
InformationRetrieval
WebSearch

Carl Meyer

Department of Mathematics
North Carolina State University
Raleigh, NC SAC Cap Man 7/14/2005

Early Search Engines

System for the Mechanical Analysis and Retrieval of Text

Harvard 1962 – 1965

IBM 7094 & IBM 360

Gerard Salton

Implemented at Cornell (1965 – 1970)

Based on matrix methods

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count fij = # times term i appears in document j

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count fij = # times term i appears in document j

Term–Document Matrix

⎛
⎜⎜⎜⎝

Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

⎞
⎟⎟⎟⎠ = Am×n

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol

Term Weighting

A Problem

Suppose query = HEDGE FUND

If HEDGE FUND occurs once in D1 and twice in D2

� Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

Term Weighting

A Problem

Suppose query = HEDGE FUND

If HEDGE FUND occurs once in D1 and twice in D2

� Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Term Weighting

A Problem

Suppose query = HEDGE FUND

If HEDGE FUND occurs once in D1 and twice in D2

� Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Query Weighting Also Performed

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Variation in Indexing Conventions

— No two people index documents the same way

— Computer indexing is inexact and can be unpredictable

Theory vs Practice

In Theory — it’s simple and elegant

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

— D2 indexed by automobile, fuel, and tire (missed)

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

— D2 indexed by automobile, fuel, and tire (missed)

The Challenge

— Find D2 by revealing the latent connection through tire

Susan Dumais’s Improvement

Approximate A with a lower rank matrix

• Great Idea! —> 2 patents for Bell/Telcordia

— Computer information retrieval using latent semantic structure. U.S. Patent No.

4,839,853, June 13, 1989.

— Computerized cross-language document retrieval using latent semantic indexing.

U.S. Patent No. 5,301,109, April 5, 1994.

(Resource: USPTO http://patft.uspto.gov/netahtml/srchnum.htm)

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

“Best” mathematical solution
— SVD: A = UDVT =

∑
σiuivT

i Zi = uivT
i

Pros & Cons
Cons

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content used (Any link structure ignored)

• Difficult to add & delete documents

• Finding optimal k not easy (Empirical tuning required)

• Doesn’t scale up well (Impractical for WWW)

• ui, vi mixed sign =⇒ no good interpretation

Pro
• Good at clustering =⇒ reveals patterns for text mining

Pros & Cons
Cons

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content used (Any link structure ignored)

• Difficult to add & delete documents

• Finding optimal k not easy (Empirical tuning required)

• Doesn’t scale up well (Impractical for WWW)

• ui, vi mixed sign =⇒ no good interpretation

Pro
• Good at clustering =⇒ reveals patterns for text mining

Pros & Cons
Cons

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content used (Any link structure ignored)

• Difficult to add & delete documents

• Finding optimal k not easy (Empirical tuning required)

• Doesn’t scale up well (Impractical for WWW)

• ui, vi mixed sign =⇒ no good interpretation

Pro
• Good at clustering =⇒ reveals patterns for text mining

Pros & Cons
Cons

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content used (Any link structure ignored)

• Difficult to add & delete documents

• Finding optimal k not easy (Empirical tuning required)

• Doesn’t scale up well (Impractical for WWW)

• ui, vi mixed sign =⇒ no good interpretation

Pro
• Good at clustering =⇒ reveals patterns for text mining

Pros & Cons
Cons

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content used (Any link structure ignored)

• Difficult to add & delete documents

• Finding optimal k not easy (Empirical tuning required)

• Doesn’t scale up well (Impractical for WWW)

• ui, vi mixed sign =⇒ no good interpretation

Pro
• Good at clustering =⇒ reveals patterns for text mining

Pros & Cons
Cons

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content used (Any link structure ignored)

• Difficult to add & delete documents

• Finding optimal k not easy (Empirical tuning required)

• Doesn’t scale up well (Impractical for WWW)

• ui, vi mixed sign =⇒ no good interpretation

Pro
• Good at clustering =⇒ reveals patterns for text mining

Pros & Cons
Cons

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content used (Any link structure ignored)

• Difficult to add & delete documents

• Finding optimal k not easy (Empirical tuning required)

• Doesn’t scale up well (Impractical for WWW)

• ui, vi mixed sign =⇒ no good interpretation

Pro
• Good at clustering =⇒ reveals patterns for text mining

Another Improvement (2000)

Daniel Lee Sebastian Seung

Use low-rank approximation with sparse nonnegative factors

Am×n ≈ Um×k Σk×k VT
k×m

nonneg mixed nonneg mixed

Am×n ≈ Wm×k Hk×m

nonneg nonneg nonneg

Nonnegative Matrix Factorization
Constrained Nonlinear Least Squares Problem

Am×n ≈ Wm×kHk×n =⇒
{

min ‖A − WH‖2
F

W ≥ 0, H ≥ 0, both sparse

Nonnegative Matrix Factorization
Constrained Nonlinear Least Squares Problem

Am×n ≈ Wm×kHk×n =⇒
{

min ‖A − WH‖2
F

W ≥ 0, H ≥ 0, both sparse

Wk = [w1|w2|. . .|wk] yields sparse nonnegative basis
docj

term 1

term 2...
term m

⎡
⎢⎣

...
Aj
...

⎤
⎥⎦ ≈

⎡
⎢⎣

...
w1...

⎤
⎥⎦h1j +

⎡
⎢⎣

...
w2...

⎤
⎥⎦h2j + . . . +

⎡
⎢⎣

...
wk...

⎤
⎥⎦hkj

• Each wi can be interpreted as a topic vector

— Large {wij, wik, . . .wil} =⇒ wi mostly about terms j, k, . . ., l

— hij indicates how much of docj is related to topic vector wi

Example (MEDLINE Amy Langville k = 10)

0 1 2 3 4

10
9
8
7
6
5
4
3
2
1 ventricular

aortic
septal
left
defect
regurgitation
ventricle
valve
cardiac
pressure

Highest Weighted Terms in Basis Vector W
*1

weight

te
rm

0 0.5 1 1.5 2 2.5

10
9
8
7
6
5
4
3
2
1 oxygen

flow
pressure
blood
cerebral
hypothermia
fluid
venous
arterial
perfusion

Highest Weighted Terms in Basis Vector W
*2

weight

te
rm

0 1 2 3 4

10
9
8
7
6
5
4
3
2
1 children

child
autistic
speech
group
early
visual
anxiety
emotional
autism

Highest Weighted Terms in Basis Vector W
*5

weight

te
rm

0 0.5 1 1.5 2 2.5

10
9
8
7
6
5
4
3
2
1 kidney

marrow
dna
cells
nephrectomy
unilateral
lymphocytes
bone
thymidine
rats

Highest Weighted Terms in Basis Vector W
*6

weight

te
rm

Example (cont)

doc5 ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

w9

fatty

glucose

acids

ffa

insulin...

⎞
⎟⎟⎟⎟⎟⎟⎠

.1646 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w6

kidney

marrow

dna

cells

nephr.
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.0103 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w7

hormone

growth

hgh

pituitary

mg
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.0045 + . . .

Enron E-mail Data (1999–2001)

Fed investigation studied 15 million e-mail messages

• Over 500,000 messages made public

Enron E-mail Data (1999–2001)

Fed investigation studied 15 million e-mail messages

• Over 500,000 messages made public

Enron’s Troubles 1999-2001

• Problems with Dabhol Power Company (DPC) in India

Enron E-mail Data (1999–2001)

Fed investigation studied 15 million e-mail messages

• Over 500,000 messages made public

Enron’s Troubles 1999-2001

• Problems with Dabhol Power Company (DPC) in India

• Deregulation of Calif. energy industry

� Rolling blackouts in the summer of 2000

� Subsequent investigations

Enron E-mail Data (1999–2001)

Fed investigation studied 15 million e-mail messages

• Over 500,000 messages made public

Enron’s Troubles 1999-2001

• Problems with Dabhol Power Company (DPC) in India

• Deregulation of Calif. energy industry

� Rolling blackouts in the summer of 2000

� Subsequent investigations

• Ill-fated Dynergy merger, Oct-Nov 2001

� Revelation of Enron’s deceptive practices

� Enron filed for bankruptcy in December 2001

Mining 2001 E-mail (M. Berry, Univ. Tenn)

Web Search Components

Web Crawlers Software robots
gather web pages

Web Search Components

Web Crawlers Software robots
gather web pages

Doc Server Stores docs
and snippits

Web Search Components

Web Crawlers Software robots
gather web pages

Doc Server Stores docs
and snippits

Index Server

Scans pages and does term indexing
Terms −→ Pages (similar to book index)

The Heart of a Search Engine

The Ranking Module

• Assign an importance value to each page

� Independent of any query

• Google’s PageRank c© technology distinguishes it from all
competitors

The Process

The Process

The Process

The Process

How To Measure “Importance”

Authorities Hubs

How To Measure “Importance”

Authorities Hubs

• Good hub pages point to good authority pages

How To Measure “Importance”

Authorities Hubs

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

HITS Algorithm
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

HITS Algorithm
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

• Define Authority Scores (first iterate)

ai =
∑

j:Pj→Pi

hj

HITS Algorithm
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

• Define Authority Scores (first iterate)

ai =
∑

j:Pj→Pi

hj ⇒ a1 =

⎡
⎢⎢⎣

a1

a2...
an

⎤
⎥⎥⎦ = LTh0

Lij =
{

1 Pi → Pj

0 Pi �→ Pj

HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

• h3 = La3

. . .

HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

• h3 = La3

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1

• H = LLT (hub matrix) hk = Hhk−1

HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

• h3 = La3

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1 → e-vector (direction)

• H = LLT (hub matrix) hk = Hhk−1 → e-vector (direction)

Compromise

1. Do direct query matching

Compromise

1. Do direct query matching

2. Build neighborhood graph

Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood

Pros & Cons

Advantages

• Returns satisfactory results

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

• Scores can be manipulated by creating artificial hubs

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P) that is not query dependent

� Off-line calculations — No query time computation

• Let the Web determine importance

� But not by simple link counts

— One link to P from Yahoo! is important

— Many links to P from me is not

• Share The Vote

� Yahoo! casts many “votes”

— value of vote from Y ahoo! is diluted

� If Yahoo! “votes” for n pages

— Then P receives only r(Y)/n credit from Y

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P) that is not query dependent

� Off-line calculations — No query time computation

• Let the Web determine importance

� But not by simple link counts

— One link to P from Yahoo! is important

— Many links to P from me is not

• Share The Vote

� Yahoo! casts many “votes”

— value of vote from Y ahoo! is diluted

� If Yahoo! “votes” for n pages

— Then P receives only r(Y)/n credit from Y

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

The Google Goals

• Create a PageRank r(P) that is not query dependent

� Off-line calculations — No query time computation

• Let the Web determine importance

� But not by simple link counts

— One link to P from Yahoo! is important

— Many links to P from me is not

• Share The Vote

� Yahoo! casts many “votes”

— value of vote from Y ahoo! is diluted

� If Yahoo! “votes” for n pages

— Then P receives only r(Y)/n credit from Y

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

r2(Pi) =
∑

P∈BPi

r1(P)
|P |

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

r2(Pi) =
∑

P∈BPi

r1(P)
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P)
|P |

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

A Markov Chain?

If P =
[
pij

]
is a stochastic matrix (pij≥0 and

∑
j
pij=1)

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

A Markov Chain?

If P =
[
pij

]
is a stochastic matrix (pij≥0 and

∑
j
pij=1)

Each πT
j is a probability vector (πi≥0 and

∑
i
πi=1)

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

A Markov Chain?

If P =
[
pij

]
is a stochastic matrix (pij≥0 and

∑
j
pij=1)

Each πT
j is a probability vector (πi≥0 and

∑
i
πi=1)

πT
j+1 = πT

j P is random walk on the graph defined by links

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

A Markov Chain?

If P =
[
pij

]
is a stochastic matrix (pij≥0 and

∑
j
pij=1)

Each πT
j is a probability vector (πi≥0 and

∑
i
πi=1)

πT
j+1 = πT

j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = steady-state probability distribution

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1

P2

P3

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2

P3

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Dead end page (nothing to click on) — a “dangling node”

Tiny Web

3

6 5

4

1 2

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 0 0 0 0 0 0

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Dead end page (nothing to click on) — a “dangling node”

πT not well defined

The Fix
Replace zero rows with (1/n)eT = (1/n,1/n, . . .,1/n)

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 1/6 1/6 1/6 1/6 1/6 1/6

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The Fix
Replace zero rows with (1/n)eT = (1/n,1/n, . . .,1/n)

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 1/6 1/6 1/6 1/6 1/6 1/6

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S = H +
aeT

6
= H +

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

1

6
(1 1 1 1 1 1)

Another Problem

S is reducible

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0

P2 1/6 1/6 1/6 1/6 1/6 1/6

P3 1/3 1/3 0 0 1/3 0

P4 0 0 0 0 1/2 1/2

P5 0 0 0 1/2 0 1/2

P6 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

πT may not be well defined

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Pk > 0 for some k

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Pk > 0 for some k

The Google Fixes

• P = αS + (1 − α)eeT/n α ≈ .85

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Pk > 0 for some k

The Google Fixes

• P = αS + (1 − α)eeT/n α ≈ .85

• P = αS + (1 − α)evT vT = positive probability vector

Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Pk > 0 for some k

The Google Fixes

• P = αS + (1 − α)eeT/n α ≈ .85

• P = αS + (1 − α)evT vT = positive probability vector

• P = αH + (αa + (1 − α)e) vT

Back To Tiny Web

The Google Matrix

P = αH + (αa + (1 − α)e) vT (with α = .9 and v = e)

=

⎡
⎢⎢⎢⎢⎢⎣

1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60

⎤
⎥⎥⎥⎥⎥⎦

The PageRank Vector πT
j+1 = πT

j P → πT

πT =
(1 2 3 4 5 6

.03721 .05396 .04151 .3751 .206 .2862
)

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Prior results don’t help to restart

Conclusion
Google Now Uses Many Other “Metrics” to augment PR

Conclusion
Google Now Uses Many Other “Metrics” to augment PR

Elegant Blend of NA, LA, Graph Theory, Prob, & CS

Conclusion
Google Now Uses Many Other “Metrics” to augment PR

Elegant Blend of NA, LA, Graph Theory, Prob, & CS

Search Is Opening New Areas Ripe For Innovative Ideas

Conclusion
Google Now Uses Many Other “Metrics” to augment PR

Elegant Blend of NA, LA, Graph Theory, Prob, & CS

Search Is Opening New Areas Ripe For Innovative Ideas

Exciting Work That Is Changing The World

Conclusion
Google Now Uses Many Other “Metrics” to augment PR

Elegant Blend of NA, LA, Graph Theory, Prob, & CS

Search Is Opening New Areas Ripe For Innovative Ideas

Exciting Work That Is Changing The World

Thanks For Your Attention

