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Early Search Engines

System for the Mechanical Analysis and Retrieval of Text

Harvard 1962 – 1965

IBM 7094 & IBM 360

Gerard Salton

Implemented at Cornell (1965 – 1970)

Based on matrix methods
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Start with dictionary of terms

Words or phrases ( e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count fij = # times term i appears in document j

Term–Document Matrix

⎛
⎜⎜⎜⎝

Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

⎞
⎟⎟⎟⎠ = Am×n
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Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol



Term Weighting

A Problem

Suppose query = HEDGE FUND

If HEDGE FUND occurs once in D1 and twice in D2

� Then δ2 ≈ 2δ1 ( if ‖A1‖≈‖A2‖ )



Term Weighting

A Problem

Suppose query = HEDGE FUND

If HEDGE FUND occurs once in D1 and twice in D2

� Then δ2 ≈ 2δ1 ( if ‖A1‖≈‖A2‖ )

To Compensate

Set aij = log(1 + fij) (Other weights also used)



Term Weighting

A Problem

Suppose query = HEDGE FUND

If HEDGE FUND occurs once in D1 and twice in D2

� Then δ2 ≈ 2δ1 ( if ‖A1‖≈‖A2‖ )

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Query Weighting Also Performed
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Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Variation in Indexing Conventions

— No two people index documents the same way

— Computer indexing is inexact and can be unpredictable
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Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

— D2 indexed by automobile, fuel, and tire (missed)

The Challenge

— Find D2 by revealing the latent connection through tire



Susan Dumais’s Improvement

Approximate A with a lower rank matrix

• Great Idea! —> 2 patents for Bell/Telcordia

— Computer information retrieval using latent semantic structure. U.S. Patent No.

4,839,853, June 13, 1989.

— Computerized cross-language document retrieval using latent semantic indexing.

U.S. Patent No. 5,301,109, April 5, 1994.

(Resource: USPTO http://patft.uspto.gov/netahtml/srchnum.htm)
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A =
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i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

“Best” mathematical solution
— SVD: A = UDVT =

∑
σiuivT

i Zi = uivT
i
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• Good at clustering =⇒ reveals patterns for text mining
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Another Improvement (2000)

Daniel Lee Sebastian Seung

Use low-rank approximation with sparse nonnegative factors

Am×n ≈ Um×k Σk×k VT
k×m

nonneg mixed nonneg mixed

Am×n ≈ Wm×k Hk×m

nonneg nonneg nonneg
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Nonnegative Matrix Factorization
Constrained Nonlinear Least Squares Problem

Am×n ≈ Wm×kHk×n =⇒
{

min ‖A − WH‖2
F

W ≥ 0, H ≥ 0, both sparse

Wk = [ w1|w2|. . .|wk ] yields sparse nonnegative basis
docj

term 1

term 2...
term m

⎡
⎢⎣

...
Aj
...

⎤
⎥⎦ ≈

⎡
⎢⎣

...
w1...

⎤
⎥⎦h1j +

⎡
⎢⎣

...
w2...

⎤
⎥⎦h2j + . . . +

⎡
⎢⎣

...
wk...

⎤
⎥⎦hkj

• Each wi can be interpreted as a topic vector

— Large {wij, wik, . . .wil} =⇒ wi mostly about terms j, k, . . ., l

— hij indicates how much of docj is related to topic vector wi



Example (MEDLINE Amy Langville k = 10)

0 1 2 3 4

10
9
8
7
6
5
4
3
2
1 ventricular

aortic
septal
left
defect
regurgitation
ventricle
valve
cardiac
pressure

Highest Weighted Terms in Basis Vector W
*1

weight

te
rm

0 0.5 1 1.5 2 2.5

10
9
8
7
6
5
4
3
2
1 oxygen

flow
pressure
blood
cerebral
hypothermia
fluid
venous
arterial
perfusion

Highest Weighted Terms in Basis Vector W
*2

weight

te
rm

0 1 2 3 4

10
9
8
7
6
5
4
3
2
1 children

child
autistic
speech
group
early
visual
anxiety
emotional
autism

Highest Weighted Terms in Basis Vector W
*5

weight

te
rm

0 0.5 1 1.5 2 2.5

10
9
8
7
6
5
4
3
2
1 kidney

marrow
dna
cells
nephrectomy
unilateral
lymphocytes
bone
thymidine
rats

Highest Weighted Terms in Basis Vector W
*6

weight

te
rm



Example (cont)

doc5 ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

w9

fatty

glucose

acids

ffa

insulin...

⎞
⎟⎟⎟⎟⎟⎟⎠

.1646 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w6

kidney

marrow

dna

cells

nephr.
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.0103 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w7

hormone

growth

hgh

pituitary

mg
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.0045 + . . .
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Enron E-mail Data (1999–2001)

Fed investigation studied 15 million e-mail messages

• Over 500,000 messages made public

Enron’s Troubles 1999-2001

• Problems with Dabhol Power Company (DPC) in India

• Deregulation of Calif. energy industry

� Rolling blackouts in the summer of 2000

� Subsequent investigations

• Ill-fated Dynergy merger, Oct-Nov 2001

� Revelation of Enron’s deceptive practices

� Enron filed for bankruptcy in December 2001



Mining 2001 E-mail (M. Berry, Univ. Tenn)
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Web Search Components

Web Crawlers Software robots
gather web pages

Doc Server Stores docs
and snippits

Index Server

Scans pages and does term indexing
Terms −→ Pages (similar to book index)



The Heart of a Search Engine

The Ranking Module

• Assign an importance value to each page

� Independent of any query

• Google’s PageRank c© technology distinguishes it from all
competitors
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How To Measure “Importance”

Authorities Hubs

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs
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HITS Algorithm
Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

• Define Authority Scores (first iterate)

ai =
∑

j:Pj→Pi

hj ⇒ a1 =

⎡
⎢⎢⎣

a1

a2...
an

⎤
⎥⎥⎦ = LTh0

Lij =
{

1 Pi → Pj

0 Pi �→ Pj



HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj



HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1



HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2



HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2



HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

• h3 = La3

. . .



HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

• h3 = La3

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1

• H = LLT (hub matrix) hk = Hhk−1



HITS Algorithm

Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a2 = LTh1

• h2 = La2

• a3 = LTh2

• h3 = La3

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1 → e-vector (direction)

• H = LLT (hub matrix) hk = Hhk−1 → e-vector (direction)
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Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood
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Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

• Scores can be manipulated by creating artificial hubs
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• Create a PageRank r(P ) that is not query dependent
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— value of vote from Y ahoo! is diluted

� If Yahoo! “votes” for n pages

— Then P receives only r(Y )/n credit from Y
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Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |

r2(Pi) =
∑
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r1(P )
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P )
|P |
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j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

A Markov Chain?

If P =
[
pij

]
is a stochastic matrix ( pij≥0 and

∑
j
pij=1 )

Each πT
j is a probability vector ( πi≥0 and

∑
i
πi=1 )

πT
j+1 = πT

j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = steady-state probability distribution
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= H +

⎡
⎢⎢⎢⎢⎢⎣
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0
0
0
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⎥⎥⎥⎥⎥⎦

1

6
(1 1 1 1 1 1)
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Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Pk > 0 for some k

The Google Fixes

• P = αS + (1 − α)eeT/n α ≈ .85

• P = αS + (1 − α)evT vT = positive probability vector

• P = αH + (αa + (1 − α)e) vT







Back To Tiny Web

The Google Matrix

P = αH + (αa + (1 − α)e) vT (with α = .9 and v = e)

=

⎡
⎢⎢⎢⎢⎢⎣

1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60

⎤
⎥⎥⎥⎥⎥⎦

The PageRank Vector πT
j+1 = πT

j P → πT

πT =
( 1 2 3 4 5 6

.03721 .05396 .04151 .3751 .206 .2862
)
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Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Prior results don’t help to restart
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