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Outline

Vector Space Model  (1960s and 1970s)
Latent Semantic Indexing  (1990s)
Other VSM decompositions  (1990s)

Nonnegative Matrix Factorization  (2000)



Vector Space Model (ssos and 19709

Gerard Salton’s Information Retrieval System

turn n textual documents into n document vectors d;,d-,...,d,
create term-by-document matrix A, ., = [d;|d2|---|d;, ]

to retrieve info., create query vector g, which is a pseudo-doc
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turn n textual documents into n document vectors d;,d-,...,d,
create term-by-document matrix A, ., = [d;|d2|---|d;, ]

to retrieve info., create query vector g, which is a pseudo-doc

GOAL: find doc. d; closest to q

angular cosine measure used: §; = cos0; = q’d;/(||qll2|/d;||2)
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VSM Performance

Precision = # REL. DOCS RETRIEVED ex: 3/10
# DOCS RETRIEVED '
__ | # REL. DOCS RETRIEVED ‘
Reca” = { & REL. DOCS i| EX: 3/7

Time
normalize cols of A and q to speed cosine computation
now relevancy vector § = g/ A (just 1 V-M mult. at query time)



VSM Performance

PreCISlon — |:# REL. DOCS RETRIEVEDi|

# DOCS RETRIEVED

Reca” _ |:# REL. DOCS RETRIEVEDi|

# REL. DOCS

Time
normalize cols of A and q to speed cosine computation
now relevancy vector § = g/ A (just 1 V-M mult. at query time)

angle cutoff value: 9; > .7 vs §; > .8
weighting elements of A: tf-idf, b-idf, etc.

stemming, stoplisting, etc.
(Resource: Text to Matrix Generator netp://scgroup.hpclab. ceid.upatras. gr/scgroup/Projects/THc/ )
(Resource: Porter Stemmer Demo nttp://snowbail. tartarus. org/deno. php)
(RGSOUI’CGZ VSM Demo http://kt2.exp.sis.pitt.edu:8080/VectorMode1/main.html)


http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/
http://snowball.tartarus.org/demo.php
http://kt2.exp.sis.pitt.edu:8080/VectorModel/main.html
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Strengths and Weaknesses of VSM

A is sparse
g’ A is fast and can be done in parallel

relevance feedback: q = §;d; + d3d3 + o-d

synonyms and polysems—noise in A
decent performance

basis vectors are standard basis vectors e, es,...,e,,, which
are orthogonal = independence of terms
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VSM Resources

Gerard Salton. Automatic information organization and retrieval. McGraw-Hill, 1968.

Gerard Salton and Michael J. McGill. Introduction to modern information retrieval.
McGraw-Hill, 1983.

Gerard Salton. Automatic text processing: the transformation, analysis, and retrieval
of information by computer. Addison-Wesley, 1989.

Michael W. Berry and Murray Browne. Understanding search engines: mathematical
modeling and text retrieval. SIAM, 1999.

Amy N. Langville. The Linear Algebra behind Search Engines. JOMA. uttp://macos-

204ha.math.ncsu.edu/ langville/JOMA/JOMAIntro.html, 2005 .

M|Chae| W Bel’ry LSI WebSIte http://www.cs.utk.edu/ 1si/


http://mac04-204ha.math.ncsu.edu/~langville/JOMA/JOMAIntro.html
http://www.cs.utk.edu/~lsi

Great Idea! 2 patents for Bell/Telcordia

Computer information retrieval using latent semantic structure. U.S. Patent No.
4,839,853, June 13, 19809.

Computerized cross-language document retrieval using latent semantic indexing.
U.S. Patent No. 5,301,109, April 5, 1994.

( ReSOU rce: U S PTO http://patft.uspto.gov/netahtml/srchnum. htm)


http://patft.uspto.gov/netahtml/srchnum.htm
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SVD

A, ... rank r term-by-document matrix
SVD: A=UX V' =" ouyv/
LSl: use A, =>_._, o;u;v! in place of A
Why?
reduce storage when k << r

filter out uncertainty, so that performance on text mining
tasks (e.g., query processing and clustering) improves



Gy
What’s Really Happening?

Change of Basis
using truncated SVD Ay = UkZ'kV%

Original Basis: docs represented in Term Space using Standard
Basis S = {e;,es,...,e,,}

New Basis: docs represented in smaller Latent Semantic Space
using Basis B = {uj,us, ..., u;}

docq

nonneg.

entries A*l ~ (Up | 01V11+ | Ug | 02012+ + | U | OKV1E

mx1 I L



2
<D
) 4

What’s Really Happening?

Change of Basis
using truncated SVD Ay = Ukz‘kv{

Original Basis: docs represented in Term Space using Standard
Basis S = {e;,es,...,e,,}

New Basis: docs represented in smaller Latent Semantic Space
using Basis B = {uj,us, ..., u;}

docq

nonneg.

entries A*l ~ (Up | 01V11+ | Ug | 02012+ + | U | OKV1E

mx1 I L

still use angular cosine measure
0; = cost; = q' d;/([d|2]|d;[|2) = a" Are;/(||all2/|Avei )

=q'Up X Vie/([all2]| ZkVieil2)
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Properties of SVD

basis vectors u; are orthogonal

u;j, vi; are mixed in sign
A, = U, >, Vi

nonneg mired nonneg mixed

U, V are dense

uniqueness—while there are many SVD algorithms, they all
create the same (truncated) factorization

of all rank-k approximations, A, is optimal (in Frobenius norm)
HA _ AkHF = minrank(B)Sk HA — BHF
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LSI Demos

Telcordia LSI Demo: http://1lsi.research.telcordia.com/1si-bin/lsiQuery

Netlib LSI Demo: http://www.netlib.org/cgi-bin/lsiBook


http://lsi.research.telcordia.com/lsi-bin/lsiQuery
http://www.netlib.org/cgi-bin/lsiBook

Strengths and Weaknesses of LSI

using A;. in place of A gives improved performance

dimension reduction considers only essential components of
term-by-document matrix, filters out noise

best rank-£ approximation

storage—U;. and V. are usually completely dense

interpretation of basis vectors u; is impossible due to mixed
signs

good truncation point £ is hard to determine
orthogonality restriction




) 4

LS| Resources

Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using Linear Algebra for
Intelligent Information Retrieval. SIAM Review 37(4):573-595, 1995).

Michael W. Berry, Z. Drmac, and Elizabeth R. Jessup. Matrices, Vector Spaces, and
Information Retrieval. SIAM Review 41(2):335-362, 19909.

Michael W. Berry and Murray Browne. Understanding search engines: mathematical
modeling and text retrieval. SIAM, 1999.

Amy N. Langville. The Linear Algebra behind Search Engines. JOMA. uttp://macos-

204ha.math.ncsu.edu/ langville/JOMA/JOMAIntro.html, 2005
M'Chael W Berry LSI WebSIte http://www.cs.utk.edu/ 1si/

SVDPACK and SVDLIBC. Software for singular value decomposition.

I|nkS at http://www.cs.utk.edu/ 1si/


http://www.mac04-204ha.math.ncsu.edu/~langville/JOMA/JOMAIntro.html
http://www.cs.utk.edu/~lsi
http://www.cs.utk.edu/~lsi

G

Other Low-Rank Approximations

QR decomposition  (see Berry et al. 1999 SIREV or Berry/Browne book)

any URV? factorization — Boeing’s Donut Patent

Semidiscrete decomposition (SDD)

A, = XkaYg, where Dy, is diagonal, and elements of X;, ¥, € {—1,0,1}

Resource: Kolda/O’Leary C and Matlab Code nttp://wiv.cs.und.edu/ oleary/spopack/


http://www.cs.umd.edu/~oleary/SDDPACK/

G

Nonnegative Matrix Factorization oo

Daniel Lee and Sebastian Seung’s Nonnegative Matrix Factorization

— T
nonneg mired nonneg mixed
AL = W, H;

nonneg nonneg  nonneg
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Better Basis for Text Mining

Change of Basis
using NMF A, = W.H., where Wy, H, >0

Use of NMF: replace A with A, = W.H,
New Basis: docs represented in smaller Topic Space using Basis

B={wy,ws, ... W}

docq
nonneg.

entries A*l ~ | Wy h11+ W»- h21+"'+ W hkl

mx1 IR IR I



Properties of NMF

basis vectors w; are not L = can have overlap of topics

can restrict W, H to be sparse

W., H, > 0 = immediate interpretation

large w;;’'s = basis vector w; is mostly about terms ;

h;1 how much doc; is pointing in the “direction” of topic

vector w;

Ae; =W;H,, =

hll +

h21+“‘+

NMF is algorithm-dependent. W, H not unique
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NMF Literature

Papers report NMF is

Y

LSI for query processing
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NMF Literature

LSI for query processing

LS| for document clustering



NMF Literature

112

LSI for query processing
= LSI for document clustering

> LSI for interpretation of elements of factorization



Highest Weighted Terms in Basis Vector W1 Highest Weighted Terms in Basis Vector W2

ventricula
aortic

septa

left

defect
regurgitation |
ventricle |
valve |
cardiac |
pressure |

oxygen
flow

pressure

blood

cerebral
hypothermia

fluid

venous |
arterial |
perfusion |

QWO NOODOUGR~,WN =

1
2
3
4
5
6
7
8
9
0

1

—

1 2 0.5 1 1.5 2.5
weight weight
Highest Weighted Terms in Basis Vector W5 Highest Weighted Terms in Basis Vector W6

children
child
autistic
speech
rou
early
visual
anxiety
__emotionhl
_autism |

0 0.5

kidney
marrowv

dna

cells
nephrectony
unilateral
lymphocyte
bone
thymidine
rats

QOWoOoONOOCOUGR~WUN =
QOWoONOOCOUOGR~WUN =

—
—




G

Interpretation of Basis Vectors
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NMF Literature

LSI for query processing

LS| for document clustering

LSI for interpretation of elements of factorization

LSI potentially in terms of storage
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NMF Literature

112

LS| for query processing

112

LS| for document clustering
> LSI for interpretation of elements of factorization
> LSI potentially in terms of storage

— NLP requires O(kmn) computation per iteration, ~ 10-15 iter-
ations enough for convergence to local min



Computation of NMF

MEAN SQUARED ERROR OBJECTIVE FUNCTION

min||A — WH|> st W,H>0

W = abs(randn(m,k));
H = abs(randn(k,n));
for i =1 : maxiter
H=H .* (W'A) ./ (W/WH + 107?);
W =W .* (AH') ./ (WHH' + 1079);
end

Many parameters affect performance (k, obj. function, sparsity constraints, algorithm, etc.).

— NMF is not unique!
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Strengths and Weaknesses of NMF

Great Interpretability

Performance for query processing/clustering comparable to LSI
Sparsity of factorization allows for significant storage savings
Scalability good as k, m, n increase

possibly faster computation time than SVD

Factorization is not unique = dependency on algorithm and
parameters

Unable to reduce the size of the basis without recomputing the
NMF



NMF Resources

Daniel D. Lee and H. Sebastian Seung. Learning the Parts of Objects by Non-
negative Matrix Factorization. Nature, 401:788, 1999.

Farial Shahnaz, Michael Berry, Paul Pauca, and Robert Plemmons. Document Clus-
tering using Nonnegative Matrix Factorization. Journal on Information Processing and

Management, submitted 2004.
Patl’lk O Hoyer NMF paperS and Matlab COde http://www.cs.helsinki.fi/u/phoyer/

Slmon JOhn Shepherd nnmf() eXGCUtab|e C flle http://www.simonshepherd.supanet.com/nnmf.htm


http://www.cs.helsinki.fi/u/phoyer/
http://www.simonshepherd.supanet.com/nnmf.htm



