Updating (Large) Markov Chains

Carl Meyer Amy Langville

Department of Mathematics
North Carolina State University
Raleigh, NC

Outline

Motivation - Search Engines

Outline

Motivation — Search Engines

Pre-Google

Post-Google

Outline

Motivation - Search Engines

Pre-Google Post-Google

Complementation Ideas

Outline

Motivation - Search Engines

Pre-Google Post-Google

Complementation Ideas

+ Iterative Aggregation

Search Engines

$S_{\text {ystem tor the }} M_{\text {echenical }} \mathbf{A}_{\text {naysis and }} \mathbf{R}_{\text {etrievelal of }} T_{\text {ext }}$

Harvard 1962 - 1965

IBM 7094 \& IBM 360

Gerard Salton

Implemented at Cornell (1965-1970)
Based on matrix methods

Latent Semantic Indexing (LSI)

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Latent Semantic Indexing (LSI)

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Latent Semantic Indexing (LSI)

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms
Robots crawl the web - software does indexing

Latent Semantic Indexing (LSI)

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms
Robots crawl the web - software does indexing
Count $f_{i j}=$ \# times term i appears in document j

Latent Semantic Indexing (LSI)

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms
Robots crawl the web - software does indexing
Count $f_{i j}=$ \# times term i appears in document j
Term-Document Matrix

$$
\begin{array}{cccc}
\\
\begin{array}{c}
\text { Term 1 } \\
\text { Term 2 }
\end{array} \\
\vdots \\
\text { Term m }
\end{array}\left(\begin{array}{cccc}
\text { Doc } 1 & \text { Doc } 2 & \cdots & \text { Doc } n \\
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

Latent Semantic Indexing (LSI)

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms
Robots crawl the web - software does indexing
Count $f_{i j}=$ \# times term i appears in document j
Term-Document Matrix

$$
\begin{array}{cccc}
\\
\text { Term 1 } \\
\text { Term 2 } \\
\vdots \\
\text { Term m }
\end{array}\left(\begin{array}{cccc}
\text { Doc } 1 & \text { Doc } 2 & \cdots & \text { Doc } \mathrm{n} \\
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?
Rank documents using $\quad r_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?
Rank documents using $\quad r_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Computations

Normalize columns in A

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?
Rank documents using $r_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Computations

Normalize columns in A
For every query
Normalize \mathbf{q}^{T}

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?
Rank documents using $\quad r_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Computations

Normalize columns in A
For every query
 Normalize \mathbf{q}^{T}
Compute rank of each Doc with $\quad \mathbf{r}^{T}=\mathbf{q}^{T} \mathbf{A}$

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?
Rank documents using $\quad r_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Computations

Normalize columns in A
For every query
 Normalize \mathbf{q}^{T}
Compute rank of each Doc with $\quad \mathbf{r}^{T}=\mathbf{q}^{T} \mathbf{A}$
Return Doc i to user when $r_{i} \geq t o l$

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?
Rank documents using $\quad r_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Computations

Normalize columns in A
For every query
Normalize \mathbf{q}^{T}
Compute rank of each Doc with $\quad \mathbf{r}^{T}=\mathbf{q}^{T} \mathbf{A}$
Return Doc i to user when $r_{i} \geq t o l$

Use Truncated SVD To Filter \& Compress

$$
\text { Use } \mathbf{A} \approx \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad \text { (drop small } \sigma_{i} \text { 's) }
$$

Query Matching

Which Document (or Web Page) Best Matches The Query?

How close is \mathbf{q} to each column \mathbf{A}_{i} ?
Rank documents using $r_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Computations

Normalize columns in A
For every query
Normalize \mathbf{q}^{T}

Compute rank of each Doc with $\quad \mathbf{r}^{T}=\mathbf{q}^{T} \mathbf{A}$
Return Doc i to user when $r_{i} \geq$ tol

Use Truncated SVD To Filter \& Compress

$$
\begin{aligned}
& \text { Use } \mathbf{A} \approx \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad \text { (drop small } \sigma_{i} \text { 's) } \\
& \qquad \mathbf{r}^{T}=\mathbf{q}^{T} \mathbf{A} \approx \sum_{i=1}^{k} \sigma_{i}\left(\mathbf{q}^{T} \mathbf{u}_{i}\right) \mathbf{v}_{i}^{T}
\end{aligned}
$$

Limitations

- Rankings are query dependent

Rank of each doc is recomputed for each query

Limitations

- Rankings are query dependent

Rank of each doc is recomputed for each query

- Only semantic content is used

Link structure completely ignored

Limitations

- Rankings are query dependent

Rank of each doc is recomputed for each query

- Only semantic content is used

Link structure completely ignored

- Difficult to add \& delete documents

Requires updating \& downdating SVD

Limitations

- Rankings are query dependent

Rank of each doc is recomputed for each query

- Only semantic content is used

Link structure completely ignored

- Difficult to add \& delete documents

Requires updating \& downdating SVD

- Determining optimal k is not easy

Empirical tuning required

Limitations

- Rankings are query dependent

Rank of each doc is recomputed for each query

- Only semantic content is used

Link structure completely ignored

- Difficult to add \& delete documents

Requires updating \& downdating SVD

- Determining optimal k is not easy

Empirical tuning required

- Doesn't scale up well

Impractical for current www

Google

Indexing

- Still must index key terms on each page

Robots crawl the web - software does indexing

Google

Indexing

- Still must index key terms on each page

Robots crawl the web - software does indexing

- Inverted file structure (like a book index \Longrightarrow terms point to pages)
$\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots$
Term $_{2} \rightarrow P_{k}, P_{l}, \ldots$

Google

Indexing

- Still must index key terms on each page

Robots crawl the web - software does indexing

- Inverted file structure (like a book index \Longrightarrow terms point to pages)
$\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots$
Term $_{2} \rightarrow P_{k}, P_{l}, \ldots$

Ranking

- Determine a "PageRank" for each page $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$

Query independent - Based only on link structure

Google

Indexing

- Still must index key terms on each page

Robots crawl the web - software does indexing

- Inverted file structure (like a book index \Longrightarrow terms point to pages)
$\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots$
Term $_{2} \rightarrow P_{k}, P_{l}, \ldots$

Ranking

- Determine a "PageRank" for each page $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$

Query independent - Based only on link structure

- Query matching

$$
Q=\operatorname{Term}_{1}, \operatorname{Term}_{2}, \ldots \quad \text { produces } \quad P_{i}, P_{j}, P_{k}, P_{l}, \ldots
$$

Google

Indexing

- Still must index key terms on each page

Robots crawl the web - software does indexing

- Inverted file structure (like a book index \Longrightarrow terms point to pages)

$$
\operatorname{Term}_{1} \rightarrow P_{i}, P_{j}, \ldots
$$

$$
\operatorname{Term}_{2} \rightarrow P_{k}, P_{l}, \ldots
$$

Ranking

- Determine a "PageRank" for each page $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$

Query independent - Based only on link structure

- Query matching

$$
Q=\operatorname{Term}_{1}, \operatorname{Term}_{2}, \ldots \quad \text { produces } \quad P_{i}, P_{j}, P_{k}, P_{l}, \ldots
$$

- Return $P_{i}, P_{j}, P_{k}, P_{l}, \ldots$ to user in order of PageRank

Google's PageRank Idea

(Sergey Brin \& Lawrence Page 1998)

Google's PageRank Idea

(Sergey Brin \& Lawrence Page 1998)

- Rankings are not query dependent

Google's PageRank Idea

- Rankings are not query dependent Depend only on link structure

Google's PageRank Idea

- Rankings are not query dependent Depend only on link structure Off-line calculations

Google's PageRank Idea

- Rankings are not query dependent

Depend only on link structure
Off-line calculations

- Your page P has some rank $r(P)$

Google's PageRank Idea

- Rankings are not query dependent

Depend only on link structure
Off-line calculations

- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P

Google's PageRank Idea

- Rankings are not query dependent Depend only on link structure Off-line calculations
- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links

Google's PageRank Idea

- Rankings are not query dependent Depend only on link structure Off-line calculations
- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links

One link to P from Yahoo! is important

Google's PageRank Idea

- Rankings are not query dependent Depend only on link structure Off-line calculations
- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links

One link to P from Yahoo! is important
Many links to P from me is not

Google's PageRank Idea

- Rankings are not query dependent

Depend only on link structure
Off-line calculations

- Your page P has some rank $r(P)$
- Adjust $r(P)$ higher or lower depending on ranks of pages that point to P
- Importance is not number of in-links or out-links

One link to P from Yahoo! is important
Many links to P from me is not

- But if Yahoo! points to many places, the value of the link to P is diluted

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad \begin{aligned}
& \mathcal{B}_{P}=\{\text { all pages pointing to } P\} \\
& |P|=\text { number of out links from } P
\end{aligned}
$$

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad \begin{aligned}
& \mathcal{B}_{P}=\{\text { all pages pointing to } P\} \\
& |P|=\text { number of out links from } P
\end{aligned}
$$

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$ Iteratively refine rankings for each page

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad \begin{aligned}
& \mathcal{B}_{P}=\{\text { all pages pointing to } P\} \\
& |P|=\text { number of out links from } P
\end{aligned}
$$

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
Iteratively refine rankings for each page

$$
r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|}
$$

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad \begin{aligned}
& \mathcal{B}_{P}=\{\text { all pages pointing to } P\} \\
& |P|=\text { number of out links from } P
\end{aligned}
$$

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
Iteratively refine rankings for each page

$$
\begin{aligned}
r_{1}\left(P_{i}\right)= & \sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|}
\end{aligned}
$$

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|} \quad \begin{aligned}
& \mathcal{B}_{P}=\{\text { all pages pointing to } P\} \\
& |P|=\text { number of out links from } P
\end{aligned}
$$

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$
Iteratively refine rankings for each page

$$
\begin{aligned}
& r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|} \\
& \ddots \\
& r_{j+1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{j}(P)}{|P|}
\end{aligned}
$$

In Matrix Notation

After Step j

$$
\pi_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]
$$

In Matrix Notation

After Step j

$$
\begin{aligned}
& \boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad \text { where } \quad p_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

In Matrix Notation

After Step j

$$
\begin{aligned}
& \boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad \text { where } \quad p_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
0 & \text { otherwise }\end{cases} \\
& \text { PageRank }=\lim _{j \rightarrow \infty} \boldsymbol{\pi}_{j}^{T}=\boldsymbol{\pi}^{T}
\end{aligned}
$$

In Matrix Notation

After Step j

$$
\begin{aligned}
& \boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad \text { where } \quad p_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
0 & \text { otherwise }\end{cases} \\
& \text { PageRank }=\lim _{j \rightarrow \infty} \boldsymbol{\pi}_{j}^{T}=\boldsymbol{\pi}^{T}
\end{aligned}
$$

It's A Markov Chain

$$
\mathbf{P}=\left[p_{i j}\right] \text { is a stochastic matrix }
$$

In Matrix Notation

After Step j

$$
\begin{aligned}
& \boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad \text { where } \quad p_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
0 & \text { otherwise }\end{cases} \\
& \text { PageRank }=\lim _{j \rightarrow \infty} \boldsymbol{\pi}_{j}^{T}=\boldsymbol{\pi}^{T}
\end{aligned}
$$

It's A Markov Chain

$\mathbf{P}=\left[p_{i j}\right]$ is a stochastic matrix
Each π_{j}^{T} is a probability distribution vector

In Matrix Notation

After Step j

$$
\begin{aligned}
& \boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right] \\
& \boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad \text { where } \quad p_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\
0 & \text { otherwise }\end{cases} \\
& \text { PageRank }=\lim _{j \rightarrow \infty} \boldsymbol{\pi}_{j}^{T}=\boldsymbol{\pi}^{T}
\end{aligned}
$$

It's A Markov Chain

$\mathbf{P}=\left[p_{i j}\right]$ is a stochastic matrix
Each π_{j}^{T} is a probability distribution vector
$\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ is random walk on the graph defined by links

In Matrix Notation

After Step j

$\boldsymbol{\pi}_{j}^{T}=\left[r_{j}\left(P_{1}\right), r_{j}\left(P_{2}\right), \cdots, r_{j}\left(P_{n}\right)\right]$
$\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ where $\quad p_{i j}= \begin{cases}1 /\left|P_{i}\right| & \text { if } i \rightarrow j \\ 0 & \text { otherwise }\end{cases}$
PageRank $=\lim _{j \rightarrow \infty} \pi_{j}^{T}=\pi^{T}$
(provided limit exists)

It's A Markov Chain

$\mathbf{P}=\left[p_{i j}\right]$ is a stochastic matrix
Each π_{j}^{T} is a probability distribution vector
$\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P} \quad$ is random walk on the graph defined by links
$\pi^{T}=\lim _{j \rightarrow \infty} \pi_{j}^{T}=$ stationary probability distribution

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}
Problems
Dead end page (nothing to click on)

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}
Problems
Dead end page (nothing to click on)
π^{T} not well defined

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}

Problems

Dead end page (nothing to click on)
π^{T} not well defined
Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}

Problems

Dead end page (nothing to click on)
π^{T} not well defined
Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
No convergence

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}
Problems
Dead end page (nothing to click on)
π^{T} not well defined
Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
No convergence

Convergence

Markov chain must be irreducible and aperiodic

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}
Problems
Dead end page (nothing to click on)
π^{T} not well defined
Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
No convergence
Convergence
Markov chain must be irreducible and aperiodic

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}
Problems
Dead end page (nothing to click on)
π^{T} not well defined
Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
No convergence
Convergence
Markov chain must be irreducible and aperiodic
Bored Surfer Enters Random URL
Replace \mathbf{P} by $\widetilde{\mathbf{P}}=\alpha \mathbf{P}+(1-\alpha) \mathbf{E}$ where $e_{i j}=1 / n \quad \alpha \approx .85$

Random Surfer

Web Surfer Randomly Clicks On Links

Long-run proportion of time on page P_{i} is π_{i}
Problems
Dead end page (nothing to click on)
π^{T} not well defined
Could get trapped into a cycle $\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$
No convergence
Convergence
Markov chain must be irreducible and aperiodic
Bored Surfer Enters Random URL
Replace \mathbf{P} by $\widetilde{\mathbf{P}}=\alpha \mathbf{P}+(1-\alpha) \mathbf{E}$ where $e_{i j}=1 / n \quad \alpha \approx .85$
Different $\mathbf{E}=\mathbf{e v}^{T}$ and α allows customization \& speedup

THE WALL STREET JOURNAL.

What's News-

Business and Finance

NEWS CORP. and Liberty are no longer working together on a joint offer to take control of Hughes, with News Corp. proceeding on its own and Liberty considering an independent bid. The move threatens to cloud the process of finding a new owner for the GM unit.
(Article on Page A3)

- The SEC ${ }^{*}$ signaled $\stackrel{*}{\text { it may file }}$ civil charges against Morgan Stanley, alleging it doled out IPO shares based partly on investors' commitments to buy more stock.
(Article on Page C1)
- Ahold's problems $\stackrel{*}{*}$ deepened as U.S. authorities opened inquiries into accounting at the Dutch company's U.S. Foodservice unit. - Fleming said the SEC upgraded to a formal investigation an inquiry into the food wholesaler's trade practices with suppliers.
(Articles on Page A2)
- Consumer confidence fell to its lowest level since 1993, hurt by energy costs, the terrorism threat and a stagnant job market.
(Article on Page A3)
- The industrials rebounded on

Web Master

As the Web spreads...

Total Internet users, by household, in millions

Google's U.S. presence expands

Top search engines, in millions
 Top shopping-referral sites,

 of unique visitors ${ }^{1}$| Google | |
| :--- | ---: |
| Yahoo Search | |
| MSN Search | 39.4 |
| AOL Search | 38.6 |
| Ask Jeeves | 22.8 |
| 13.3 | Including visitors
 from home and
 work, in January
 2003 |
| Overture | |
| 6.4 | |

in millions of referrals ${ }^{2}$

Bush to Seek up to $\$ 95$ Billion To Cover Costs of War on Iraq

> By Greg Jaffe And John D. McKinnon

WASHINGTON-The Bush administration is preparing supplemental spend ing requests totaling as much as $\$ 95$ billion for a war with Iraq, its aftermath and new expenses to fight terrorism, officials said.

The total could be as low as $\$ 60$ billion because Pentagon budget planners don't know how long a military conflict will last, whether U.S. allies will contribute more than token sums to the effort and what damage Saddam Hussein might do
to his own country to retaliate against conquering forces.

Budget planners also are awaiting the outcome of an intense internal debate over whether to include $\$ 13$ billion in the requests to Congress that the Pentagon says it needs to fund the broader war on terrorism, as well as for stepped up homeland security. The White House Office of Management and Budget argues that the money might not be necessary. President Bush, Defense Secretary Donald Rumsfeld and budget director Mitchell Daniels Jr. met yesterday to discuss the matter but didn't reach a final agreement. Mr.

Cat and Mouse

As Google Becomes Web's Gatekeeper, Sites Fight to Get In

Search Engine Punishes Firms That Try to Game System; Outlawing the 'Link Farms'

Exoticleatherwear Gets Cut Off
By Michael Totty
And Mylene Mangalindan
Joy Holman sells provocative leather clothing on the Web. She wants what nearly everyone doing business online wants: more exposure on Google.

So from the time she launched exoticleatherwear.com last May, she tried all sorts of tricks to get her site to show up among the first listings when a user of Google Inc.'s popular search engine typed in "women's leatherwear" or "leather apparel." She buried hidden words in her Web pages intended to fool Google's computers. She signed up with a service that promised to have hundreds of sites hundreds of sites
link to her online link to her onl
store-thereby boosting a crucial measure in Google's system of ranking sites.

The techniques

Web Sites Fight for Prime Real Estate on Google
 homa City-based SearchKing, an online

Continued From First Page advertising that tried to capitalize on Google's formula for ranking sites. In ef ect, SearchKing was offering its clients chance to boost their own Google rank ings by buying ads on more-popular sites. SearchKing filed suit against the search company in federal court in Oklahoma, claiming that Google "purpose ully devalued" SearchKing and its cus omers, damaging its reputation and hurting its advertising sales

Google won't comment on the case. In court filings, the company said SearchKing "engaged in behavior that would lower the quality of Google search results" and alter the company's ranking system.

Google, a closely held company founded by Stanford University graduate students Sergey Brin and Larry Page, says Web companies that want to rank high should concentrate on improving their Web pages rather than gaming its system. "When people try to take scoring into their own hands, that turns into a worse experience for users," says Matt Cutts, a Google software engineer.

Coding Trickery

Efforts to outfox the search engines have been around since search engines first became popular in the early 1990s Early tricks included stuffing thousands of widely used search terms in hidden coding, called "metatags." The coding fools a search engine into identifying a site with popular words and phrases tha may not actually appear on the site.

Another gimmick was hiding words or terms against a same-color background The hidden coding deceived search en gines that relied heavily on the number of times a word or phrase appeared in ranking a site. But Google's system, based on links, wasn't fooled.

Mr. Brin, 29, one of Google's two founders and now its president of technology, boasted to a San Francisco search engine conference in 2000 that Google wasn't worried about having its results clogged with irrelevant results becaus its search methods couldn't be manipu lated.

That didn't stop search optimizers from finding other ways to outfox the system. Attempts to manipulate Google's results even became a sport, called Goo-
creating Web sites that were nothing more than collections of links to the clients' site, called "link farms." Since Google ranks a site largely by how many links or "votes" it gets, the link farms could boost a site's popularity.

In a similar technique, called a link exchange, a group of unrelated sites would agree to all link to each other, thereby fooling Google into thinking the sites have a multitude of votes. Many sites also found they could buy links to themselves to boost their rankings.

Ms. Holman, the leatherwear retailer, discovered the consequences of trying to fool Google. The 42-year-old hospital laboratory technician, who learned computer skills by troubleshooting her hospital's

'The big search
 engines determine the laws of how commerce runs,' says Mr. Massa.

equipment, operates her online apparel store as a side business that she hopes can someday replace her day job.
When she launched her Exotic Leather Wear store from her home in Mesa, Ariz., she quickly learned the im portance of appearing near the top of portance of appearing near the top of le. She boned up on search techniques, visiting online discussion groups dedicated to search engines and reading what material she could find on the Web.
At first, Ms. Holman limited herself to modest changes, such as loading her page with hidden metatag coding that would help steer a search toward her site when a user entered words such as "haltertops" or "leather miniskirts." Since Google doesn't give much weight to metatags in determin ing its rankings, the efforts had little ef fect on her search results.

She then received an e-mail adver tisement from AutomatedLinks.com, a Wirral, England, company that promised to send traffic "through the roof" by linking more than 2,000 Web sites to hers. Aside from attracting customers, the links were designed to improve her

In theory, when Google encounters the AutomatedLinks code, it treats it as a legit imate referral to the other sites and count them in toting up the sites' popularity.

Shortly after Ms. Holman signed up with AutomatedLinks in July, she read on an online discussion group that Google objected to such link arrangements. She says she immediately stripped the code from her Web pages. For a while her site gradually worked its way up in Google search results, and business steadily improved because links to her site still remained on the sites of other AutomatedLinks customers. Then, sometime in November, her site was suddenly no longer appearing among the top results Her orders plunged as much as 80%.

Ms. Holman, who e-mailed Google and AutomatedLinks, says she has been unable to get answers. But in the last few months, other AutomatedLinks customers say they have seen their sites apparently penalized by Google. Graham McLeay, who runs a small chauffeur service north of London, saw revenue cut in half during the two months he believes his site was penalized by Google.

The high-stakes fight between Google and the optimizers can leave some Website owners confused. "I don't know how people are supposed to judge what is right and wrong," says Mr. McLeay.

AutomatedLinks didn't respond to requests for comment. Google declined to comment on the case. But Mr. Cutts, the Google engineer, warns that the rules are clear and that it's better to follow them rather than try to get a problem fixed after a site has been penalized. "We want to return the most relevant pages we can," Mr. Cutts says. "The best way for a site owner to do that is follow our guidelines."

Crackdown

Google has been stepping up its enforcement since 2001. It warned Webmasters that using trickery could get their sites kicked out of the Google index and it provided a list of forbidden activities, including hiding text and "link schemes," such as the link farms. Google also warned against "cloaking"-showing a search engine a page that's deing a search engine a page that's de-
signed to score well while giving visitors signed to score well while giving visitors
a different, more attractive page-or creating multiple Web addresses that take visitors to a single site.
directory for hundreds of small, specialty Web sites. SearchKing also sells adyertising links designed both to deliver traffic to an advertiser and boost its rankings in Google and other search results.

Bob Massa, SearchKing's chief executive, last August launched the PR Ad Network as a way to capitalize on Google's page-ranking system, known as Page Rank. PageRank rates Web sites on a scale of one to 10 based on their popularity, and the rankings can be viewed by Web users if they install special Google software. PR Ad Network sells ads that are priced according to a site's PageRank, with higher-ranked sites commanding higher prices. When a site buys an advertising link on a highly ranked site, the ad buyer could see its ratings improve because of the greater weight Google gives to that link.

Shortly after publicizing the ad net work, Mr. Massa discovered that his site suddenly dropped in Google's rankings. What's more, sites that participated in the separate SearchKing directory also had their Google rankings lowered. He filed a lawsuit in Oklahoma City federa court, claiming Google was punishing him for trying to profit from the company's page-ranking system
A Google spokesman won't comment on the case. In its court filings, Google saic it demoted pages on the SearchKing site because of SearchKing's attempts to ma nipulate search results. The company has asked for the suit to be dismissed, arguing that the PageRank represents its opinion of the value of a Web site and as such is protected by the First Amendment

The big search engines determine the laws of how commerce runs," says Mr Massa, who is persisting with the lawsuit even though the sites have had their page rankings partly restored. "Someone needs rankings partly restored. "S

Google is taking steps that many say could satisfy businesses trying to boos their rankings. Google has long sold sponsored links that show up on the top of many search-results pages, separate from the main listings. Last year, the company expanded its paid-listings program, so that there are now more slots where sites can pay for a prominent place in the results. Many sites now are turning to advertising instead of tactics

Home Depot E

 Amid First QuBy Chad Terhune
ATLANTA-Home Depot Inc. repo fiscal fourth-quarter earnings decl 3.4% on disappointing sales.

Speaking to investors and indu analysts, the company's chairman chief executive, Bob Nardelli, Home Depot is prepared to win dissatisfied customers and answe competitive challenge from its chie val with remodeled stores, increase ventory and improved customer ser

The nation's largest home-impr ment retailer said net income for the q ter ended Feb. 2 decreased to $\$ 686 \mathrm{mil}$ or 30 cents a share, from $\$ 710$ millior 30 cents a share, a year earlier. Sallo 2% to $\$ 13.21$ billion from $\$ 13.49$ billion first quarterly sales decline in the cor ny's 24-year history. Home Depot n the latest quarter was a week shorter a year earlier. Using comparable 13-v periods, the company said quarterly s increased 5% and net income rose 8.

Same-store sales, or sales at st pen at least a year, declined 6% in quarter. Home Depot said stronger last month offset a disastrous Decer and helped the retailer avoid its ea estimate that same-store sales could as much as 10%. In 4 p.m. New tock Exchange composite tradig, Depot shares rose 66 cents to $\$ 22.84$

Fiat Patriarch

 Is Set to BecomBy Alessandra Galloni
ROME-Umberto Agnelli is due named Fiat SpA chairman on Friday, ping into the driver's seat as the Italian glomerate works on an 1 ing of its unprofitable car unit.
Mr. Agnelli, the 68-year-old broth Fiat patriarch Gianni Agnelli, who last month, was widely expected to over from current chairman, Fresco, later this year. But Mr. Fr

Computing π^{T}

A Big Problem

Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$

Computing π^{T}

A Big Problem

Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
$\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
(stationary distribution vector)
(too big for direct solves)

THE WORLD'S LARGEST MATRIX COMPUTATION

Google's PageRank is an eigenvector of a matrix of order 2.7 billion.

One of the reasons why Google is such an effective search engine is the PageRank ${ }^{\mathrm{TM}}$ algorithm, developed by Google's founders, Larry Page and Sergey Brin, when they were graduate students at Stanford University. PageRank is determined entirely by the link structure of the Web. It is recomputed about once a month and does not involve any of the actual content of Web pages or of any individual query. Then, for any particular query, Google finds the pages on the Web that match that query and lists those pages in the order of their PageRank.

Imagine surfing the Web, going from page to page by randomly choosing an outgoing link from one page to get to the next. This can lead to dead ends at pages with no outgoing links, or cycles around cliques of interconnected pages. So, a certain fraction of the time, simply choose a random page from anywhere on the Web. This theoretical random walk of the Web is a Markov chain or Markov process. The limiting probability that a dedicated random surfer visits any particular page is its PageRank. A page has high rank if it has links to and from other pages with high rank.

Let W be the set of Web pages that can reached by following a chain of hyperlinks starting from a page at Google and let n be the number of pages in W. The set W actually varies with time, but in May 2002, n was about 2.7 billion. Let G be the n-by- n connectivity matrix of

BY CLEVE MOLER

It tells us that the largest eigenvalue of A is equal to one and that the corresponding eigenvector, which satisfies the equation

$$
x=A x
$$

exists and is unique to within a scaling factor. When this scaling factor is chosen so that

$$
\sum_{i} x_{i}=1
$$

then x is the state vector of the Markov chain. The elements of x are Google's PageRank.

If the matrix were small enough to fit in MATLAB, one way to compute the eigenvector x would be to start with a good approximate solution, such as the PageRanks from the previous month, and simply repeat the assignment statement

$$
x=A x
$$

until successive vectors agree to within specified tolerance. This is known as the power method and is about the only possible approach for very large n. I'm not sure how Google actually computes PageRank, but one step of the power method would require one pass over a database of Web pages, updating weighted reference counts generated by the hyperlinks between pages.

Computing π^{T}

A Big Problem

Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
$\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=0$
(too big for direct solves)
Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

Computing π^{T}

A Big Problem

Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
$\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=\mathbf{0}$
(too big for direct solves)
Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$
(power method)

A Bigger Problem - Updating

Link structure of web is extremely dynamic

Computing π^{T}

A Big Problem

Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
$\pi^{T}(\mathbf{I}-\mathbf{P})=0$
(too big for direct solves)
Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$
(power method)

A Bigger Problem - Updating

Link structure of web is extremely dynamic
Links on CNN point to different pages every day (hour)

Computing π^{T}

A Big Problem

Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
$\pi^{T}(\mathbf{I}-\mathbf{P})=0$
(too big for direct solves)
Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$
(power method)

A Bigger Problem - Updating

Link structure of web is extremely dynamic
Links on CNN point to different pages every day (hour)
Links are added and deleted almost continuously

Computing π^{T}

A Big Problem

Solve $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{P}$
(stationary distribution vector)
$\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=\mathbf{0}$
(too big for direct solves)
Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$
(power method)

A Bigger Problem - Updating

Link structure of web is extremely dynamic
Links on CNN point to different pages every day (hour)
Links are added and deleted almost continuously
Google says just start from scratch every 3 to 4 weeks

Computing π^{T}

A Big Problem

Solve $\pi^{T}=\pi^{T} \mathbf{P}$
(stationary distribution vector)
$\boldsymbol{\pi}^{T}(\mathbf{I}-\mathbf{P})=\mathbf{0}$
(too big for direct solves)
Start with $\boldsymbol{\pi}_{0}^{T}=\mathbf{e} / n$ and iterate $\boldsymbol{\pi}_{j+1}^{T}=\boldsymbol{\pi}_{j}^{T} \mathbf{P}$

A Bigger Problem - Updating

Link structure of web is extremely dynamic
Links on CNN point to different pages every day (hour)
Links are added and deleted almost continuously
Google says just start from scratch every 3 to 4 weeks
Old results don't help to restart (even if size doesn't change)

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)

Perron Complementation

Perron Frobenius

$$
\mathbf{P} \geq \mathbf{0}, \text { irreducible } \quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad \text { (simple) }
$$

Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Perron Complementation

Perron Frobenius

$$
\mathbf{P} \geq \mathbf{0}, \text { irreducible } \quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad \text { (simple) }
$$

Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate $\quad \mathbf{P}=\left[\begin{array}{ll}\mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22}\end{array}\right]$

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)
Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

Shift P by ρ

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)
Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

Shift P by $\rho \longrightarrow$ Schur Complements

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)
Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

Shift P by $\rho \longrightarrow$ Schur Complements
Shift back by ρ

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)
Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

Shift P by $\rho \quad \longrightarrow \quad$ Schur Complements
Shift back by ρ

Perron Complements

$$
\mathbf{S}_{1}=\mathbf{P}_{11}+\mathbf{P}_{12}\left(\rho \mathbf{I}-\mathbf{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathbf{S}_{2}=\mathbf{P}_{22}+\mathbf{P}_{21}\left(\rho \mathbf{I}-\mathbf{P}_{11}\right)^{-1} \mathbf{P}_{12}
$$

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)
Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

Shift P by $\rho \longrightarrow$ Schur Complements
Shift back by ρ

Perron Complements

$$
\mathbf{S}_{1}=\mathbf{P}_{11}+\mathbf{P}_{12}\left(\rho \mathbf{I}-\mathbf{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathbf{S}_{2}=\mathbf{P}_{22}+\mathbf{P}_{21}\left(\rho \mathbf{I}-\mathbf{P}_{11}\right)^{-1} \mathbf{P}_{12}
$$

Inherited Properties

$$
\mathbf{S}_{i} \geq \mathbf{0}
$$

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)
Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

Shift P by $\rho \quad \longrightarrow \quad$ Schur Complements
Shift back by ρ

Perron Complements

$$
\mathbf{S}_{1}=\mathbf{P}_{11}+\mathbf{P}_{12}\left(\rho \mathbf{I}-\mathbf{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathbf{S}_{2}=\mathbf{P}_{22}+\mathbf{P}_{21}\left(\rho \mathbf{I}-\mathbf{P}_{11}\right)^{-1} \mathbf{P}_{12}
$$

Inherited Properties
$\mathbf{S}_{i} \geq 0$
\mathbf{S}_{i} is irreducible

Perron Complementation

Perron Frobenius

$\mathbf{P} \geq \mathbf{0}$, irreducible $\quad \Longrightarrow \quad \rho(\mathbf{P})=\rho \in \sigma(\mathbf{P}) \quad$ (simple)
Unique Left-Hand Perron Vector

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\rho \boldsymbol{\pi}^{T} \quad\left\|\boldsymbol{\pi}^{T}\right\|_{1}=1
$$

Partition \& Aggregate

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

Shift P by $\rho \quad \longrightarrow \quad$ Schur Complements Shift back by ρ

Perron Complements

$$
\mathbf{S}_{1}=\mathbf{P}_{11}+\mathbf{P}_{12}\left(\rho \mathbf{I}-\mathbf{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathbf{S}_{2}=\mathbf{P}_{22}+\mathbf{P}_{21}\left(\rho \mathbf{I}-\mathbf{P}_{11}\right)^{-1} \mathbf{P}_{12}
$$

Inherited Properties
$\mathbf{S}_{i} \geq 0$
\mathbf{S}_{i} is irreducible

$$
\rho\left(\mathbf{S}_{i}\right)=\rho=\rho(\mathbf{P})
$$

Exact Aggregation

Aggregation Matrix

$$
\mathbf{s}_{i}^{T}=\text { Left-hand Perron vector for } \mathbf{S}_{i}
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{s}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\
\mathbf{s}_{2}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}
\end{array}\right]_{2 \times 2}
$$

Exact Aggregation

Aggregation Matrix

$$
\begin{aligned}
& \mathbf{s}_{i}^{T}=\text { Left-hand Perron vector for } \mathbf{S}_{i} \\
& \mathbf{A}=\left[\begin{array}{ll}
\mathbf{s}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\
\mathbf{s}_{2}^{T} \mathbf{S}_{\mathbf{1}} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}
\end{array}\right]_{2 \times 2}
\end{aligned}
$$

Inherited Properties

$$
\mathbf{A} \geq \mathbf{0}
$$

Exact Aggregation

Aggregation Matrix

$$
\mathbf{s}_{i}^{T}=\text { Left-hand Perron vector for } \mathbf{S}_{i}
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{s}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\
\mathbf{s}_{2}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}
\end{array}\right]_{2 \times \mathbf{2}}
$$

Inherited Properties

$A \geq 0$
A is irreducible

Exact Aggregation

Aggregation Matrix

$$
\begin{aligned}
& \mathbf{s}_{i}^{T}=\text { Left-hand Perron vector for } \mathbf{S}_{i} \\
& \mathbf{A}=\left[\begin{array}{ll}
\mathbf{s}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\
\mathbf{s}_{2}^{T} \mathbf{S}_{\mathbf{1}} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}
\end{array}\right]_{\mathbf{2 \times \mathbf { 2 }}}
\end{aligned}
$$

Inherited Properties

$$
\mathbf{A} \geq \mathbf{0}
$$

A is irreducible

$$
\rho(\mathbf{A})=\rho=\rho(\mathbf{P})=\rho\left(\mathbf{S}_{i}\right)
$$

Exact Aggregation

Aggregation Matrix

$$
\begin{aligned}
& \mathbf{s}_{i}^{T}=\text { Left-hand Perron vector for } \mathbf{S}_{i} \\
& \mathbf{A}=\left[\begin{array}{ll}
\mathbf{s}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\
\mathbf{s}_{2}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}
\end{array}\right]_{2 \times \mathbf{2}}
\end{aligned}
$$

Inherited Properties

$$
\mathbf{A} \geq \mathbf{0}
$$

A is irreducible

$$
\rho(\mathbf{A})=\rho=\rho(\mathbf{P})=\rho\left(\mathbf{S}_{i}\right)
$$

The Aggregation/Disaggregation Theorem

Left-hand Perron vector for $\mathbf{A}=\left(\alpha_{1}, \alpha_{2}\right)$
Left-hand Perron vector for $\mathbf{P}=\left(\alpha_{1} \mathbf{s}_{1}^{T} \mid \alpha_{2} \mathbf{s}_{2}^{T}\right)$

Stochastic Matrices

Specialization

$$
\rho(\mathbf{P})=1
$$

Stochastic Matrices

Specialization

$$
\rho(\mathbf{P})=1
$$

$$
S_{1}=P_{11}+P_{12}\left(I-P_{22}\right)^{-1} P_{21}
$$

$$
S_{2}=P_{22}+P_{21}\left(I-P_{11}\right)^{-1} \mathbf{P}_{12}
$$

Stochastic Matrices

Specialization

$$
\rho(\mathbf{P})=1
$$

$$
\mathbf{S}_{1}=\mathbf{P}_{11}+\mathbf{P}_{12}\left(\mathbf{I}-\mathbf{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathbf{S}_{2}=\mathbf{P}_{22}+\mathbf{P}_{21}\left(\mathbf{I}-\mathbf{P}_{11}\right)^{-1} \mathbf{P}_{12}
$$

Each \mathbf{S}_{i} is stochastic

Stochastic Matrices

$$
\rho(\mathbf{P})=1
$$

$$
S_{1}=P_{11}+P_{12}\left(I-P_{22}\right)^{-1} P_{21} \quad S_{2}=P_{22}+P_{21}\left(I-P_{11}\right)^{-1} P_{12}
$$

Each \mathbf{S}_{i} is stochastic
Each \mathbf{S}_{i} is irreducible

Stochastic Matrices

Specialization
$\rho(\mathbf{P})=1$
$\mathbf{S}_{1}=\mathbf{P}_{11}+\mathbf{P}_{12}\left(\mathbf{I}-\mathbf{P}_{22}\right)^{-1} \mathbf{P}_{21}$
Each \mathbf{S}_{i} is stochastic
Each \mathbf{S}_{i} is irreducible
\mathbf{S}_{i} is transition matrix for censored Markov chain

Stochastic Matrices

$\rho(\mathbf{P})=1$
$\mathrm{S}_{1}=\mathrm{P}_{11}+\mathrm{P}_{12}\left(\mathbf{I}-\mathrm{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathrm{~S}_{2}=\mathrm{P}_{22}+\mathrm{P}_{21}\left(\mathbf{I}-\mathrm{P}_{11}\right)^{-1} \mathbf{P}_{12}$
Each \mathbf{S}_{i} is stochastic
Each \mathbf{S}_{i} is irreducible
\mathbf{S}_{i} is transition matrix for censored Markov chain
(stochastic complements)
\mathbf{s}_{i}^{T} is a conditional stationary probability distribution

Stochastic Matrices

$\rho(\mathbf{P})=1$
$\mathrm{S}_{1}=\mathrm{P}_{11}+\mathrm{P}_{12}\left(\mathbf{I}-\mathrm{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathrm{~S}_{2}=\mathrm{P}_{22}+\mathrm{P}_{21}\left(\mathbf{I}-\mathrm{P}_{11}\right)^{-1} \mathbf{P}_{12}$
Each \mathbf{S}_{i} is stochastic
Each \mathbf{S}_{i} is irreducible
\mathbf{S}_{i} is transition matrix for censored Markov chain
\mathbf{s}_{i}^{T} is a conditional stationary probability distribution
$\mathbf{A}=\left[\begin{array}{ll}\mathbf{S}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{S}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}\end{array}\right]$ is stochastic

Stochastic Matrices

$\rho(\mathbf{P})=1$
$\mathrm{S}_{1}=\mathrm{P}_{11}+\mathrm{P}_{12}\left(\mathbf{I}-\mathrm{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathrm{~S}_{2}=\mathrm{P}_{22}+\mathrm{P}_{21}\left(\mathbf{I}-\mathrm{P}_{11}\right)^{-1} \mathbf{P}_{12}$
Each \mathbf{S}_{i} is stochastic
Each \mathbf{S}_{i} is irreducible
\mathbf{S}_{i} is transition matrix for censored Markov chain
\mathbf{s}_{i}^{T} is a conditional stationary probability distribution
$\mathbf{A}=\left[\begin{array}{ll}\mathbf{S}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{S}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}\end{array}\right]$ is stochastic
A is irreducible

Stochastic Matrices

$\rho(\mathbf{P})=1$
$\mathrm{S}_{1}=\mathrm{P}_{11}+\mathrm{P}_{12}\left(\mathbf{I}-\mathrm{P}_{22}\right)^{-1} \mathbf{P}_{21} \quad \mathrm{~S}_{2}=\mathrm{P}_{22}+\mathrm{P}_{21}\left(\mathbf{I}-\mathrm{P}_{11}\right)^{-1} \mathbf{P}_{12}$
Each \mathbf{S}_{i} is stochastic
Each \mathbf{S}_{i} is irreducible
\mathbf{S}_{i} is transition matrix for censored Markov chain
(stochastic complements)
\mathbf{s}_{i}^{T} is a conditional stationary probability distribution
(censored probability distribution)
$\mathbf{A}=\left[\begin{array}{ll}\mathbf{s}_{1}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{1}^{T} \mathbf{S}_{2} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{S}_{1} \mathbf{e} & \mathbf{s}_{2}^{T} \mathbf{S}_{2} \mathbf{e}\end{array}\right]$ is stochastic
A is irreducible

Aggregation/Disaggregation For Markov Chains

Stationary distribution for \mathbf{P} is $\boldsymbol{\pi}^{T}=\left(\alpha_{1} \mathbf{s}_{1}^{T} \mid \alpha_{2} \mathbf{s}_{2}^{T}\right)$
α_{1} and α_{2} are the stationary probabilities for \mathbf{A}

Updating By Aggregation

Original Data

$$
\mathbf{Q}_{m \times m} \quad \text { (known) } \quad \phi^{T}=\left(\phi_{1}, \phi_{\mathbf{2}}, \ldots, \phi_{m}\right) \quad \text { (known) }
$$

$$
\boldsymbol{\phi}^{T} \mathbf{Q}=\boldsymbol{\phi}^{T}
$$

Updating By Aggregation

Original Data

$$
\mathbf{Q}_{m \times m} \quad \text { (known) } \quad \phi^{T}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right) \quad \text { (known) }
$$

$$
\boldsymbol{\phi}^{T} \mathbf{Q}=\boldsymbol{\phi}^{T}
$$

Updated Data

$$
\mathbf{P}_{n \times n} \quad \text { (known) }
$$

Updating By Aggregation

Original Data

$$
\mathbf{Q}_{m \times m} \quad \text { (known) } \quad \phi^{T}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right) \quad \text { (known) }
$$

$$
\boldsymbol{\phi}^{T} \mathbf{Q}=\boldsymbol{\phi}^{T}
$$

Updated Data

$$
\mathbf{P}_{n \times n} \quad \text { (known) } \quad \sqrt{\boldsymbol{\pi}^{T}}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \text { (unknown) }
$$

Updating By Aggregation

Original Data

$$
\mathbf{Q}_{m \times m} \quad \text { (known) } \quad \phi^{T}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right) \quad \text { (known) }
$$

$$
\boldsymbol{\phi}^{T} \mathbf{Q}=\boldsymbol{\phi}^{T}
$$

Updated Data

$$
\mathbf{P}_{n \times n} \quad \text { (known) } \quad \sqrt{\boldsymbol{\pi}^{T}}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \text { (unknown) } \quad \boldsymbol{\pi}^{T} \mathbf{P}=\boldsymbol{\pi}^{T}
$$

Separate States Likely To Be Most Affected

$$
G=\{\text { most affected }\} \quad \bar{G}=\{\text { less affected }\} \quad \mathcal{S}=G \cup \bar{G}
$$

Updating By Aggregation

Original Data

$\mathbf{Q}_{m \times m} \quad$ (known) $\quad \phi^{T}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right) \quad$ (known)

$$
\boldsymbol{\phi}^{T} \mathbf{Q}=\boldsymbol{\phi}^{T}
$$

Updated Data

$\mathbf{P}_{n \times n} \quad$ (known) $\quad \sqrt{\boldsymbol{\pi}^{T}}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad$ (unknown)

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\boldsymbol{\pi}^{T}
$$

Separate States Likely To Be Most Affected

$$
G=\{\text { most affected }\} \quad \bar{G}=\{\text { less affected }\} \quad \mathcal{S}=G \cup \bar{G}
$$

Newly created states go into G
(Deleted states accounted for in P)

Updating By Aggregation

Original Data

$\mathbf{Q}_{m \times m} \quad$ (known) $\quad \phi^{T}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right) \quad$ (known)

$$
\boldsymbol{\phi}^{T} \mathbf{Q}=\boldsymbol{\phi}^{T}
$$

Updated Data

$\mathbf{P}_{n \times n} \quad$ (known) $\quad \boldsymbol{\pi}^{T}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad$ (unknown)

$$
\boldsymbol{\pi}^{T} \mathbf{P}=\boldsymbol{\pi}^{T}
$$

Separate States Likely To Be Most Affected
$G=\{$ most affected $\} \quad \bar{G}=\{$ less affected $\} \quad \mathcal{S}=G \cup \bar{G}$
Newly created states go into G
(Deleted states accounted for in P)

Neighborhood graph considerations

Updating By Aggregation

Original Data

$\mathbf{Q}_{m \times m} \quad$ (known) $\quad \phi^{T}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right) \quad$ (known)

$$
\boldsymbol{\phi}^{T} \mathbf{Q}=\boldsymbol{\phi}^{T}
$$

Updated Data

$\mathbf{P}_{n \times n} \quad$ (known) $\quad \sqrt{\boldsymbol{\pi}^{T}}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad$ (unknown) $\quad \boldsymbol{\pi}^{T} \mathbf{P}=\boldsymbol{\pi}^{T}$
Separate States Likely To Be Most Affected
$G=\{$ most affected $\} \quad \bar{G}=\{$ less affected $\} \quad \mathcal{S}=G \cup \bar{G}$
Newly created states go into G
(Deleted states accounted for in P)

Neighborhood graph considerations
Transient analysis

(Chien, Dwork, Kumar, Sivakumar, 2002)
$\left[\mathbf{X}_{0}^{T}\right]_{i}= \begin{cases}1 / j & \text { for the } j \text { states not added or deleted } \\ 0 & \text { otherwise }\end{cases}$
Iterate $\mathbf{x}_{k}^{T}=\mathbf{x}_{k-1}^{T} \mathbf{P}$ a few times to obtain \mathbf{x}_{f}^{T}
Include state i in G whenever $\left[\mathbf{x}_{f}^{T}\right]_{i} \geq$ tolerance

Aggregation

Partitioned Matrix

$$
\begin{gathered}
\mathbf{P}_{n \times n}=\begin{array}{cc}
G & \bar{G} \\
\bar{G}\left(\begin{array}{cc}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right)=\left[\begin{array}{c|c|cc}
p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \\
\hline \vdots & \ddots & \vdots & \vdots \\
\hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \\
\hline \mathbf{c}_{1} & \cdots & \mathbf{c}_{g} & \mathbf{P}_{22}
\end{array}\right] \\
\boldsymbol{\pi}^{T}=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)
\end{array} .
\end{gathered}
$$

Aggregation

Partitioned Matrix

$$
\begin{gathered}
\mathbf{P}_{n \times n}=\frac{G}{G}\left(\begin{array}{cc}
G & \bar{G} \\
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right)=\left[\begin{array}{c|c|cc}
p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \\
\hline \vdots & \ddots & \vdots & \vdots \\
\hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \\
\hline \mathbf{c}_{1} & \cdots & \mathbf{G}_{g} & \mathbf{P}_{22}
\end{array}\right] \\
\boldsymbol{\pi}^{T}=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)
\end{gathered}
$$

Perron Complements

$$
p_{11} \cdots p_{g g} \text { are } 1 \times 1 \Longrightarrow \text { Perron complements }=1
$$

Aggregation

Partitioned Matrix

$$
\begin{gathered}
\mathbf{P}_{n \times n}=\begin{array}{cc}
G & \bar{G} \\
G & \bar{G}\left(\begin{array}{cc}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right)=\left[\begin{array}{c|c|cc}
p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \\
\hline \vdots & \ddots & \vdots & \vdots \\
\hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \\
\hline \mathbf{c}_{1} & \cdots & \mathbf{c}_{g} & \mathbf{P}_{22}
\end{array}\right] \\
\boldsymbol{\pi}^{T}=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)
\end{array} .
\end{gathered}
$$

Perron Complements

$$
\begin{aligned}
p_{11} \cdots p_{g g} \text { are } 1 \times 1 & \Longrightarrow \text { Perron complements }=1 \\
& \Longrightarrow \text { censored distributions }=1
\end{aligned}
$$

Aggregation

Partitioned Matrix

$$
\begin{gathered}
\mathbf{P}_{n \times n}=\begin{array}{cc}
G & \bar{G} \\
G & \left.\begin{array}{cc}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right)=\left[\begin{array}{c|c|cc}
p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \\
\hline \vdots & \ddots & \vdots & \vdots \\
\hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \\
\hline \mathbf{c}_{1} & \cdots & \mathbf{c}_{g} & \mathbf{P}_{22}
\end{array}\right] \\
\boldsymbol{\pi}^{T}=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)
\end{array} .
\end{gathered}
$$

Perron Complements

$$
\begin{aligned}
p_{11} \cdots p_{g g} \text { are } 1 \times 1 & \Longrightarrow \text { Perron complements }=1 \\
& \Longrightarrow \text { censored distributions }=1
\end{aligned}
$$

One significant complement

$$
S_{2}=P_{22}+P_{21}\left(I-P_{11}\right)^{-1} P_{12}
$$

Aggregation

Partitioned Matrix

$$
\begin{gathered}
\mathbf{P}_{n \times n}=\begin{array}{cc}
G & \bar{G} \\
G & \left.\begin{array}{cc}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right)=\left[\begin{array}{c|c|cc}
p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \\
\hline \vdots & \ddots & \vdots & \vdots \\
\hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \\
\hline \mathbf{c}_{1} & \cdots & \mathbf{c}_{g} & \mathbf{P}_{22}
\end{array}\right] \\
\boldsymbol{\pi}^{T}=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)
\end{array} .
\end{gathered}
$$

Perron Complements

$$
\begin{aligned}
p_{11} \cdots p_{g g} \text { are } 1 \times 1 & \Longrightarrow \quad \text { Perron complements }=1 \\
& \Longrightarrow \text { censored distributions }=1
\end{aligned}
$$

One significant complement

$$
S_{2}=P_{22}+P_{21}\left(I-P_{11}\right)^{-1} P_{12}
$$

One significant censored dist

$$
\mathbf{s}_{2}^{T} \mathbf{S}_{2}=\mathbf{s}_{2}^{T}
$$

Aggregation

Partitioned Matrix

$$
\begin{gathered}
\mathbf{P}_{n \times n}=\frac{G}{G}\left(\begin{array}{cc}
G \\
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right)=\left[\begin{array}{c|c|cc}
p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \\
\hline \vdots & \ddots & \vdots & \vdots \\
\hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \\
\hline \mathbf{G}_{1} & \cdots & \mathbf{c}_{g} & \mathbf{P}_{22}
\end{array}\right] \\
\boldsymbol{\pi}^{T}=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)
\end{gathered}
$$

Perron Complements

$$
\begin{aligned}
p_{11} \cdots p_{g g} \text { are } 1 \times 1 & \Longrightarrow \text { Perron complements }=1 \\
& \Longrightarrow \text { censored distributions }=1
\end{aligned}
$$

One significant complement

$$
S_{2}=P_{22}+P_{21}\left(I-P_{11}\right)^{-1} P_{12}
$$

One significant censored dist $\quad \mathbf{s}_{2}^{T} \mathbf{S}_{2}=\mathbf{s}_{2}^{T}$

$$
\text { A/D Theorem } \Longrightarrow \mathbf{s}_{2}^{T}=\left(\pi_{g+1}, \ldots, \pi_{n}\right) / \sum_{i=g+1}^{n} \pi_{i}
$$

Aggregation Matrix

$$
\mathbf{A}=\left[\begin{array}{c|c|cc}
p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \mathbf{e} \\
\hline \vdots & \ddots & \vdots & \vdots \\
\hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \mathbf{e} \\
\mathbf{s}_{2}^{T} \mathbf{c}_{1} & \cdots & \mathbf{s}_{2}^{T} \mathbf{c}_{g} & \mathbf{s}_{2}^{T} \mathbf{P}_{22} \mathbf{e}
\end{array}\right]_{(g+1) \times(g+1)}=\left[\begin{array}{cc}
\mathbf{P}_{11} & \mathbf{P}_{12} \mathbf{e} \\
\mathbf{s}_{2}^{T} \mathbf{P}_{21} & \mathbf{1}-\mathbf{s}_{2}^{T} \mathbf{P}_{21} \mathbf{e}
\end{array}\right]
$$

Aggregation Matrix

$\mathbf{A}=\left[\begin{array}{c|c|cc}p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \mathbf{e} \\ \hline \vdots & \ddots & \vdots & \vdots \\ \hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{c}_{1} & \cdots & \mathbf{s}_{2}^{T} \mathbf{c}_{g} & \mathbf{s}_{2}^{T} \mathbf{P}_{22} \mathbf{e} \mathbf{e}\end{array}\right]_{(g+1) \times((q+1)}=\left[\begin{array}{cc}\mathbf{P}_{11} & \mathbf{P}_{12} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{P}_{21} & 1-\mathbf{s}_{2}^{T} \mathbf{P}_{21} \mathbf{e}\end{array}\right]$

The Aggregation/Disaggregation Theorem

If $\boldsymbol{\alpha}^{T}=\left(\alpha_{1}, \ldots, \alpha_{g}, \alpha_{g+1}\right)=$ stationary dist for \mathbf{A}
Then $\boldsymbol{\pi}^{T}=\left(\alpha_{1}, \ldots, \alpha_{g} \mid \alpha_{g+1} \mathbf{s}_{2}^{T}\right)=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)=$ stationary dist for \mathbf{P}

Aggregation Matrix

The Aggregation/Disaggregation Theorem

If $\boldsymbol{\alpha}^{T}=\left(\alpha_{1}, \ldots, \alpha_{g}, \alpha_{g+1}\right)=$ stationary dist for \mathbf{A}
Then $\boldsymbol{\pi}^{T}=\left(\alpha_{1}, \ldots, \alpha_{g} \mid \alpha_{g+1} \mathbf{s}_{2}^{T}\right)=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)=$ stationary dist for \mathbf{P}

Trouble! Always A Big Problem

$$
g=|G| \text { small } \Longrightarrow|\bar{G}| \text { big } \Longrightarrow \mathbf{S}_{2}=\mathbf{P}_{22}+\mathbf{P}_{21}\left(\mathbf{I}-\mathbf{P}_{11}\right)^{-1} \mathbf{P}_{12} \text { large }
$$

Aggregation Matrix

$\mathbf{A}=\left[\begin{array}{c|c|cc}p_{11} & \cdots & p_{1 g} & \mathbf{r}_{1}^{T} \mathbf{e} \\ \hline \vdots & \ddots & \vdots & \vdots \\ \hline p_{g 1} & \cdots & p_{g g} & \mathbf{r}_{g}^{T} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{c}_{1} & \cdots & \mathbf{s}_{2}^{T} \mathbf{c}_{g} & \mathbf{s}_{2}^{T} \mathbf{P}_{22} \mathbf{e} \mathbf{e}\end{array}\right]_{(g+1) \times((+1)}=\left[\begin{array}{cc}\mathbf{P}_{11} & \mathbf{P}_{12} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{P}_{21} & 1-\mathbf{s}_{2}^{T} \mathbf{P}_{21} \mathbf{e}\end{array}\right]$

The Aggregation/Disaggregation Theorem

If $\boldsymbol{\alpha}^{T}=\left(\alpha_{1}, \ldots, \alpha_{g}, \alpha_{g+1}\right)=$ stationary dist for \mathbf{A}
Then $\boldsymbol{\pi}^{T}=\left(\alpha_{1}, \ldots, \alpha_{g} \mid \alpha_{g+1} \mathbf{s}_{2}^{T}\right)=\left(\pi_{1}, \ldots \pi_{g} \mid \pi_{g+1}, \ldots, \pi_{n}\right)=$ stationary dist for \mathbf{P}

Trouble! Always A Big Problem

$$
\begin{aligned}
& g=|G| \text { small } \Longrightarrow|\bar{G}| \text { big } \Longrightarrow \mathbf{S}_{2}=\mathbf{P}_{22}+\mathbf{P}_{21}\left(\mathbf{I}-\mathbf{P}_{11}\right)^{-1} \mathbf{P}_{12} \text { large } \\
& g=|G| \text { big } \quad \Longrightarrow \mathbf{A} \text { large }
\end{aligned}
$$

Approximate Aggregation

Assumption

Updating involves relatively few states

Approximate Aggregation

Assumption

Updating involves relatively few states
$g=|G|$ is relatively small $\Longrightarrow \mathbf{A}=\left[\begin{array}{cc}\mathbf{P}_{11} & \mathbf{P}_{12} \mathbf{e} \\ \mathbf{s}_{2}^{T} \mathbf{P}_{21} & \mathbf{1}-\mathbf{s}_{2}^{T} \mathbf{P}_{21} \mathbf{e}\end{array}\right]_{(g+1) \times(g+1)}^{\text {is small }}$

Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

NO!
Can't do A/D twice - a fixed point emerges

Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

NO!
Can't do A/D twice - a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

NO!
Can't do A/D twice - a fixed point emerges

Solution

Perturb A/D output to move off of fixed point
Move it in direction of solution

Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

NO!
Can't do A/D twice - a fixed point emerges

Solution

Perturb A/D output to move off of fixed point
Move it in direction of solution

$$
\widetilde{\boldsymbol{\pi}}^{T}=\widetilde{\boldsymbol{\pi}}^{T} \mathbf{P}
$$

Experiments

Test Networks From Crawl Of Web

Censorship

562 nodes 736 links
(Supplied by Ronny Lempel \& Cleve Moler)
(Sites concerning "censorship on the Net")

Experiments

Test Networks From Crawl Of Web

Censorship

562 nodes 736 links
(Sites concerning "censorship on the Net")

Movies

Experiments

Test Networks From Crawl Of Web

Censorship

562 nodes 736 links

Movies
451 nodes 713 links
MathWorks
517 nodes 13,531 links
(Sites concerning "movies")
(Internal MathWorks website)

Experiments

Test Networks From Crawl Of Web

Censorship

562 nodes 736 links
Movies
451 nodes 713 links
MathWorks
517 nodes 13,531 links
(Sites concerning "censorship on the Net")

Abortion
1,693 nodes 4,325 links
(Sites concerning "movies")
(Internal MathWorks website)
(Sites concerning "abortion")

Experiments

Test Networks From Crawl Of Web

Censorship 562 nodes 736 links
 Movies
 451 nodes 713 links

517 nodes 13,531 linksAbortion
1,693 nodes 4,325 links
Genetics
2,952 nodes 6,485 links
\square

Parameters

Number Of Nodes (States) Added 3

Number Of Nodes (States) Removed 50

Parameters

3

Number Of Nodes (States) Added

Number Of Nodes (States) Removed
50
Number Of Links Added
(Different values have little effect on results)
10

Number Of Links Removed

20

Parameters

Number Of Nodes (States) Added

3

Number Of Nodes (States) Removed

$$
50
$$

Number Of Links Added

Number Of Links Removed

20

Stopping Criterion

$$
\text { 1-norm of residual }<10^{-10}
$$

The Partition

Intuition

$$
\left\{\begin{array}{l}
\text { Slow convergence in } G \\
\text { Fast convergence in } \bar{G}
\end{array}\right\} \longrightarrow \lambda_{2}\left(\mathrm{P}_{22}\right) \text { small } \longrightarrow \lambda_{\mathbf{2}}\left(\mathrm{S}_{22}\right) \text { small }
$$

The Partition

Intuition

Slower converging components tend to be the big ones

Steep Change $\operatorname{In} \varphi^{T}$

Censorship

Power Method

Iterations	Time
38	1.40

Iterative Aggregation

$\|G\|$	Iterations	Time
5	38	1.68
10	38	1.66
15	38	1.56
20	20	1.06
25	20	1.05
50	10	.69
100	8	.55

300	6	.65
400	5	.70

Censorship

Power Method

Iterations	Time
38	1.40

Iterative Aggregation

$\|G\|$	Iterations	Time
5	38	1.68
10	38	1.66
15	38	1.56
20	20	1.06
25	20	1.05
50	10	.69
100	8	.55
200	6	.53
300	6	.65
400	5	.70

nodes $=562$ links $=736$

Movies

Power Method

Iterations Time
17 . 40

Iterative Aggregation

$\|G\|$	Iterations	Time
5	12	.39
10	12	.37
15	11	.36
20	11	.35

100	9	.33
200	8	.35
300	7	.39
400	6	.47

nodes $=451 \quad$ links $=713$

Movies

Power Method	Iterative Aggregation			
		$\|G\|$	Iterations	Time
Iterations	Time	5	12	.39
17	.40	10	12	.37
		15	11	.36
	20	11	.35	
	25	11	.31	
	50	9	.31	
	100	9	.33	
	200	8	.35	
	300	7	.39	
	400	6	.47	

nodes $=451 \quad$ links $=713$

MathWorks

Power Method

Iterations	Time
54	1.25

Iterative Aggregation

$\|G\|$	Iterations	Time
5	53	1.18
10	52	1.29
15	52	1.23
20	42	1.05
25	20	1.13

300	11	.83
400	10	1.01

nodes $=517 \quad$ links $=13,531$

MathWorks

Power Method

Iterations	Time
54	1.25

Iterative Aggregation

$\|G\|$	Iterations	Time
5	53	1.18
10	52	1.29
15	52	1.23
20	42	1.05
25	20	1.13
50	18	.70
100	16	.70
200	13	.70
300	11	.83
400	10	1.01

Abortion

Power Method	
Iterations	Time
106	37.08

Iterative Aggregation

$\|G\|$	Iterations	Time
5	109	38.56
10	105	36.02
15	107	38.05
20	107	38.45
25	97	34.81
50	53	18.80
250	12	5.62
500	6	5.21
750	5	10.22
1000	5	14.61

Abortion

Power Method	
Iterations	Time
106	37.08

Iterative Aggregation

$\|G\|$	Iterations	Time
5	109	38.56
10	105	36.02
15	107	38.05
20	107	38.45
25	97	34.81
50	53	18.80
100	13	5.18
250	12	5.62
500	6	5.21
750	5	10.22
1000	5	14.61

Genetics

Power Method

Iterations	Time
92	91.78

Iterative Aggregation

$\|G\|$	Iterations	Time
5	91	88.22
10	92	92.12
20	71	72.53
50	25	25.42
100	19	20.72
250	13	14.97
1000	5	17.76
1500	5	31.84

nodes $=2,952 \quad$ links $=6,485$

Genetics

Power Method

Iterations	Time
92	91.78

Iterative Aggregation

$\|G\|$	Iterations	Time
5	91	88.22
10	92	92.12
20	71	72.53
50	25	25.42
100	19	20.72
250	13	14.97
500	7	11.14
1000	5	17.76
1500	5	31.84

nodes $=2,952 \quad$ links $=6,485$

Conclusion

Elegant Blend of Math \& NA

Conclusion

Elegant Blend of Math \& NA

Wide Range Of Important Applications

Conclusion

Elegant Blend of Math \& NA
 Wide Range Of Important Applications

Preliminary Work

Conclusion

Elegant Blend of Math \& NA
 Wide Range Of Important Applications

Preliminary Work

Improvements

Optimize G-set

Conclusion

Elegant Blend of Math \& NA

Wide Range Of Important Applications

Preliminary Work

Improvements

Optimize G-set
Accelerate Smoothing

Conclusion

Elegant Blend of Math \& NA

Wide Range Of Important Applications

Preliminary Work

Improvements

Optimize G-set
Accelerate Smoothing

+ Thanks For Your Attention

