Ranking Methods.

A. Govan C. Meyer

Department of Mathematics North Carolina State University

Cha-Cha Days, September 2006

Outline

Perron Frobenius Theorem Keener Redmond

Markov Chains
Google's ranking algorithm.

Other Ranking Algorithms
Colley
HITS

Future

Basics of Perron Frobenius Theorem

Given a nonnegative irreducible square matrix

- Largest eigenvalue, called Perron root, is positive, real and simple.
- Only one real positive eigenvector corresponding to the largest eigenvalue, called Perron vector.
- ▶ If A is primitive, then Perron vector is easy to compute.

Ranking NFL with Keener (SIAM Review, 1993)

► Laplace's rule of succession -

$$\frac{S+1}{S+F+2}$$

probability of a success on the try n+1, and S=# of successes, F=# of failures, S+F=n.

•
$$h(x) = \frac{1}{2} + \frac{1}{2} sgn(x - \frac{1}{2})\sqrt{|2x - 1|}$$

Ranking NFL with Keener

► Keener nonnegative matrix A

$$\mathbf{A}(i,j) = \left\{ \begin{array}{ll} h\left(\frac{S_{ij}+1}{S_{ij}+S_{ji}+2}\right) & \text{team } i \text{ played team } j \\ 0 & \text{otherwise} \end{array} \right. ,$$

where S_{ij} is the amount of points scored by team i against team j.

- ► A is nonnegative and irreducible
- ► Rank vector r is the Perron vector of A.

Redmond

Ranking NFL with Redmond (Mathematics Magazine, 2003)

- ► Redmond nonnegative matrix M
 - ▶ M(i,i) = 1/g, where g is the number of games played

$$\mathbf{M}(i,j) = \mathbf{M}(j,i) = \left\{ \begin{array}{ll} 1/g & \text{ if team } i \text{ played team } j \\ 0 & \text{ team } i \text{ did not played team } j \end{array} \right.$$

- ▶ M is nonnegative, symmetric, and irreducible
- ► Rank vector is a particular linear combination of normalized (2-norm) eigenvectors of M, excluding the dominant eigenvector.

Basic Markov Chains.

- ▶ Markov Chain stochastic memoryless process.
- ► Markov Chain ≡ Stochastic matrix (nonnegative, rows sum to 1), called transition matrix.
- ► Left Perron vector is called stationary distribution vector

$$\pi^T = \pi P$$

Google's ranking.

- ▶ Think of the internet as a graph.
 - ▶ Webpages are nodes of the graph, *n* nodes.
 - Hyperlinks are directed edges.
- Basic Idea: "a webpage is important if it is pointed to by other important webpages," i.e. rank of a webpage depends on the ranks of the webpages pointing to it.

Google Matrix.

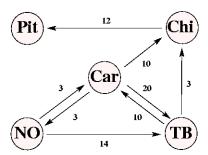
- Hyperlink Matrix H
 - $\mathbf{H}(i,j) = \left\{ \begin{array}{ll} 1/(\# \mbox{ links from } i) & \mbox{ there is a link from } i \mbox{ to } j \\ 0 & \mbox{ otherwise} \end{array} \right.$
- Stochastic matrix S
 - Obtained by modifying matrix H.
 - ► Replace the zero rows of \mathbf{H} with $(1/n)\mathbf{e}^T$, where \mathbf{e} is a column vector of ones.
- Google Matrix G.
 - ► Convex combination: $\mathbf{G} = \alpha \mathbf{S} + (1 \alpha) \mathbf{e} \mathbf{v}^T$, $\alpha \in (0, 1)$ and $\mathbf{v}^T > 0$
 - Personalization vector v.
- ▶ Rank vector is π , the stationary distribution vector of G.

NFL web.

► Each NFL team is a node in a graph.

Google's ranking algorithm.

NFL web.


- ▶ Each NFL team is a node in a graph.
- ► A regular season game results in a directed edge from the loser to the winner.

NFL web.

- ▶ Each NFL team is a node in a graph.
- ▶ A regular season game results in a directed edge from the loser to the winner.
- ► The edges are weighted, the weight is the score difference of the corresponding game.

NFL web.

- ► Each NFL team is a node in a graph.
- ▶ A regular season game results in a directed edge from the loser to the winner.
- ► The edges are weighted, the weight is the score difference of the corresponding game.

$$\mathbf{H}(i,j) = \left\{ \begin{array}{l} \frac{\sum \mathsf{score} \; \mathsf{differnce} \; \mathsf{for} \; \mathsf{the} \; \mathsf{game} \; \mathsf{where} \; j \; \mathsf{beat} \; i}{\sum \mathsf{score} \; \mathsf{difference} \; \mathsf{for} \; \mathsf{the} \; \mathsf{game} \; i \; \mathsf{lost}} \\ 0 \end{array} \right.$$

Dealing with the ith zero row (undefeated team i)

$$\mathbf{H}(i,j) = \left\{ \begin{array}{l} \frac{\sum \text{score differnce for the game where } j \text{ beat } i}{\sum \text{score difference for the game } i \text{ lost}} \\ 0 \end{array} \right.$$

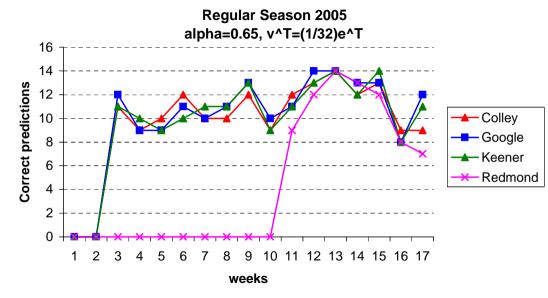
- ▶ Dealing with the ith zero row (undefeated team i)
 - ▶ $(1/32)e^T$, equally likely to lose to any other team.

$$\mathbf{H}(i,j) = \left\{ \begin{array}{l} \frac{\sum \mathsf{score} \; \mathsf{differnce} \; \mathsf{for} \; \mathsf{the} \; \mathsf{game} \; \mathsf{where} \; j \; \mathsf{beat} \; i}{\sum \mathsf{score} \; \mathsf{difference} \; \mathsf{for} \; \mathsf{the} \; \mathsf{game} \; i \; \mathsf{lost}} \\ 0 \end{array} \right.$$

- ▶ Dealing with the ith zero row (undefeated team i)
 - ▶ $(1/32)e^T$, equally likely to lose to any other team.
 - \mathbf{e}_i^T , team i could "lose" only to team i.

$$\mathbf{H}(i,j) = \left\{ \begin{array}{l} \frac{\sum \text{score differnce for the game where } j \text{ beat } i}{\sum \text{score difference for the game } i \text{ lost}} \\ 0 \end{array} \right.$$

- ▶ Dealing with the ith zero row (undefeated team i)
 - $(1/32)e^T$, equally likely to lose to any other team.
 - \mathbf{e}_i^T , team i could "lose" only to team i.
 - lacktriangledown π_{t-1}^T , using the ranks from previous week.


Ranking NFL with Colley (Colley's Bias Free Matrix Rankings)

- Colley matrix C
 - ► Start with Laplace's rule of succession, $r_i = \frac{n_{w,i} + 1}{n_{tot i} + 2}$, rewrite by including strength of schedule.
 - End up with linear system

$$\mathbf{Cr} = \mathbf{b}$$

$$\mathbf{C}(i,j) = \left\{ \begin{array}{ll} 2 + n_{tot,i} & i = j \\ -n_{j,i} & i \neq j \end{array} \right.$$

- $ightharpoonup n_{tot,i}$ total number of games played by team i,
- $ightharpoonup n_{w,i}$ number of games won by team i,
- $ightharpoonup n_{j,i}$ number of times team i played team j.
- ▶ Ranking vector ${f r}$ is the solution to the linear system ${f Cr}={f b}$

Regular season 2005, α =0.65, $\mathbf{v}^T = (1/32)\mathbf{e}^T$										
	Colley		Google		Keener		Redmond			
	Correct	Spread	Correct	Spread	Correct	Spread	Correct	Spread	games	
week 1	0	0	0	0	0	0	0	0		
week 2	0	0	0	0	0	0	0	0		
week 3	11	132	12	109	11	135	0	0	14	
week 4	9	163	9	143	10	135	0	0	14	
week 5	10	162	9	202	9	167	0	0	14	
week 6	12	111	11	126	10	125	0	0	14	
week 7	10	124	10	150	11	106	0	0	14	
week 8	10	177	11	143	11	148	0	0	14	
week 9	12	111	13	140	13	141	0	0	14	
week 10	9	109	10	121	9	120	0	0	14	
week 11	12	171	11	160	11	159	9	163	16	
week 12	13	98	14	111	13	103	12	113	16	
week 13	14	134	14	133	14	118	14	116	16	
week 14	12	150	13	187	12	172	13	166	16	
week 15	13	219	13	217	14	208	12	216	16	
week 16	9	149	8	148	8	149	8	149	16	
week 17	9	201	12	188	11	202	7	228	16	
Total	165	2211	170	2278	167	2188	75	1151	224	
	73.7%		75.9 %		74.6 %		67 %			

HITS (Hypertext Induced Topic Search)

- ► Each webpage gets two scores authority (depends on inlinks) and hub (depends on outlinks)
- ► Basic idea: "Good authorities are pointed to by good hubs and good hubs point to good authorities."

HITS ranking

- x_i = authority score for webpage i
- y_i = hub score for webpage i

$$x_i = \sum_{ ext{pages that point to } i} y_i, \qquad y_i = \sum_{ ext{pages that } i \text{ points to}} x_i$$

$$\mathbf{x}^{(k)} = \mathbf{L}^T \mathbf{y}^{(k-1)}, \qquad \mathbf{y}^{(k)} = \mathbf{L} \mathbf{x}^{(k)}$$

where

- $\mathbf{L}(i,j) = \left\{ \begin{array}{ll} 1 & \text{if there is a link from } i \text{ to } j \\ 0 & \text{otherwise} \end{array} \right.$
- ► Two ranking vectors \mathbf{x} , \mathbf{y} (authority and hub) are dominant eigenvectors of $L^T L$, and $L L^T$.

Measuring offence and defence of NFL with HITS

- Based on total yards each team generates
- ▶ Authorities = Offence (vector o) and Hubs = Defence (vector d)
- ▶ defence score $d_i = \sum_j y_{ij} (1/o_j)$
- lacktriangle offence score $o_j = \sum\limits_i (1/d_i) y_{ij}$

$$\mathbf{d}^{(k)} = \mathbf{Y}[1/\mathbf{o}^{(k-1)}] \qquad \mathbf{o}^{(k)} = (1/\mathbf{d}^{(k)})^T \mathbf{Y}$$

- ► Converges
- Results are independent of the initial value
- How do ranks of offence and defence correspond to the overall rank?

Regular season 2005								
	Defe	ence	Offence					
	Team Name	defence value	Team Name	offence value				
1	Washington	1.4572e + 005	Kansas City	0.0387				
2	Pittsburgh	1.4790e + 005	Denver	0.0366				
3	Dallas	1.4828e + 005	N.Y. Giants	0.0364				
4	Tampa Bay	1.4852e + 005	Cincinnati	0.0357				
5	SanDiego	1.4914e + 005	Seattle	0.0357				
6	Baltimore	1.4946e + 005	New England	0.0353				
7	Carolina	1.4951e + 005	San Diego	0.0352				
8	Chicago	1.5078e + 005	Indianapolis	0.0350				
9	Jacksonville	1.5198e + 005	St. Louis	0.0340				
10	Arizona	1.5226e + 005	Arizona	0.0336				
11	Philadelphia	1.5392e + 005	Washington	0.0333				
12	Denver	1.5403e + 005	Dallas	0.0327				
13	N.Y. Jets	1.5570e + 005	Atlanta	0.0326				
14	Indianapolis	1.5674e + 005	Miami	0.0322				
15	N.Y. Giants	1.5838e + 005	Philadelphia	0.0319				
16	Green Bay	1.5898e + 005	Green Bay	0.0319				
17	Oakland	1.5988e + 005	Oakland	0.0314				
18	Seattle	1.6129e + 005	Pittsburgh	0.0313				
19	Kansas City	1.6359e + 005	New Orleans	0.0311				
20	Tennessee	1.6579e + 005	Tennessee	0.0310				
21	Cleveland	1.6586e + 005	Jacksonville	0.0310				
22	Miami	1.6627e + 005	Carolina	0.0306				
23	New Orleans	1.6688e + 005	Baltimore	0.0289				
24	New England	1.6840e + 005	Tampa Bay	0.0288				
25	Minnesota	1.6909e + 005	Minnesota	0.0286				
26	Buffalo	1.7087e + 005	Cleveland	0.0281				
27	Detroit	1.7112e + 005	Detroit	0.0273				
28	Atlanta	1.7241e + 005	Buffalo	0.0252				
29	St. Louis	1.8074e + 005	Chicago	0.0251				
30	Cincinnati	1.8137e + 005	Houston	0.0249				
31	Houston	1.8430e + 005	N.Y. Jets	0.0245				
32	San Francisco	1.9346e + 005	San Francisco	0.0224				

Future work

- ► Incorporate HITS measure of offence, defence into overall ranking score
- ► Point spreads