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Ranking Methods.

Perron Frobenius Theorem

Basics of Perron Frobenius Theorem

Given a nonnegative irreducible square matrix
I Largest eigenvalue, called Perron root, is positive, real and

simple.
I Only one real positive eigenvector corresponding to the

largest eigenvalue, called Perron vector.
I If A is primitive, then Perron vector is easy to compute.
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Perron Frobenius Theorem

Keener

Ranking NFL with Keener (SIAM Review,1993)

I Laplace’s rule of succession -

S + 1
S + F + 2

probability of a success on the try n + 1, and
S = # of successes, F = # of failures, S + F = n.

I h(x) = 1
2 + 1

2sgn(x− 1
2)

√
|2x− 1|
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Perron Frobenius Theorem

Keener

Ranking NFL with Keener

I Keener nonnegative matrix A

I A(i, j) =

 h

(
Sij + 1

Sij + Sji + 2

)
team i played team j

0 otherwise
,

where Sij is the amount of points scored by team i against
team j.

I A is nonnegative and irreducible
I Rank vector r is the Perron vector of A.
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Perron Frobenius Theorem

Redmond

Ranking NFL with Redmond (Mathematics Magazine,2003)

I Redmond nonnegative matrix M
I M(i, i) = 1/g, where g is the number of games played

I M(i, j) = M(j, i) =
{

1/g if team i played team j
0 team i did not played team j

I M is nonnegative, symmetric, and irreducible
I Rank vector is a particular linear combination of

normalized (2-norm) eigenvectors of M, excluding the
dominant eigenvector.
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Markov Chains

Google’s ranking algorithm.

Basic Markov Chains.

I Markov Chain - stochastic memoryless process.
I Markov Chain ≡ Stochastic matrix (nonnegative, rows sum

to 1), called transition matrix.
I Left Perron vector is called stationary distribution vector

πT = πP
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Markov Chains

Google’s ranking algorithm.

Google’s ranking.

I Think of the internet as a graph.
I Webpages are nodes of the graph, n nodes.
I Hyperlinks are directed edges.

I Basic Idea: “a webpage is important if it is pointed to by
other important webpages,” i.e. rank of a webpage
depends on the ranks of the webpages pointing to it.
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Markov Chains

Google’s ranking algorithm.

Google Matrix.

I Hyperlink Matrix H

I H(i, j) =
{

1/(# links from i) there is a link from i to j
0 otherwise

I Stochastic matrix S
I Obtained by modifying matrix H.
I Replace the zero rows of H with (1/n)eT , where e is a

column vector of ones.
I Google Matrix G.

I Convex combination: G = αS + (1− α)evT ,
α ∈ (0, 1) and vT > 0

I Personalization vector v.

I Rank vector is π, the stationary distribution vector of G.
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Markov Chains

Google’s ranking algorithm.

NFL web.

I Each NFL team is a node in a graph.

I A regular season game results in a directed edge from the
loser to the winner.

I The edges are weighted, the weight is the score difference
of the corresponding game.
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Markov Chains

Google’s ranking algorithm.

Variations on PageRank.

I H(i, j) =

{ P
score differnce for the game where j beat iP

score difference for the game i lost
0

I Dealing with the ith zero row (undefeated team i)

I (1/32)eT , equally likely to lose to any other team.

I eT
i , team i could “lose” only to team i.

I πT
t−1, using the ranks from previous week.
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Other Ranking Algorithms

Colley

Ranking NFL with Colley (Colley’s Bias Free Matrix Rankings)

I Colley matrix C

I Start with Laplace’s rule of succession, ri =
nw,i + 1
ntot,i + 2

,

rewrite by including strength of schedule.
I End up with linear system

Cr = b

where
I C(i, j) =

{
2 + ntot,i i = j
−nj,i i 6= j

I ntot,i - total number of games played by team i,
I nw,i - number of games won by team i,
I nj,i - number of times team i played team j.

I Ranking vector r is the solution to the linear system Cr = b



Regular Season 2005
alpha=0.65, v^T=(1/32)e^T
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Regular season 2005, α=0.65, vT = (1/32)eT

Colley Google Keener Redmond
Correct Spread Correct Spread Correct Spread Correct Spread games

week 1 0 0 0 0 0 0 0 0
week 2 0 0 0 0 0 0 0 0
week 3 11 132 12 109 11 135 0 0 14
week 4 9 163 9 143 10 135 0 0 14
week 5 10 162 9 202 9 167 0 0 14
week 6 12 111 11 126 10 125 0 0 14
week 7 10 124 10 150 11 106 0 0 14
week 8 10 177 11 143 11 148 0 0 14
week 9 12 111 13 140 13 141 0 0 14
week 10 9 109 10 121 9 120 0 0 14
week 11 12 171 11 160 11 159 9 163 16
week 12 13 98 14 111 13 103 12 113 16
week 13 14 134 14 133 14 118 14 116 16
week 14 12 150 13 187 12 172 13 166 16
week 15 13 219 13 217 14 208 12 216 16
week 16 9 149 8 148 8 149 8 149 16
week 17 9 201 12 188 11 202 7 228 16
Total 165 2211 170 2278 167 2188 75 1151 224

73.7% 75.9 % 74.6 % 67 %
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Other Ranking Algorithms

HITS

HITS (Hypertext Induced Topic Search)

I Each webpage gets two scores - authority (depends on
inlinks) and hub (depends on outlinks)

I Basic idea: “Good authorities are pointed to by good hubs
and good hubs point to good authorities.”
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Other Ranking Algorithms

HITS

HITS ranking

I xi = authority score for webpage i
I yi = hub score for webpage i

xi =
∑

pages that point to i

yi, yi =
∑

pages that i points to

xi

x(k) = LT y(k−1), y(k) = Lx(k)

where
I L(i, j) =

{
1 if there is a link from i to j
0 otherwise

I Two ranking vectors x, y (authority and hub) are dominant
eigenvectors of LT L, and LLT .
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Other Ranking Algorithms

HITS

Measuring offence and defence of NFL with HITS

I Based on total yards each team generates
I Authorities = Offence (vector o) and Hubs = Defence

(vector d)
I defence score di =

∑
j

yij(1/oj)

I offence score oj =
∑
i
(1/di)yij

d(k) = Y[1/o(k−1)] o(k) = (1/d(k))TY

I Converges
I Results are independent of the initial value
I How do ranks of offence and defence correspond to the

overall rank?



Regular season 2005
Defence Offence

Team Name defence value Team Name offence value
1 Washington 1.4572e+005 Kansas City 0.0387
2 Pittsburgh 1.4790e+005 Denver 0.0366
3 Dallas 1.4828e+005 N.Y. Giants 0.0364
4 Tampa Bay 1.4852e+005 Cincinnati 0.0357
5 SanDiego 1.4914e+005 Seattle 0.0357
6 Baltimore 1.4946e+005 New England 0.0353
7 Carolina 1.4951e+005 San Diego 0.0352
8 Chicago 1.5078e+005 Indianapolis 0.0350
9 Jacksonville 1.5198e+005 St. Louis 0.0340
10 Arizona 1.5226e+005 Arizona 0.0336
11 Philadelphia 1.5392e+005 Washington 0.0333
12 Denver 1.5403e+005 Dallas 0.0327
13 N.Y. Jets 1.5570e+005 Atlanta 0.0326
14 Indianapolis 1.5674e+005 Miami 0.0322
15 N.Y. Giants 1.5838e+005 Philadelphia 0.0319
16 Green Bay 1.5898e+005 Green Bay 0.0319
17 Oakland 1.5988e+005 Oakland 0.0314
18 Seattle 1.6129e+005 Pittsburgh 0.0313
19 Kansas City 1.6359e+005 New Orleans 0.0311
20 Tennessee 1.6579e+005 Tennessee 0.0310
21 Cleveland 1.6586e+005 Jacksonville 0.0310
22 Miami 1.6627e+005 Carolina 0.0306
23 New Orleans 1.6688e+005 Baltimore 0.0289
24 New England 1.6840e+005 Tampa Bay 0.0288
25 Minnesota 1.6909e+005 Minnesota 0.0286
26 Buffalo 1.7087e+005 Cleveland 0.0281
27 Detroit 1.7112e+005 Detroit 0.0273
28 Atlanta 1.7241e+005 Buffalo 0.0252
29 St. Louis 1.8074e+005 Chicago 0.0251
30 Cincinnati 1.8137e+005 Houston 0.0249
31 Houston 1.8430e+005 N.Y. Jets 0.0245
32 San Francisco 1.9346e+005 San Francisco 0.0224
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Future

Future work

I Incorporate HITS measure of offence, defence into overall
ranking score

I Point spreads
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