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Limitations of LSI

• Rankings are query dependent

Rank of each doc is recomputed for each query

• Only semantic content is used

Link structure completely ignored

• Difficult to add & delete documents

Requires updating & downdating SVD

• Determining optimal k is not easy

Empirical tuning required

• Doesn’t scale up well

Impractical for www
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Using Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• File structure: Terms −→ Pages (similar to book index)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ↪→ ri

— ri based on link structure (i.e., query independent)

— ri computed prior to any query

Direct Query Matching
• Query = (Term1, T erm2) −→ (Pi, ri), (Pj, rj), (Pk, rk), . . .

Return Pi, Pj, Pk, . . . in order of ranks ri, rj, rk, . . .
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How To Measure “Importance”

Authorities Hubs

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs
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HITS Algorithm
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

• Define Authority Scores (first iterate)

ai =
∑

j:Pj→Pi

hj ⇒ a1 =

⎡
⎢⎢⎣

a1

a2...
an

⎤
⎥⎥⎦ = LTh0

Lij =
{

1 Pi → Pj

0 Pi �→ Pj
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HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

• h3 = La3

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1 → e-vector (direction)

• H = LLT (hub matrix) hk = Hhk−1 → e-vector (direction)
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Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood
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Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

• Scores can be manipulated by creating artificial hubs
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Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P ) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P ) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

PageRank Shares The Vote

• Yahoo! casts many “votes” =⇒ value of vote from Y is diluted

— If Yahoo! “votes” for n pages

— then P receives only r(Y )/n credit from Y
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PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |

r2(Pi) =
∑

P∈BPi

r1(P )
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P )
|P |
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In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

πT
j+1 = πT

j P where pij =
{

1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

Maybe It’s A Markov Chain?

If P =
[
pij

]
is a stochastic matrix ( pij≥0 and

∑
j
pij=1 )

Each πT
j is a probability vector ( πi≥0 and

∑
i
πi=1 )

πT
j+1 = πT

j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = steady-state probability distribution
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Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Pk > 0 for some k

The Google Fixes

• P = αS + (1 − α)eeT/n α ≈ .85

• P = αS + (1 − α)evT vT = positive probability vector

• P = αH + (αa + (1 − α)e) vT







Back To Tiny Web

The Google Matrix

P = αH + (αa + (1 − α)e) vT (with α = .9 and v = e)

=

⎡
⎢⎢⎢⎢⎢⎣

1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60

⎤
⎥⎥⎥⎥⎥⎦

The PageRank Vector πT
j+1 = πT

j P → πT

πT =
( 1 2 3 4 5 6

.03721 .05396 .04151 .3751 .206 .2862
)
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Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Prior results don’t help to restart



Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS



Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS

Google Now Uses Many Other “Metrics” to augment PR



Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS

Google Now Uses Many Other “Metrics” to augment PR

Search Is Opening New Areas Ripe For Inovative Ideas

Exciting Work That Is Changing The World



Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS

Google Now Uses Many Other “Metrics” to augment PR

Search Is Opening New Areas Ripe For Innovative Ideas

Exciting Work That Is Changing The World

Thanks For Your Attention


