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Early Search Engines

System for the Mechanical Analysis and Retrieval of Text

Harvard 1962 – 1965

IBM 7094 & IBM 360

Gerard Salton

Implemented at Cornell (1965 – 1970)

Based on matrix methods
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Start with dictionary of terms
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Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Variation in Indexing Conventions

— No two people index documents the same way

— Computer indexing is inexact and can be unpredictable



Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not



Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?



Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q



Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖



Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol



Susan Dumais’s Improvement

Great Idea!

� Approximate A with a lower rank matrix

� Effect is to compress data in A

• 2 patents for Bell/Telcordia

— Computer information retrieval using latent semantic structure. U.S. Patent No.

4,839,853, June 13, 1989.

— Computerized cross-language document retrieval using latent semantic indexing.

U.S. Patent No. 5,301,109, April 5, 1994.

• LATENT SEMANTIC INDEXING
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• Finding optimal compression not easy
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Web Search Components

Web Crawlers Software robots
gather web pages

Doc Server Stores docs
and snippits

Index Server

Scans pages and does term indexing
Terms −→ Pages (similar to book index)



Google’s Heart = PageRank

The Ranking Module

• Assign an importance value to each page

� Independent of any query

• Google’s PageRank c© technology distinguishes it from all
competitors
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Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P ) that is not query dependent

� Off-line calculations — No query time computation

• Let the Web vote with in-links

� But not by simple link counts

— One link to P from Yahoo! is important

— Many links to P from me is not

• Share The Vote

� Yahoo! casts many “votes”

— value of vote from Y ahoo! is diluted

� If Yahoo! “votes” for n pages

— Then P receives only r(Y )/n credit from Y
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PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |

r2(Pi) =
∑

P∈BPi

r1(P )
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P )
|P |
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Random Web Surfer

3

6 5

4

1 2 • Randomly click on links

— Forever —

• Proportion of time spent on page Pj is
the Pagerank r(Pj)

• Called a Random Walk (or a Markov
Chain) on the web graph.

• πT = [r(P1), r(P2), . . ., r(Pn)]

The steady-state probability distribution

How To Compute PageRanks?

• πT (I − P) = 0

System of several billion linear equations
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• Page P2 is dead end (nothing to click on) — a “dangling node”

πT not defined
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• From a dead end, restart by jumping to a random page

S =

⎛
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= H + Υ
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S =

⎛
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P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0
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• P4, P5, P6 end up with all of the PageRank

• A Similar Nasty Trap

A cycle (Pi → Pj → Pi)
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Bored Surfer

Why jump to a Non-random Site 15% of the Time ???

P = (.85) S + (.15)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P = (.85)S + (.15)E (The Google Matrix)

Solve πT (I − P) = 0

πT =
( 1 2 3 4 5 6

.03721 .05396 .04151 .3751 .206 .2862
)



Personalization

P = (α) S + (1 − α)

⎡
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v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P = (α) S + (1 − α) E (The real Google Matrix)

The personalization E allows manipulation of PageRanks

� Google says they won’t artificially raise your PageRank

� But they might lower it !
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Thanks For Your Attention


