_k are usually completely dense
- interpretation of basis vectors \mathbf{u}_i is impossible due to mixed signs
- ullet good truncation point k is hard to determine
- orthogonality restriction

LSI Resources

- Michael W. Berry, Susan T. Dumais, and Gavin W. O'Brien. Using Linear Algebra for Intelligent Information Retrieval. SIAM Review 37(4):573-595, 1995).
- Michael W. Berry, Z. Drmac, and Elizabeth R. Jessup. Matrices, Vector Spaces, and Information Retrieval. SIAM Review 41(2):335-362, 1999.
- Michael W. Berry and Murray Browne. Understanding search engines: mathematical modeling and text retrieval. SIAM, 1999.
- Amy N. Langville. The Linear Algebra behind Search Engines. JOMA. http://mac04-204ha.math.ncsu.edu/ langville/JOMA/JOMAIntro.html, 2005.
- Michael W. Berry. LSI Website. http://www.cs.utk.edu/ lsi/
- SVDPACK and SVDLIBC. Software for singular value decomposition.

links at: http://www.cs.utk.edu/ lsi/

Other Low-Rank Approximations

QR decomposition (see Berry et al. 1999 SIREV or Berry/Browne book)

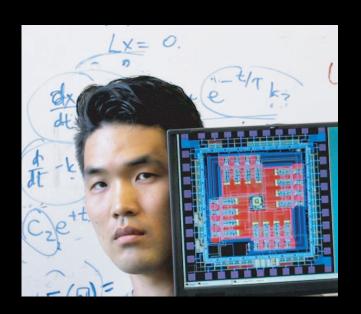
• any \mathbf{URV}^T factorization — Boeing's Donut Patent

Semidiscrete decomposition (SDD)

$$\mathbf{A}_k = \mathbf{X}_k \mathbf{D}_k \mathbf{Y}_k^T$$
, where \mathbf{D}_k is diagonal, and elements of $\mathbf{X}_k, \mathbf{Y}_k \in \{-1, 0, 1\}$

--- Resource: Kolda/O'Leary C and Matlab Code http://www.cs.umd.edu/ oleary/SDDPACK/

Nonnegative Matrix Factorization (2000)



Daniel Lee and Sebastian Seung's Nonnegative Matrix Factorization

Idea: use low-rank approximation with nonnegative factors to improve LSI

Better Basis for Text Mining

Change of Basis

using NMF $\mathbf{A}_k = \mathbf{W}_k \mathbf{H}_k$, where \mathbf{W}_k , $\mathbf{H}_k \geq \mathbf{0}$

Use of NMF: replace **A** with $\mathbf{A}_k = \mathbf{W}_k \mathbf{H}_k$ $(\mathbf{W}_k = [\mathbf{w}_1 | \mathbf{w}_2 | \dots | \mathbf{w}_k])$

$$(\mathbf{W}_k = [\mathbf{w}_1 | \mathbf{w}_2 | \dots | \mathbf{w}_k])$$

New Basis: docs represented in smaller Topic Space using Basis $B = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ $(k << \min(m,n))$

$$doc_1$$
 $nonneg. \left(\begin{array}{c} \vdots \\ \mathbf{A}_{*1} \\ \vdots \end{array} \right)_{m imes 1} pprox \left[\begin{array}{c} \vdots \\ \mathbf{w}_1 \\ \vdots \end{array} \right] h_{11} + \left[\begin{array}{c} \vdots \\ \mathbf{w}_2 \\ \vdots \end{array} \right] h_{21} + \cdots + \left[\begin{array}{c} \vdots \\ \mathbf{w}_k \\ \vdots \end{array} \right] h_{k1}$

Properties of NMF

- basis vectors \mathbf{w}_i are not $\perp \Rightarrow$ can have overlap of topics
- can restrict W, H to be sparse
- W_k , $H_k \geq 0 \Rightarrow$ immediate interpretation (additive parts-based rep.)
 - EX: large w_{ij} 's \Rightarrow basis vector \mathbf{w}_i is mostly about terms j
 - EX: h_{i1} how much doc_1 is pointing in the "direction" of topic vector \mathbf{w}_i

$$\mathbf{A}_{k}\mathbf{e}_{1} = \mathbf{W}_{k}\mathbf{H}_{*1} = \begin{bmatrix} \vdots \\ \mathbf{w}_{1} \\ \vdots \end{bmatrix} h_{11} + \begin{bmatrix} \vdots \\ \mathbf{w}_{2} \\ \vdots \end{bmatrix} h_{21} + \dots + \begin{bmatrix} \vdots \\ \mathbf{w}_{k} \\ \vdots \end{bmatrix} h_{k1}$$

NMF is algorithm-dependent: W, H not unique

Papers report NMF is

Papers report NMF is

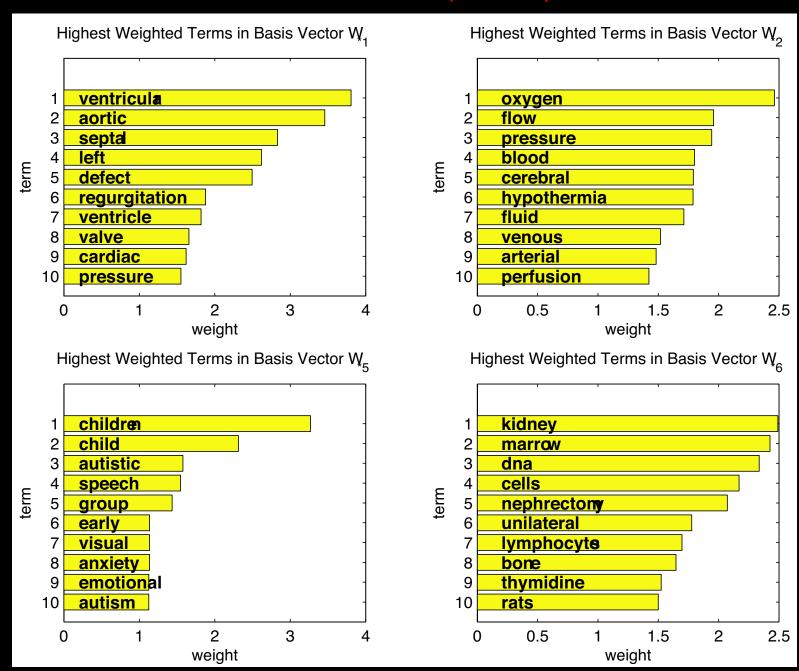
- ≅ LSI for query processing
- ≅ LSI for document clustering

Papers report NMF is

- \cong LSI for query processing
- ≅ LSI for document clustering
- > LSI for interpretation of elements of factorization

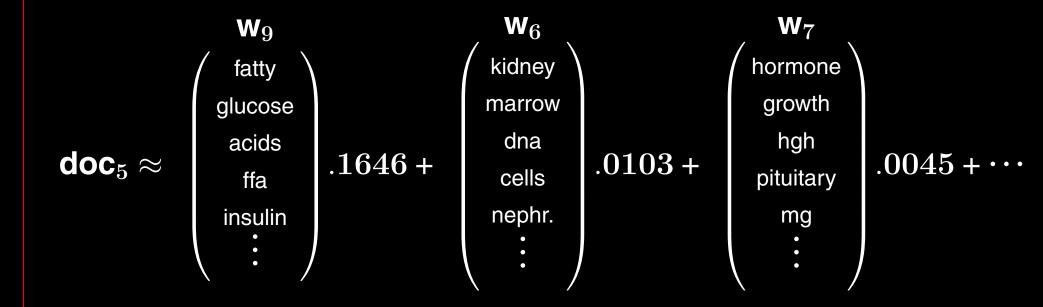
Interpretation of Basis Vectors

MED dataset (k = 10)



Interpretation of Basis Vectors

MED dataset (k = 10)



Papers report NMF is

- ≅ LSI for query processing
- ≅ LSI for document clustering
- > LSI for interpretation of elements of factorization
- > LSI potentially in terms of storage

(sparse implementations)

Papers report NMF is

- \cong LSI for query processing
- ≅ LSI for document clustering
- > LSI for interpretation of elements of factorization
- > LSI potentially in terms of storage (sp

(sparse implementations)

— NLP requires O(kmn) computation per iteration, \approx 10-15 iterations enough for convergence to local min

Computation of NMF

(Lee and Seung 2000)

MEAN SQUARED ERROR OBJECTIVE FUNCTION

$$\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|^2$$
 s.t. $\mathbf{W}, \mathbf{H} \ge \mathbf{0}$

```
\begin{split} \mathbf{W} &= \mathsf{abs}(\mathsf{randn}(\mathsf{m},\mathsf{k})); \\ \mathbf{H} &= \mathsf{abs}(\mathsf{randn}(\mathsf{k},\mathsf{n})); \\ \mathsf{for} \ \mathsf{i} &= 1 : \ \mathsf{maxiter} \\ &\quad \mathbf{H} &= \mathbf{H} \ .^* \ (\mathbf{W}^T \mathbf{A}) \ . / \ (\mathbf{W}^T \mathbf{W} \mathbf{H} \ + \ 10^{-9}); \\ &\quad \mathbf{W} &= \mathbf{W} \ .^* \ (\mathbf{A} \mathbf{H}^T) \ . / \ (\mathbf{W} \mathbf{H} \mathbf{H}^T \ + \ 10^{-9}); \\ \mathsf{end} \end{split}
```

Many parameters affect performance (k, obj. function, sparsity constraints, algorithm, etc.).

— NMF is not unique!

Strengths and Weaknesses of NMF

Strengths

- Great Interpretability
- Performance for query processing/clustering comparable to LSI
- Sparsity of factorization allows for significant storage savings
- Scalability good as k, m, n increase
- possibly faster computation time than SVD

Weaknesses

- Factorization is not unique
 ⇒ dependency on algorithm and parameters
- Unable to reduce the size of the basis without recomputing the NMF

NMF Resources

- Daniel D. Lee and H. Sebastian Seung. Learning the Parts of Objects by Nonnegative Matrix Factorization. Nature, 401:788, 1999.
- Farial Shahnaz, Michael Berry, Paul Pauca, and Robert Plemmons. Document Clustering using Nonnegative Matrix Factorization. Journal on Information Processing and Management, submitted 2004.
- Patrik O. Hoyer. NMF papers and Matlab code. http://www.cs.helsinki.fi/u/phoyer/
- Simon John Shepherd. nnmf() executable C file. http://www.simonshepherd.supanet.com/nnmf.htm