Anjela Govan, Northrop Grumman Amy Langville, College of Charleston Carl Meyer, North Carolina State University

> Ranking and Clustering Workshop, Charleston

> > August 2009

Outline

Introduction

- 2 Offense-Defense Model
- 3 Other Ranking Methods
- 4 Game Prediction Results

5 Beyond Sports

Introduction

Basics of Ranking

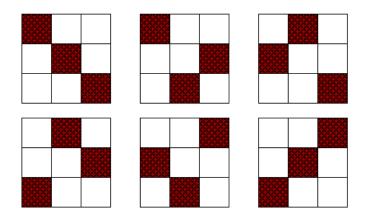
- The *rank* of an object is its relative importance to the other objects in the finite set of size *n*. The ranks are 1,2,3, etc.
- Ranking models produce ratings.
- Ratings provide the degree of relative importance of each object.
- Applications of ranking include sports and search of web and literature.

ODM Development

 $A_{ij} =$ score team j generated against team i $A_{ij} = 0$ otherwise

• offensive rating of team j

$$o_j = A_{1j}(1/d_1) + \dots + A_{nj}(1/d_n)$$


• defensive rating of team i

$$\begin{aligned} d_i &= A_{i1}(1/o_1) + \ldots + A_{in}(1/o_n) \\ \mathbf{o}^{(k)} &= \mathbf{A}^T \frac{1}{\mathbf{d}^{(k-1)}} \\ \mathbf{d}^{(k)} &= \mathbf{A} \frac{1}{\mathbf{o}^{(k)}} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Offense-Defense Model

Matrix Structure - Diagonals $a_{1\sigma(1)}, ..., a_{n\sigma(n)}$

Sinkhorn-Knopp Theorem (1967)

Definition

A square matrix $A \ge 0$ is said to have total support if $A \ne 0$ and if every positive element of A lies on a positive diagonal.

Theorem

For each $A \ge 0$ with total support there exists a unique doubly stochastic matrix S of the form RAC where R and C are unique (up to a scalar multiplication) diagonal matrices with positive main diagonal.

A necessary and sufficient condition that the iterative process of alternatively normalizing the rows and columns of A will converge to a doubly stochastic limit is that A has support.

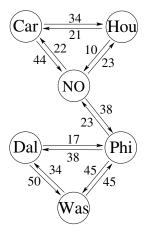
ODM convergence

- If A has total support $\rightarrow {\mathbf{o}^{(k)}}$, and ${\mathbf{d}^{(k)}}$ converge
- A may not have total support (but will have support)
- Can force total support

$$\mathbf{P} = \mathbf{A} + \epsilon \mathbf{e} \mathbf{e}^T$$

• As ϵ decreases number of iterations increases

ODM Algorithm


- 1. Represent the season using a weighted digraph with n nodes. On $i \rightarrow j$ the wight w_{ij} = amount of the statistic acquired by team j against team i.
- 2. Form adjacency matrix \mathbf{A} , $\mathbf{P} = \mathbf{A} + \epsilon \mathbf{e} \mathbf{e}^T$.
- 3. Team i has two rating scores, offensive o_i and defensive d_i

$$\mathbf{o}^{(k)} = \mathbf{P}^T \frac{1}{\mathbf{d}^{(k-1)}}$$
$$\mathbf{d}^{(k)} = \mathbf{P} \frac{1}{\mathbf{o}^{(k)}}$$

4. Overall rating score - rank aggregation (e.g. $r_i = o_i/d_i$).

Offense-Defense Model

2007 season NFL Example - ODM

Adjacency matrix A:

	Car	Dal	Hou	NO	Phi	Was
Car	(0	0	34	44	0	0)
Car Dal	0	0	0	0	17	50
Hou NO	21	0	0	10	0	0
NO	22	0	23	0	38	0
Phi		38	0	0	0	45
Was	0	34	0	0	45	0 /

2007 season NFL Example (ODM)-result

•
$$\mathbf{A} + 0.001 \mathbf{e} \mathbf{e}^{T}$$
, $tol = 0.01$
• $\mathbf{o} \approx (\ 0.134 \ 7.043 \ 0.098 \ 0.091 \ 6.396 \ 12.383 \)^{T}$
• $\mathbf{d} \approx (\ 827.666 \ 6.736 \ 266.663 \ 403.771 \ 9.074 \ 11.912 \)^{T}$
• $\mathbf{r} \approx (\ 0.00016 \ 1.0456 \ 0.00037 \ 0.00023 \ 0.705 \ 1.04 \)^{T}$

The list of ranked teams (from best to worst) is

Dal Was Phi Hou NO Car

Matrix Based Ranking Models

Colley Matrix 2002

Solves system of linear equations

 Generalized Markov (GeM) 2008 (generalized PageRank 1999)
 Uses dominant eigenvector of an irreducible, primitive

Uses dominant eigenvector of an irreducible, primitive, stochastic matrix

- Keener's Method (Keener, 1993)
 Uses dominant eigenvector of a nonnegative irreducible matrix
- Massey Ratings (Massey, 1997) Least-squares based method

Colley Method

1. Form Colley matrix ${\bf C}$

$$\mathbf{C}_{ij} = \begin{cases} -n_{ij} & \text{if} \quad i \neq j, \\ 2 + n_i & \text{if} \quad i = j, \end{cases}$$

where n_i = total number of games played by team T_i and n_{ij} = number of times T_i played T_j .

2. Form vector b

$$b_i = 1 + (w_i - l_i)/2,$$

where w_i = number of T_i wins and l_i = number of T_i loses.

3. Solve

$$\mathbf{Cr} = \mathbf{b},$$

the vector **r** contains rating scores of each team.

Generalized Markov Method (GeM)

1. Form matrix ${\bf H}$

$$\mathbf{H}_{ij} = \left\{ \begin{array}{ll} w_{ij} / \sum_{k=1}^{n} w_{ik} & \text{if } i \text{ played } j \\ 0 & \text{otherwise} \end{array} \right.$$

2. Form GeM matrix G

$$\mathbf{G} = \alpha [\mathbf{H} + \mathbf{a} \mathbf{u}^T] + (1 - \alpha) \mathbf{e} \mathbf{v}^T$$

where $0 < \alpha < 1$, $\mathbf{v} > 0$ and \mathbf{u} are probability distribution vectors and $a_i = 1$ if $\mathbf{H}_i^T = \mathbf{0}$ and 0 otherwise.

3. The vector containing the rating scores is π such that

$$\boldsymbol{\pi}^T = \boldsymbol{\pi}^T \mathbf{G}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1. Form Keener nonnegative matrix K

•
$$\mathbf{K}(i,j) = \left\{ \begin{array}{ll} h\left(\dfrac{S_{ij}+1}{S_{ij}+S_{ji}+2}
ight) & \mbox{team i played team j} \\ 0 & \mbox{otherwise} \end{array}
ight,$$

where S_{ij} is the amount of points scored by team T_i against team T_j and

$$h(x) = \frac{1}{2} + \frac{1}{2}\operatorname{sgn}(x - \frac{1}{2})\sqrt{|2x - 1|}$$

2. Rank vector \mathbf{r} is the Perron vector of \mathbf{A} .

Massey Ratings

1. Form the Massey matrix $\mathbf{M} = \mathbf{X}^T \mathbf{X}$

$$\mathbf{M}_{ij} = \begin{cases} -n_{j,i} & \text{if} \quad i \neq j, \\ n_i & \text{if} \quad i = j, \end{cases}$$

 n_i - total number of games played by T_i , $n_{j,i}$ - number of times T_i played T_j .

- 2. Form the vector $\mathbf{d} = \mathbf{X}^T \mathbf{y}$, d_i =total difference in scores for team T_i .
- 3. Force ${\bf M}$ to have full rank, do ONE of the following
 - a. Replace M with $M + e^T e$, e vector of all 1's.
 - b. Replace one of the rows of M with e and the corresponding entry in d with c.
- 4. The ratings vector ${\bf r}$ is the solution to the resulting system.

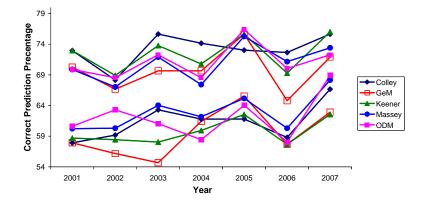
Game Prediction Results

Data Gathering and Automation

- Reliable data sources
- Data format
- Amount of data
- Sources http://www.jt-sw.com/football/boxes/index.nsf (John M. Troan); http://scores.espn.go.com/ncf/scoreboard (ESPN);
- Data collection and parsing automated with Perl scripts

Game Prediction Results

```
NFL Game Prediction
```


2001-2007 with preseason padding

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ODM $tol = 0.01, \epsilon = 0.00001$
- GeM $\alpha = 0.6$

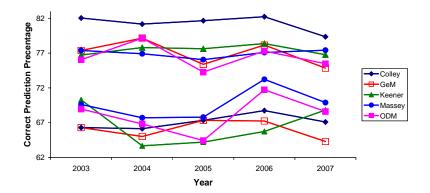
Game Prediction Results

NFL Foresight/Hindsight Prediction Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Game Prediction Results

NCAA Football Game Prediction


- Div I-A
- 2003-2007 starting week 5
- ODM $tol = 0.01, \epsilon = 0.00001$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 = のへぐ

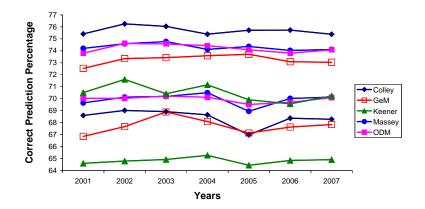
• GeM $\alpha = 0.6$

Game Prediction Results

NCAA Football Foresight/Hindsight Prediction Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Game Prediction Results


NCAA Basketball Game Prediction

- Division I
- 2001-2007 starting game day 26
- ODM $tol = 0.01, \epsilon = 0.00001$
- GeM (personalization vector), $\alpha = 0.6$, $\mathbf{v} = (1/n)\mathbf{e}$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Game Prediction Results

NCAA Basketball Foresight/Hindsight Prediction Results

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Ranking Naming Schemes - Problem of Voting

- Have a number of conference rooms to name
- 14 employees voting
- 7 proposed naming schemes
 - College Mascots/Conferences/Teams
 - Dead Giants of Science/Math/Engineering

- English Premier League Soccer Teams
- Famous Golf Courses
- NASCAR Tracks/Races
- NC Beaches/Beach towns
- Old-School Arcade Games

Data - round-robin tournament

Pair	ir LEFT Name Scheme		RIGHT Name Schemes	prefer by
1	Famous Golf Courses	3.00	NC Beaches/Beachtowns	0.33
2	Famous Golf Courses	5.00	Old-School Arcade Games	0.20
3	Famous Golf Courses	5.00	NASCAR Tracks/Races	0.20
4	Famous Golf Courses	5.00	College Mascots/Conferences/Teams	0.20
5	Famous Golf Courses	5.00	Dead Giants of Science/Math/Engineeri	0.20
6	Famous Golf Courses	5.00	English Premier League Soccer Teams	0.20
7	NC Beaches/Beachtowns	5.00	Old-School Arcade Games	0.20
8	NC Beaches/Beachtowns	4.00	NASCAR Tracks/Races	0.25
9	NC Beaches/Beachtowns	4.00	College Mascots/Conferences/Teams	0.25
10	NC Beaches/Beachtowns	5.00	Dead Giants of Science/Math/Engineeri	0.20
11	NC Beaches/Beachtowns	5.00	English Premier League Soccer Teams	0.20
12	Old-School Arcade Games	0.25	NASCAR Tracks/Races	4.00
13	Old-School Arcade Games	0.25	College Mascots/Conferences/Teams	4.00
14	Old-School Arcade Games	3.00	Dead Giants of Science/Math/Engineeri	0.33
15	Old-School Arcade Games	0.25	English Premier League Soccer Teams	4.00
16	NASCAR Tracks/Races	2.00	College Mascots/Conferences/Teams	0.50
17	NASCAR Tracks/Races	3.00	Dead Giants of Science/Math/Engineeri	0.33
18	NASCAR Tracks/Races	0.33	English Premier League Soccer Teams	3.00
19	College Mascots/Conferences/Teams	3.00	Dead Giants of Science/Math/Engineeri	0.33
20	College Mascots/Conferences/Teams	0.25	English Premier League Soccer Teams	4.00
21	Dead Giants of Science/Math/Engineerin	0.25	d English Premier League Soccer Teams	4.00

Rank according to Colley

- 1 Famous Golf Courses
- 2 Dead Giants of Science/Math/Engineering
- 3 Old-School Arcade Games
- 4 College Mascots/Conferences/Teams
- 5 NC Beaches/Beach towns
- 6 English Premier League Soccer Teams

7 NASCAR Tracks/Races

Rank according to GeM

- 1 Famous Golf Courses
- 2 Old-School Arcade Games
- 3 NC Beaches/Beach towns
- 4 Dead Giants of Science/Math/Engineering

- 5 College Mascots/Conferences/Teams
- 6 English Premier League Soccer Teams
- 7 NASCAR Tracks/Races

Rank according to ODM

- 1 Famous Golf Courses
- 2 NC Beaches/Beach towns
- 3 Old-School Arcade Games
- 4 College Mascots/Conferences/Teams
- 5 Dead Giants of Science/Math/Engineering

- 6 English Premier League Soccer Teams
- 7 NASCAR Tracks/Races

Beyond Sports

Thank You! Questions?

