Mathematical Fuel For Search Engines

Carl Meyer

Department of Mathematics

North Carolina State University
Raleigh, NC

Outline

Background \& History

Vector Space Approach

+ Link Analysis Approach

+ Google

Objectives

Find documents matching user query

Do lt FAST!

SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 - 1965

- IBM 7094 \& IBM 360

Gerard Salton

- Implemented at Cornell (1965 - 1970)
- Based on matrix methods

Term-Document Matrix

Start With Dictionary of Terms

Single words — or short phrases (e.g., landing gear)
Index Each Document (human or computer)
Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrix

$$
\begin{gathered}
\\
\text { Term 1 } \\
\text { Term 2 } \\
\vdots \\
\text { Term m }
\end{gathered}\left(\begin{array}{cccc}
\text { Doc } 1 & \text { Doc 2 } & \cdots & \text { Doc } n \\
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

Features

- Large, sparse, nonnegative - but otherwise unstructured
- Contains a lot of uncertainty

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?

i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

$$
\begin{array}{r}
\left\|\mathbf{q}-\mathbf{A}_{1}\right\|<\left\|\mathbf{q}-\mathbf{A}_{\mathbf{2}}\right\| \text { but } \theta_{\mathbf{2}}<\theta_{1} \\
\text { Use } \delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}
\end{array}
$$

Rank documents by size of δ_{i}
Return Document i to user when $\delta_{i} \geq$ tol

Term Weighting

A Problem

- Suppose query = NCSU
- Suppose NCSU occurs once in D_{1} and twice in D_{2}
- Then $\delta_{2} \approx 2 \delta_{1}$

To Compensate

$$
\text { Set } a_{i j}=\log \left(1+f_{i j}\right)
$$

Query Weighting

- Terms Boeing and airplanes not equally important in queries
- Importance of Term T_{i} in a query tends to be inversely proportional to $\nu_{i}=\#$ Docs containing T_{i}

To Compensate
Set $q_{i}= \begin{cases}\log \left(n / \nu_{i}\right) & \text { if } \nu_{i} \neq 0 \\ 0 & \text { if } \nu_{i}=0\end{cases}$

Uncertainties in A

Ambiguity in Vocabulary

A plane could be ...

- A flat geometrical object
- A woodworking tool
- A Boeing product

Variation in Writing Style
No two authors write the same way

- One author may write car and laptop
- Another author may write automobile and portable

Variation in Indexing Conventions

- No two people index documents the same way
- Computer indexing is inexact and can be unpredictable

Theory vs Practice

In Theory - it's easy

- Index Docs - Weight frequencies in A- Normalize $\left\|\mathbf{A}_{i}\right\|=1$
- For each query, Weight terms - Normalize $\|\mathbf{q}\|=1$
- Compute $\delta_{i}=\cos \theta_{i}=\left(\mathbf{q}^{T} \mathbf{A}\right)_{i}$ to return the most relevant docs

In Practice - it's not so easy

- Suppose query = gas
- D_{1} indexed by gas, car, tire
- D_{2} indexed by automobile, fuel, and tire

The Challenge
Find D_{2} by somehow making a connection through tire

Two Big Jobs

Uncover Hidden Connections

Clean the data in A

Do Things FAST!

__Compress the data in A

Contaminated Data

$$
\mathbf{x}=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{510} \\
x_{511}
\end{array}\right]
$$

Goals

- Compress the data
- Reveal hidden patterns

Change Of Coordinates

New Basis $\mathcal{B}=\left\{W_{0}, W_{1}, \ldots, W_{n-1}\right\}$

Find coordinates of \mathbf{x} with respect to \mathcal{B}

- Find y_{k} so that $\quad \mathbf{x}=\sum y_{k} W_{k}$
- $y_{k}=\left\langle W_{k} \mid \mathbf{x}\right\rangle=$ amount of \mathbf{x} in direction of W_{k}
(if \mathcal{B} o.n.)
- $\mathbf{x}=\mathbf{W y} \quad$ where $\quad \mathbf{W}=\left(W_{0}\left|W_{1}\right| \cdots \mid W_{n-1}\right)$
$-\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}$
($\mathrm{y}=\mathrm{W}^{*} \mathrm{x}$ if \mathcal{B} o.n.)
Oscillatory Nature Suggests $W_{k}=\frac{\mathrm{e}^{2 \pi i k t}}{2}$

$$
\begin{aligned}
& \mathbf{W}=\frac{1}{2}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega
\end{array}\right]_{n \times n} \\
& \omega=\mathrm{e}^{2 \pi \mathrm{i} / n} \\
& W_{k}+W_{n-k}=\cos 2 \pi k t \\
& W_{k}-W_{n-k}=\mathrm{i} \sin 2 \pi k t
\end{aligned}
$$

Making The Change

Recall

$$
x=W y
$$

The New Coordinates

$$
\mathbf{y}=\mathbf{W}^{-1} \mathbf{x}=\left(\frac{4 \overline{\mathbf{W}}}{n}\right) \mathbf{x}=\mathbf{F}_{n} \mathbf{X}
$$

Discrete Fourier Transform

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n-1}
\end{array}\right]=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right]
$$

$$
\xi=\bar{\omega}=\mathrm{e}^{-2 \pi \mathrm{i} / n}
$$

The New Coordinates

Only 4 are significant: $\quad y_{80}=1=y_{432} \quad y_{50}=-2 \mathrm{i}=-y_{462}$

$$
\mathbf{x}=\sum y_{k} W_{k}=W_{80}+W_{432}-2 \mathbf{i}\left(W_{50}-W_{462}\right)+\sum \varepsilon_{j} W_{j}
$$

Drop Small Coordinates

Truncation

$$
\begin{align*}
\widetilde{\mathbf{x}} & =\left(W_{80}+W_{432}\right)-2 i\left(W_{50}-W_{462}\right) \\
& =\left(W_{80}+W_{n-80}\right)-2 i\left(W_{50}-W_{n-50}\right) \tag{n=512}
\end{align*}
$$

Compression: $512 \rightarrow 4$

$$
\mathbf{x} \sim x_{0}, x_{2}, \ldots, x_{511} \quad \widetilde{\mathbf{x}} \sim 1,80,2,50
$$

More DFT Magic

$$
\left\{\begin{array}{c}
W_{k}+W_{n-k}=\cos 2 \pi k t \\
W_{k}-W_{n-k}=i \sin 2 \pi k t
\end{array}\right\} \Longrightarrow \widetilde{\mathbf{x}}=\cos 2 \pi 80 t+2 \sin 2 \pi 50 \mathbf{t}
$$

Hidden Pattern Exposed

$$
x=\cos 2 \pi 80 t+2 \sin 2 \pi 50 t+\text { noise }
$$

Original Data

Cleaned \& Compressed Data

The DFT Game

Just A Matrix-Vector Product

$$
\mathbf{y}=\boldsymbol{F}_{n} \mathbf{X}=\frac{2}{n}\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] \quad \xi=\mathrm{e}^{-2 \pi \mathrm{i} / n}
$$

Simple in Theory, But ...
Must be done FAST!

Need For Speed \Longrightarrow Matrix Factorizations

$$
\mathbf{F}_{n}=\mathbf{B}_{n}\left(\mathbf{I}_{\mathbf{2}} \otimes \mathbf{F}_{n / 2}\right) \mathbf{P}_{n} \quad \mathbf{B}_{n}=\left[\begin{array}{rr}
\mathbf{I}_{n / 2} & \mathbf{D}_{n / 2} \\
\mathbf{I}_{n / 2} & -\mathbf{D}_{n / 2}
\end{array}\right] \quad \mathbf{D}_{n / 2}=\left[\begin{array}{lll}
{ }^{1} & & \\
& \xi^{2} & \\
& & \ddots
\end{array}\right]
$$

FFT changes n^{2} flop requirement into ($n / 2$) $\log _{2} n$

Back To IR

Almost the Same Problem

Reveal hidden info and execute $\mathbf{q}^{T} \mathbf{A}$ fast
Data $=$ Term-Doc Matrix in Standard Coordinates

$$
\mathbf{A}=\sum_{i, j} a_{i j} \mathbf{E}_{i j} \quad \mathbf{E}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{T}
$$

Find o.n. Basis $\mathcal{B}=\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots\right\}$ That Squeezes \& Cleans

- $\mathbf{A}=\sum \sigma_{i} \mathbf{Z}_{i}$
- $\sigma_{i}=\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle=$ amount of \mathbf{A} in direction of \mathbf{Z}_{i}

Matrix Factorizations: $\mathbf{A}=\mathbf{U R} \mathbf{V}^{T}=\sum r_{i j} \mathbf{U}_{i} \mathbf{v}_{j}^{T}=\sum r_{i j} \mathbf{Z}_{i j}$

- Represent data with as few directions \mathbf{Z}_{i} as possible

$$
\text { - } \mathrm{SVD} \Rightarrow \mathbf{R}=\left[\begin{array}{lll}
\sigma_{1} & & \\
\ddots_{\sigma_{r_{0}}} & \\
& \ddots_{\cdot}
\end{array}\right] \Rightarrow \quad \mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i} \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases}
$$

Truncate

Assume Nondirectional Uncertainty

- Drop small σ_{i} 's - replace \mathbf{A} with $\widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{Z}_{i}$
- Lose only small part of relevance
- Lose larger proportion of uncertainty

New Strategy

- Normalize columns

$$
-\widetilde{\mathbf{A}} \leftarrow \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \mathbf{D}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \widetilde{\mathbf{v}}_{i}^{T}
$$

- Query Matching

$$
\begin{aligned}
& -\mathbf{q} \leftarrow \mathbf{q} /\|\mathbf{q}\| \\
& -\mathbf{q}^{T} \widetilde{\mathbf{A}}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i} \widetilde{\mathbf{v}}_{i}^{T}=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)\right.
\end{aligned}
$$

Pros \& Cons

Advantages

- Compression
- A replaced with a few sing values \& vectors (but dense)
- They are determined \& normalized only once
- SPEED!
- Each query requires only a few inner products

$$
\mathbf{q}^{T} \widetilde{\mathbf{A}}_{m \times n}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \widetilde{\mathbf{v}}_{i}^{T}
$$

- Latent semantic associations are made
- Relevant docs not found by direct matching show up
- Latent Semantic Indexing
(LSI)
Disadvantages
- Adding \& deleting docs requires updating \& downdating SVD
- Determining optimal k is not easy (empirical tuning required)

Other Orthogonal Expansions ?

Truncated URV Factorizations

DFT - FFT

- No compression - no oscillatory components

Haar Transform $\mathbf{H}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1\end{array}\right]$

- $\mathbf{H}_{n}=\left(\mathbf{l}_{2} \otimes \mathbf{H}_{n / 2}\right) \mathbf{P}_{n}\left[\begin{array}{ll}\mathbf{H}_{n / 2} & \\ & \mathbf{I}_{n / 2}\end{array}\right] \Rightarrow \mathbf{H}_{n} \mathbf{x}$ is Fast!
- Factor $\mathbf{A}=\mathbf{H}_{m} \mathbf{B H}_{n}^{T}=\sum_{i, j} \beta_{i j} \mathbf{h}_{i} \mathbf{h}_{j}^{T}$
(h's only use $-1,0,1$)
- More than a few $\beta_{i j}$'s may be needed
- Needs padding if m or n not a power of 2

Other Wavelet Transforms?

Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Indexing and Ranking

- Still must index key terms on each page
- Robots crawl the web - software does indexing
- Inverted file structure

$$
\begin{aligned}
& -\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots \\
& - \\
& \text { Term }_{2} \rightarrow P_{k}, P_{l}, \ldots
\end{aligned}
$$

- Attach an importance rating to $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$
- Direct query matching
- $Q=$ Term $_{1}$, Term $_{2}, \ldots$ produces $\quad P_{i}, P_{j}, P_{k}, P_{l}, \ldots$
- Return $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$ to user in order of importance

How To Measure "Importance"

Good hub pages point to good authority pages

- Good authorities are pointed to by good hubs

HITS Algorithm

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i} - $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}(0)=1$ for all pages P_{i}

$$
\mathbf{L}_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

- Successively refine rankings
- For $k=1,2, \ldots$

$$
\begin{aligned}
& a_{i}(k)=\sum_{j: P_{j} \rightarrow P_{i}} h_{j}(k-1) \quad \Rightarrow \mathbf{a}_{k}=\mathbf{L}^{T} \mathbf{h}_{k-1} \\
& h_{i}(k)=\sum_{j: P_{i} \rightarrow P_{j}} a_{j}(k) \quad \Rightarrow \mathbf{h}_{k}=\mathbf{L} \mathbf{a}_{k}
\end{aligned}
$$

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L} \quad \mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-1} \rightarrow \mathbf{e}$-vector (direction)
- $\mathbf{H}=\mathbf{L L}^{T} \quad \mathbf{h}_{k}=\mathbf{H h}_{k-1} \rightarrow \mathbf{e}$-vector (direction)

Compromise

1. Do direct query matching

Compromise

1. Do direct query matching
2. Build neighborhood graph

Compromise

1. Do direct query matching
2. Build neighborhood graph

3. Compute authority \& hub scores for just the neighborhood

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores
- Some flexibility

Disadvantages

- Too much has to happen while client is waiting
- Custom built neighborhood graph needed for each query
- Two eigenvector computations needed for each query
- Scores can be manipulated by creating artificial hubs

Google

The PageRank Idea

- Ranking is preassigned
- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links
- One link to P from Yahoo! is important
- Many links to P from me is not
- But if Yahoo! points to many places, the value of the link to P is diluted

PageRank

The Definition

$$
\text { - } r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad-\mathcal{B}_{P}=\{\text { all pages pointing to } P\}
$$

Successive Refinement

- Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
- Iteratively refine rankings for each page

$$
\begin{aligned}
& -r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& -r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|} \\
& \ddots \\
& \quad-r_{j+1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{j}(P)}{|P|}
\end{aligned}
$$

In Matrix Notation

After Step j

- $\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]$
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ where $\quad p_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\ 0 & \text { otherwise }\end{cases}$
- PageRank $=\lim _{j \rightarrow \infty} \pi_{j}^{T}=\pi^{T}$

It's A Markov Chain

- $\mathbf{P}=\left[p_{i j}\right]$ is a stochastic matrix
- Each π_{j}^{T} is a probability distribution vector
- $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ is random walk on the graph defined by links
- $\boldsymbol{\pi}^{T}=\lim _{j \rightarrow \infty} \pi_{j}^{T}=$ stationary probability distribution

Random Surfer

Web Surfer Randomly Clicks On Links

- Long-run proportion of time on page P_{i} is π_{i}

Problems

- Dead end page (nothing to click on) - π^{T} not well defined
- Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
- No convergence

Convergence

- Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

- Replace \mathbf{P} by $\widetilde{\mathbf{P}}=\alpha \mathbf{P}+(1-\alpha) \mathbf{E}$ where $e_{i j}=1 / n \quad \alpha \approx .85$
- Different E's and α 's allow customization \& speedup

THE WALL STREET JOURNAL.

What's News-

Business and Finance

NEWS CORP. and Liberty are no longer working together on a joint offer to take control of Hughes, with News Corp. proceeding on its own and Liberty considering an independent bid. The move threatens to cloud the process of finding a new owner for the GM unit.
(Writiche on rase i3)

- The SEC signaled it may file civil charges against Morgan Stanley, alleging it doled out IPO shares based partly on investors' commitments to buy more stock. (Avicie on Page C1)
- Ahold's problems deepened as U.S. authorities opened Inquiries into accounting at the Dutch company's U.S. Foodservice unit. - Fleming sald the SEC upgraded to a formal investigation an inquiry into the food wholesaler's trade practioes with suppliers.
(Ancelss on Page A2)
- Consumer confidence fell to its lowest level since 1993, hurt by energy costs, the terrorism threat and a stagnant job market.
(Wrikie on pise As)
- The industrials rebounded on

Web Master

As the Web spreads...

fotal interest usen, by housetole, it milions

Google's U.S. presence expands

lop serch engiees, in milions of unique vistons!
 Tep shopping-referal she in milions of memernis?

Ooople

- BUSH IS PREPARING to present Conyress a huge bill for Irag costs. The total could rin to 595 billion depending on the length of the possible war and occupation. As horsetrading began at the U.N. to win support for a war resolution, the prestdent again made clear he intends to act with or without the world body's imprimatir. Arms inspectors sald Baghdad provided new data, incladtig a repoct of a possible biological bomb. Cien. Franks assumed command of the waroperations center in Qatar. Allied warplanes are aggressively taking out missile sites that could threaten the allied troop bulld up. (Column I and Pages As and A6) Tarkey's pariiquont debated lepisiation to let the U.S. deploy fe,00s to oper a northerr frovt. Kurdish siot diers itned roads in a stoue of force as ULS. officials trumeled into Irain's morth for कi opposition confermos.
- Powell said North Korea haso't reatonell sad North Korea hasn't re-
started a reactor and plutonium-processing facility ai Yongbyon, hinting such forbearance might constitute an overture. But saber rattling contintied a dwy after a missile test timed for the inmbgurstioni in Seout. PyongJing accused U.S. spy planes of violating its airspace and told its army to prepare for TI.S. attack. (Page A1t)
- The FRI came uniter *
© The FBI came under withering bf partisan crittelsm in a Senste Jodj-

Bush to Seek up to $\$ 95$ Billion To Cover Costs of War on Iraq

 nd Joun D. McKinnon

Washmaron-The fush adminis. tration is preparing supplemental spend ing requests totaling as much as $\$ 95$ bellion for a war with Irag, its afternath and new expenses to fight terrorism, off. cials said.

The total could be as low as 980 billion because Pentagon budget planners don't know how long a military conflict will last, whether it \& alles will contribute more thun token sums to the effort and what damage Suddam Hussein might do
to hls own country to retaliate against conguering forces.

Budget planners also are awaiting the outcome of an intense internal debate over whether to include $\$ 13$ billion in the requests to Congress that the Pentagon says it needs to fund the broader war on terrorism, as well as for stepped up homeland security. The White House Office of Management and Badget argues that the moncy might not be necessary. President Bush, Defense Secretary Donald Rums. feld and budget director Mitchell Daniels Jr . met yesterday to discuss the matter but didn't reach a final agreement. Mr

Cat and Mouse

As Google Becomes Web's Gatekeeper, Sites Fight to Get In

Search Engine Punishes Firms That Try to Game System; Outlawing the 'Link Farms'

Exoticleatherwear Gets Cut Off
By Michakl. Totty And Mylene Mamalindas

Joy Holman sells provocative leather clothing on the Web, She wants what nearly everyone doing business online wants: more exposure on Google.

So from the time she launched exoticleatherwear.com last May, she tried all sorts of tricks to get her site to show up among the first listings when a trser of Goople Inc.'s popular search engine typed in "women's leatherwear" or "leather apparel." She baried hidden words in her Web pages intended to fool Google's computers. She signed up with a service that promised to have promiscd to have hundreds of sites store-thereby
boosting a crucial measure in Goosle's system of ranking sites.

The technieques

Web Sites Fight for Prime Real Estate on Google
 omi City-based SearchKing, an online

Contioued From First Page advertising that tried to capitalize on Google's formula for ranking sites. In ef ect, SearchKing was offering its cilents a chance to boost their own Google rankings by buying ads on more-popular sites. SearchKing filed suit against the search company in federal court in Okla homa, claiming that Google "purpose fully devalued" SearchKing and its cus omers, damaging its reputation and hurting its advertising sales

Google won't comment on the case. In court filings, the company said SearchKing "engaged in behavior that would lower the quality of Google search results" and alter the company's ranking system.

Google, a closely held company founded by Stanford University graduate stadents Sergey Brin and Larry Page, says Web companies that want to rank high should concentrate on improving their Web pages rather than gaming its system. "When people try to take scoring into their own hands, that turns into a worse experience for users," says Matt Cutts, a Google software engineer.

Coding Trickery

Efforts to outfox the search engines have been around since search engines first became popular in the early 19905 Early tricks included stuffing thoosands of widely used search terms in hidden coding, called "metatags." The coding fools a search engine into identifying a site with popular words and phrases that may not actually appear on the site. Another gimmick was hiding words or terms against a same-color background The hidden coding deceived search en gines that relied heavily on the number of times a word or phrase appeared in ranking a site. But Google's system. based on links, wasn't fooled.

Mr. Brin, 29, one of Google's two founders and now its president of technol ogy, boasted to a San Francisco scarcl engine conference in 2000 that Google wasn't worried about having its results clogged with irrelevant results because its search methods couldn't be manipulated.

That didn't stop search optimizers from finding other ways to outfox the system. Attempts to manipulate Google's results even became a sport, called Goo-
creating Web sites that were nothing more than collections of links to the clients' site, called "link farms," Since Google ranks a site largely by how many links or "votes" it gets, the link farms could boost a site's popularity.

In a similar technique, called a link exchange, a group of unrelated sites would agree to all link to each other, thereby fooling Google into thinking the sites have a multitude of votes. Many sites also found they could buy links to themselves to boost their rankings.

Ms. Holman, the leatherwear retailer, discovered the consequences of trying to fool Google. The 42 -year-old hospital laboratory technician, who learned compater skills by troubleshooting her hospltal's

'The big search

engines determine the laws of how commerce runs,' says Mr. Massa.
equipment, operates her online appare store as a side business that she hopes ean someday replace her dry job.
When she launched her Exotic Leather Wear store from her home in Mesa, Ariz., she quickly learned the imMesa, Ariz., she quickly learned the importance of appearing near the top of
search-engine results, especially on Google. She boned up on search techniques, visiting online discussion groups dedicated to search englnes and reating what material she could find on the Web.
At first, Ms. Holman limited herself to modest changes, such as loading her page with hidden metatag coding that would help steer a search toward her site when a user entered words such as "haltertops" or "leather miniskirts. "Since Google doesn't give much weight to metatags in đetermin: ing its rankings, the efforts had little effect on her search results.

She then received an e-mail adver tisement from AutomatedLinks.com, a Wirral, England, company that promised to send traffic "through the roof" by linking more than 2,000 Web sites to bers. Aside from attracting customers, the links were designed to improve her

In theory, when Google encounters the Automatedi.inks code, it treats it as a legit imate relerral to the other sites and counts them in toting up the sites' popularity.

Shortly after Ms, Holman signed up with AutomatedLinks in July, she read on an online discussion group that Google objected to such link arrangements. She says she immediately stripped the code from her Web pages. For a while her site gradually worked its way up in Google search results, and business steadily improved because links to her site still remained on the sites of other Automatedilinks customers. Then, sometime in November, her site was suddenly no longer appearing among the top results. Her orders plunged as much as 80%.

Ms. Holman, who e-mailed Google and AutornatedLinks, says she has been unable to get answers. But in the last few months, other AutomatedLinks customers say they have seen their sites apparently penalized by Google. Graham McLeay, who runs a small chauffeur service north of London, saw revenue cut in half during the two monthis he believes his site was penalized by Google.

The high-stakes fight between Google and the optimizers can leave some Website owners confused. "I don't know how people are supposed to judge what is right and wrong," says Mr. McLeay.

Automatedlinks didn't respond to requests for comment. Google declined to comment on the case. But Mr. Cutts, the Google engineer, warns that the rules are clear and that it's better to follow them rather than try to get a problem fixed after a site has been penalized. "We want to return the most relevant pages we can," Mr . Cutts says. "The best way for a site owner to do that is follow our guidelines.

Crackdown

Google has been stepping up its enforcement since 2001. It warned Webmasters that using trickery could get their sites kicked out of the Google index and it provided a list of forbidden activities, including hiding text and "tink schemes," such as the link farms. Google also warned against "cloaking"-show also warned against "cloaking" -showing a search engine a page that's de-
signed to score well while giving visitors signed to score well while giving visitors
a different, more attractive page-or crea different, more attractive page-or cre-
ating multiple Web addresses that take ating multiple Web add
visitors to a single site.
directory for hundreds of small, specialty Web sites. SearchKing also sells advertising links designed both to deliver traffic to an advertiser and boost its rankings in Google and other search results.
Bob Massa, SearchKing's chief executive, last August launched the PR Ad Network as a way to capitalize on Google's page-ranking system, known as PageRank. PageRank rates Web sites on a scale of one to 10 based on their popularty, and the rankings can be viewed by Web users If they Install speclat Google software. PR Ad Network sells ads that are priced according to a site's PageRank, with higher-ranked sites commanding higher prices. When a site buys in advertising link on a highly ranked site, the ad buyer could see its ratings improve because of the greater weight Google gives to that link.

Shortly after publicizing the ad net. work, Mr. Massa discovered that his site suddenly dropped in Google's rankings. What's more, sites that participated in the separate SearchKing directory also had their Googte rankings lowered. He filed a lawsuit in Oklahoma City federal court. claiming Google was punishing him for trying to profit from the company's page-ranking system.

A Google spokesman won't comment on the case. In its court filings, Googlesaid It demoted pages on the SearchKing site because of Searchking's attempts to manipulate search results. The company has asked for the suit to be dismissed, arguing that the PageFank represents its opinion of the value of a Web site and as such is protected by the First Amendment.

The big search engines determine the laws of how commerce runs, says Mr Massa, who is persisting with the lawsuit even though the sites have had their page rankings nartly restored. "Someone need rankings partly restored. "S
Google is taking steps that many say could satisfy businesses trying to boost their rankings. Google has long sold sponsored links that show up on the top of many search-results pages, separate from the main listings. Last year, the company expanded its paid-listings program, so that there are now more slots where sites can pay for a prominent place in the results. Many sites now are turning to advertising instead of tactics

Home Depot E

 Amid First QuBy Chad Terumene
ATLANTA-Home Depot Inc. repo fiscal fourth-quarter earnings decl 3.4察 on disappointing sales.

Speaking to investors and indu analysts, the company's chairman chlef executive, Bob Nardelli, Home Depot is prepared to win 1 dissatisfied customers and answe competitive challenge from its chle val with remodeled stores, increase ventory and Improved customer ser

The nation's largest home-impr ment retailer said net income for the 9 ter ended Feb. 2 decreased to $\$ 655$ mil or 30 cents a share, from $\$ 710$ milligor 30 cents a share, a year eartier. Sale 2% to $\$ 13.21$ billion from $\$ 13.49$ billion first quarterly sales decline in the cor ny's 24-year history. Home Depot n the latest quarter was a week shorter a year earlier. Using comparable 13-s periods, the company said quarterly increased 5% and net income rose 8 .

Same-store sales, or sales at st pen at least a year, declined 6 m in quarter. Home Depot sald stronger : last month offset a disastrous Decer and helped the retailer avoid its ea estimate that same-store sales could as much as 10 f . In $4 \mathrm{p} . \mathrm{m}$. New Stock Exchange composite trading, Depot shares rose 66 cents to $\$ 22.84$

Fiat Patriarch Is Set to Becom

By Alessandila Galloni
ROME-Umberto Agnellf is due named Fiat SpA chairman on Friday, ping into the driver's seat as the Italian klomerate works on an ilth-hour
Mr Agnelli, the 68-year-old broth Fiat patriarch Gianni Agnelli, who last month, was widely expected to over fr
Fresco, Fresco, later this year. But Mr. Fr

Computing π^{T}

A Big Problem

- Solve $\pi^{T}=\pi^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
(too big for direct solves)

THE WORLD'S LARGEST MATRIX COMPUTATION

Google's PageRank is an eigenvector of a matrix of order 2.7 billion.

One of the reasons why Google is such an effective search engine is the PageRank ${ }^{\mathrm{TM}}$ algorithm, developed by Google's founders, Larry Page and Sergey Brin, when they were graduate students at Stanford University. PageRank is determined entirely by the link structure of the Web. It is recomputed about once a month and does not involve any of the actual content of Web pages or of any individual query. Then, for any particular query, Google finds the pages on the Web that match that query and lists those pages in the order of their PageRank.

Imagine surfing the Web, going from page to page by randomly choosing an outgoing link from one page to get to the next. This can lead to dead ends at pages with no outgoing links, or cycles around cliques of interconnected pages. So, a certain fraction of the time, simply choose a random page from anywhere on the Web. This theoretical random walk of the Web is a Markov chain or Markov process. The limiting probability that a dedicated random surfer visits any particular page is its PageRank. A page has high rank if it has links to and from other pages with high rank.

Let W be the set of Web pages that can reached by following a chain of hyperlinks starting from a page at Google and let n be the number of pages in W. The set W actually varies with time, but in May 2002, n was about 2.7 billion. Let G be the n-by- n connectivity matrix of

BY CLEVE MOLER

It tells us that the largest eigenvalue of A is equal to one and that the corresponding eigenvector, which satisfies the equation

$$
x=A x
$$

exists and is unique to within a scaling factor. When this scaling factor is chosen so that

$$
\sum_{i} x_{i}=1
$$

then x is the state vector of the Markov chain. The elements of x are Google's PageRank.

If the matrix were small enough to fit in MATLAB, one way to compute the eigenvector x would be to start with a good approximate solution, such as the PageRanks from the previous month, and simply repeat the assignment statement

$$
x=A x
$$

until successive vectors agree to within specified tolerance. This is known as the power method and is about the only possible approach for very large n. I'm not sure how Google actually computes PageRank, but one step of the power method would require one pass over a database of Web pages, updating weighted reference counts generated by the hyperlinks between pages.

Computing π^{T}

World's Largest Matrix Computation (C. Moler)

- Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
- $\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
(too big for direct solves)
- Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$
(power method)

Updating Is A Big Problem

- Link structure of web is extremely dynamic
- Links on CNN point to different pages every day (hour)
- Links are added and deleted almost continuously
- Google says every 3 to 4 weeks just start from scratch
- Old results don't help to restart (even if size doesn't change)

Report Card

FEATURES	LSI	LINK ANALYSIS
Reveals Hidden Patterns	A	C
Speed	B^{-}	A^{+}
Easy To Update	D	$\mathrm{F}(? \uparrow ?)$
Scales Up	D^{-}	A
Takes Advantage of Link Structure	F	A^{+}

Research Goals

- Do better job using link structure to reveal hidden connections
- Improve updating
- Better algorithms to compute π^{T}

Conclusion

+ Only The Tip of the Iceberg
+ Elegant Blend of Math \& CS
+ World Changing Applications
+ Thanks For Your Attention

