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The Problem

● We have a collection of related textual documents.
● Ours were product reviews of a Leica DLux camera.

● We want to identify the topics being discussed.
● Weight, picture quality, bells-and-whistles, etc.

● We want to judge the positivity or negativity of 
opinions being expressed.

● This is future work.



Outlined Approach

● Create a relatively short list of “topic words.”
● Words likely to pertain to a specific topic.

● Generate a graph of  relationships between these 
topic words.

● How related are two words to each other?

● Cluster these words together.
● Each cluster should be interpretable as a topic.
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NMF - Interpretation

● Each column of the approximation      is a linear 
combination of the columns of    .

● The weights of these combinations are given by the 
columns of    .

● We can interpret this as a soft-clustering of the 
documents.

● Each column of W is a prototypical document for a given 
topic.

● Actual documents are a linear combination of topics.
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NMF – Algorithmic Concerns

● We used Patrick Hoyer's NMF with sparsity 
constraints.

● Enforced sparsity, improving the interpretability of the 
results.

● Empirically, the success seems pretty independent 
of the rank of approximation.

● More on this in a minute.



NMF – Results

●noise, buy, sensor, panasonic, silly, fuji

●quality, manufacture, pay, operational, lens

●format, shoot, flash, slowlag, promise, automotive, 
flashoth, side, equipment, inside

●image, color, clarity, small, size, alternative, mk, 
lightweight, sturdy, c-lux

●camera, amazing, happy, menu, master, photo, mp, 
close
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What Happened?

●Using NMF for soft clustering assumes that related 
words co-occur.

● With many, very short documents, related words are often 
alternatives.

● These can even be less likely to co-occur than average, which 
certainly invalidates this assumption.

●Nonetheless, we do get lots of good topic words.
● We want to filter the bad ones.

● We want to group them.



Filtering Words

f di
f Ei

● Divide frequencies of each word in your dataset to 
their frequency in the “English language.”

● The “English language” is some large corpus of English 
text.

● We used TV and movie scripts.

● The higher this ratio, the more uncommonly-often 
a word is used.

● Words with higher ratios are more likely relevant to the 
subject field.



Combining Metrics

● Only using word-usage ratios gives misspellings 
high weight, as they are “rare” in English.

● Simply using words from the NMF gives overly 
common words.

● However, the top word of each column was always 
good.

● Usually dominant by a factor of 2 – 10.

● Filtering NMF words with word-usage ratios 
allows us to use only words that are likely by both 
metrics.



Graphing the Keywords

● Now we have a list of topic words.
● We define a graph.

● The distance between two nodes is a measure of how 
similar they are.

● Similarity is based on two factors.
● Semantic Similarity
● Word Proximity



Semantic Similarity - WordNet
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Semantic Similarity – Finesse

● After the subgraphs meet, we go one iteration 
further.

● We then take the size of the overlap as a second metric.
● Words could be related through obscure meanings.



Word Proximity

● Cui, Mittal, and Datal concluded that there is no 
significant relationship between words more than 
5 apart.

● For each pair of words, we count up the number of 
times they appear within 5 words of each other.

● We divide this by the min of the number of 
occurrences of the 2 words.



Clustering the Graph

● The graph distance is some linear combination of 
semantic similarity and word proximity.

● Empirically, even weighting did well.

● Then, we associate together the words with the 
strongest relationships.
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Clustering Into Topics

● Each cluster should be a topic.
● Words related either by context or meaning.

● Any graph-clustering algorithm can be used.
● We projected the data into a lower dimensional space 

via an SVD, then partitioned with Principal Direction 
Gap Partitioning (PDGP), then post-processed with K-
means.

● Unfortunately, no theory for selecting the number of 
clusters.



Results - Good

● image, images, color, 
quality, clarity

● lens, optics, image, 
sturdy

● canon, nikon, sony, mp, 
packaging

● pictures, candid, 
landscapes

● options, menu, item, 
manual, settings, sensor, 
photographer, worlds, 
shoots

● love, very, great, also, 
expensive

● camera, cameras



Results - Bad

● use, its

● Delicate, shipping, raw, 
mode, ratio

● size, post, noise, flash, 
screen

● feature, format, shoot 
lightweight

● everyday 

● grandchildren 

● aspect 

● digital, compact, 
complicate, swears



Drawbacks and Limitations

● As always, selecting the number of clusters is 
tricky.

● Empirically, selecting the wrong number could give 
very poor results.

● There are a lot of parameters.
● Most have reasonable default values, but some do not.

● Results are far from perfect.
● Definitely better than random.



Area of Improvement – NLP

● It would help to replace word proximity with 
some measure of word relatedness.

● This would require word some natural language 
programming to implement.

● There are an awful lot of complexities.
● Pronouns within sentences
● Pronouns across sentence boundaries
● Type of speech detection
● Misspelling, bad grammar



Area of Improvement – WordNet

● Currently, we treat all word relationships equally.
● Synonym should probably be closer than hyponym.
● One would need to consult with a linguist.

● Patterns of word relationships might add or 
subtract weight.

● hyponym – hypernym
● This goes “up” in genericicity, then back down.



Area of Improvement – Corpus

● The corpus of English text could be refined.
● Removal of confirmed misspellings

● The English corpus could also be expanded.



Alternative Approach – 
Hard Clustering

● Don't form the columns of      from documents, 
but from sentences.

● Then a more traditional hard clustering can be used on 
the sentences.

● We must normalize and weight the sentences to avoid 
long reviews automatically being given preference over 
short ones.

● This would produce many more garbage clusters, but 
hopefully also better topic clusters.

A



Conclusion

● We start by trying to identify words which 
characterize various topics.

● We then build a graph of these words, based on 
word relatedness metrics.

● Finally, we cluster this graph to arrive at a set of 
topics.

● This algorithm does seem to work, but has room 
for a lot of improvement.
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