
ALS Algorithms
for the

Nonnegative Matrix Factorization
in

Text Mining

Amy Langville

Carl Meyer

SAS NMF Day 6/9/2005

Outline

Nonnegative Matrix Factorization replaces LSI

Alternating Least Squares Algorithm

Multiplicative Update Algorithms

Our ALS Algorithms: ACLS and AHCLS

SVD

Am×n: rank r term-by-document matrix

• SVD: A = UΣ VT =
∑r

i=1
σiuiv

T
i

• LSI: use Ak =
∑k

i=1
σiuiv

T
i in place of A

• Why?

— reduce storage when k << r (but, not true in practice, since
even though A is sparse, ui’s, vi’s are dense)

— filter out uncertainty, so that performance on text mining
tasks (e.g., query processing and clustering) improves

What’s Really Happening?
Change of Basis

using truncated SVD Ak = UkΣkVT
k

• Original Basis: docs represented in Term Space using Standard
Basis S = {e1, e2, . . ., em}

• New Basis: docs represented in smaller Latent Semantic Space
using Basis B = {u1, u2, . . ., uk} (k<<min(m,n))







doc1

nonneg.
.
.
.

entries A∗1
.
.
.







m×1

≈







.

.

.

u1
.
.
.






σ1v11 +







.

.

.

u2
.
.
.






σ2v12 + . . . +







.

.

.

uk
.
.
.






σkv1k

Properties of SVD

• basis vectors ui are orthogonal

• uij, vij are mixed in sign

Ak = Uk Σk VT
k

nonneg mixed nonneg mixed

• U, V are dense

• uniqueness—while there are many SVD algorithms, they all

create the same (truncated) factorization

• of all rank-k approximations, Ak is optimal (in Frobenius norm)

‖A − Ak‖F = minrank(B)≤k ‖A − B‖F

• sequential buildup of essential components of A

⇒ computing A100 means you also have Ak for k < 100

Better Basis for Text Mining

Change of Basis

using NMF Ak = WkHk, where Wk, Hk ≥ 0

• Use of NMF: replace A with Ak = WkHk (Wk=[w1|w2|...|wk])

• New Basis: docs represented in smaller Topic Space using Basis
B = {w1, w2, . . ., wk} (k<<min(m,n))







doc1

nonneg.
.
.
.

entries A∗1
.
.
.







m×1

≈







.

.

.

w1
.
.
.






h11 +







.

.

.

w2
.
.
.






h21 + . . . +







.

.

.

wk
.
.
.






hk1

Properties of NMF

• basis vectors wi are not ⊥ ⇒ can have overlap of topics

• can restrict W, H to be sparse

• Wk, Hk ≥ 0 ⇒ immediate interpretation (additive parts-based rep.)

EX: large wij’s ⇒ basis vector wi is mostly about terms j

EX: hi1 how much doc1 is pointing in the “direction” of topic
vector wi

Ake1 = WkH∗1 =







.

.

.

w1
.
.
.






h11 +







.

.

.

w2
.
.
.






h21 + . . . +







.

.

.

wk
.
.
.






hk1

• NMF is algorithm-dependent: W, H not unique

Interpretation of Basis Vectors
MED dataset (k = 10)

0 1 2 3 4

10

9

8

7

6

5

4

3

2

1 ventricular
aortic
septal
left
defect
regurgitation
ventricle
valve
cardiac
pressure

Highest Weighted Terms in Basis Vector W
*1

weight

te
rm

0 0.5 1 1.5 2 2.5

10

9

8

7

6

5

4

3

2

1 oxygen
flow
pressure
blood
cerebral
hypothermia
fluid
venous
arterial
perfusion

Highest Weighted Terms in Basis Vector W
*2

weight

te
rm

0 1 2 3 4

10

9

8

7

6

5

4

3

2

1 children
child
autistic
speech
group
early
visual
anxiety
emotional
autism

Highest Weighted Terms in Basis Vector W
*5

weight

te
rm

0 0.5 1 1.5 2 2.5

10

9

8

7

6

5

4

3

2

1 kidney
marrow
dna
cells
nephrectomy
unilateral
lymphocytes
bone
thymidine
rats

Highest Weighted Terms in Basis Vector W
*6

weight

te
rm

Interpretation of Basis Vectors

MED dataset (k = 10)

doc5 ≈

















w9

fatty

glucose

acids

ffa

insulin
.
.
.

















.1646 +



















w6

kidney

marrow

dna

cells

nephr.
.
.
.



















.0103 +



















w7

hormone

growth

hgh

pituitary

mg
.
.
.



















.0045 + . . .

NMF Literature

Papers report NMF is

∼= LSI for query processing

NMF Literature

Papers report NMF is

∼= LSI for query processing

∼= LSI for document clustering

NMF Literature

Papers report NMF is

∼= LSI for query processing

∼= LSI for document clustering

> LSI for interpretation of elements of factorization

NMF Literature

Papers report NMF is

∼= LSI for query processing

∼= LSI for document clustering

> LSI for interpretation of elements of factorization

> LSI potentially in terms of storage (sparse implementations)

NMF Literature

Papers report NMF is

∼= LSI for query processing

∼= LSI for document clustering

> LSI for interpretation of elements of factorization

> LSI potentially in terms of storage (sparse implementations)

— most NLP algorithms require O(kmn) computation per itera-
tion

Computation of NMF
(Lee and Seung 2000)

Mean squared error objective function

min ‖A − WH‖2

F s.t. W, H ≥ 0

Nonlinear Optimization Problem

— convex in W or H, but not both ⇒ tough to get global min

— huge # unknowns: mk for W and kn for H

(EX: A70K×1K and k=10 topics ⇒ 800K unknowns)

— above objective is one of many possible

— convergence to local min only guaranteed for some algorithms

NMF Algorithms

• Alternating Least Squares

— Paatero 1994

• Multiplicative update rules

— Lee-Seung 2000

— Hoyer 2002

• Gradient Descent

— Hoyer 2004

— Berry-Plemmons 2004

PMF Algorithm: Paatero & Tapper 1994
Mean Squared Error—Alternating Least Squares

min ‖A − WH‖2

F

s.t. W, H ≥ 0

————————————————————————

W = abs(randn(m,k));

for i = 1 : maxiter

LS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2

2

s.t. H∗j ≥ 0

LS for j = 1 : #terms, solve

minWj∗ ‖Aj∗ − Wj∗H‖2

2

s.t. Wj∗ ≥ 0

end
————————————————————————

ALS Algorithm

—————————————————————————

W = abs(randn(m,k));

for i = 1 : maxiter

LS solve matrix equation WTWH = WTA for H

nonneg H = H. ∗ (H >= 0)

LS solve matrix equation HHTWT = HAT for W

nonneg W = W. ∗ (W >= 0)

end
—————————————————————————

ALS Summary

Pros

+ fast

+ works well in practice

+ speedy convergence

+ only need to initialize W(0)

+ 0 elements not locked

Cons

– no sparsity of W and H incorporated into mathematical setup

– ad hoc nonnegativity: negative elements are set to 0

– ad hoc sparsity: negative elements are set to 0

– no convergence theory

Alternating LP

Alternating Least Squares (one column at a time)

minH∗j ‖A∗j − WH∗j‖2

2

s.t. H∗j ≥ 0

“Linear L1 minimization can be solved by LP”—Warren Sarle, SAS

Alternating Linear Programming

minH∗j ‖A∗j − WH∗j‖1
2

s.t. H∗j ≥ 0

becomes

minH∗j,r rTe

s.t. −ri ≤ Aij − WH∗j ≤ ri, i = 1, . . ., m

H∗j ≥ 0

Alternating LP
Considering entire matrix H at once...

Alternating Least Squares

solve matrix equation WTWH = WTA for H

(WTW is small k×k matrix.)

Alternating Linear Programming

minH,R eTRe

s.t. −R ≤ A − WH ≤ R

H, R ≥ 0

(H is k×n and R is m×n.)

— ALP has mn more variables than ALS

— not easy to add in sparsity rewards

+ no ad-hoc enforcement of nonnegativity

NMF Algorithm: Lee and Seung 2000
Mean Squared Error objective function

min ‖A − WH‖2

F

s.t. W, H ≥ 0

————————————————————————

W = abs(randn(m,k));

H = abs(randn(k,n));

for i = 1 : maxiter

H = H .* (WTA) ./ (WTWH + 10
−9);

W = W .* (AHT) ./ (WHHT + 10
−9);

end
————————————————————————

(proof of convergence to local min based on E-M convergence proof)

(objective function tails off after 50-100 iterations)

NMF Algorithm: Lee and Seung 2000
Divergence objective function

min
∑

i,j

(Aij log
Aij

[WH]ij
− Aij + [WH]ij)

s.t. W, H ≥ 0

————————————————————————

W = abs(randn(m,k));

H = abs(randn(k,n));

for i = 1 : maxiter

H = H .* (WT (A ./ (WH + 10
−9))) ./ WTeeT ;

W = W .* ((A ./ (WH + 10
−9))HT) ./ eeTHT ;

end
————————————————————————

(proof of convergence to local min based on E-M convergence proof)

(objective function tails off after 50-100 iterations)

Multiplicative Update Summary

Pros

+ convergence theory: guaranteed to converge to local min, but
possibly poor local min

+ good initialization W(0), H(0) speeds convergence and gets to
better local min

Cons

– good initialization W(0), H(0) speeds convergence and gets to
better local min

– slow: many M-M multiplications at each iteration

– hundreds/thousands of iterations until convergence

– no sparsity of W and H incorporated into mathematical setup

– 0 elements locked

Multiplicative Update and Locking

During iterations of mult. update algorithms, once an element

in W or H becomes 0, it can never become positive.

• Implications for W: In order to improve objective function, algo-
rithm can only take terms out, not add terms, to topic vectors.

• Very inflexible: once algorithm starts down a path for a topic
vector, it must continue in that vein.

• ALS-type algorithms do not lock elements, greater flexibility al-
lows them to escape from path heading towards poor local min

Sparsity Measures

• Berry et al. ‖x‖2

2

• Hoyer spar(xn×1) =
√

n−‖x‖1/‖x‖2√
n−1

• Diversity measure E(p)(x) =
∑n

i=1
|xi|p, 0 ≤ p ≤ 1

E(p)(x) = −∑n
i=1

|xi|p, p < 0

Rao and Kreutz-Delgado: algorithms for minimizing E(p)(x)
s.t. Ax = b, but expensive iterative procedure

• Ideal nnz(x) not continuous, NP-hard to use this in optim.

NMF Algorithm: Berry et al. 2004
Gradient Descent–Constrained Least Squares

————————————————————————————

W = abs(randn(m,k)); (scale cols of W to unit norm)

H = zeros(k,n);

for i = 1 : maxiter

CLS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2

2
+ λ‖H∗j‖2

2

s.t. H∗j ≥ 0

GD W = W .* (AHT) ./ (WHHT + 10
−9); (scale cols of W)

end

————————————————————————————

NMF Algorithm: Berry et al. 2004
Gradient Descent–Constrained Least Squares

————————————————————————————

W = abs(randn(m,k)); (scale cols of W to unit norm)

H = zeros(k,n);

for i = 1 : maxiter

CLS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2

2
+ λ‖H∗j‖2

2

s.t. H∗j ≥ 0

solve for H: (WTW + λ I) H = WTA; (small matrix solve)

GD W = W .* (AHT) ./ (WHHT + 10
−9); (scale cols of W)

end

————————————————————————————

(objective function tails off after 15-30 iterations)

Berry et al. 2004 Summary

Pros

+ fast: less work per iteration than most other NMF algorithms

+ fast: small # of iterations until convergence

+ sparsity parameter for H

Cons

– 0 elements in W are locked

– no sparsity parameter for W

– ad hoc nonnegativity: negative elements in H are set to 0,
could run lsqnonneg or snnls instead

– no convergence theory

Alternating Constrained Least Squares
If the very fast ALS works well in practice and the only NMF algorithms guaranteeing

convergence to local min are slow multiplicative update rules, why not use ALS?

—————————————————————————

W = abs(randn(m,k));

for i = 1 : maxiter

CLS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2

2
+ λH‖H∗j‖2

2

s.t. H∗j ≥ 0

CLS for j = 1 : #terms, solve

minWj∗ ‖Aj∗ − Wj∗H‖2

2
+ λW‖Wj∗‖2

2

s.t. Wj∗ ≥ 0

end
—————————————————————————

Alternating Constrained Least Squares
If the very fast ALS works well in practice and the only NMF algorithms guaranteeing

convergence to local min are slow multiplicative update rules, why not use ALS?

—————————————————————————

W = abs(randn(m,k));

for i = 1 : maxiter

cls solve for H: (WTW + λHI) H = WTA

nonneg H = H. ∗ (H >= 0)

cls solve for W: (HHT + λW I) WT = HAT

nonneg W = W. ∗ (W >= 0)

end
—————————————————————————

ACLS Summary

Pros

+ fast: 6.6 sec vs. 9.8 sec (gd-cls)

+ works well in practice

+ speedy convergence

+ only need to initialize W(0)

+ 0 elements not locked

+ allows for sparsity in both W and H

Cons

– ad hoc nonnegativity: after LS, negative elements set to 0,
could run lsqnonneg or snnls instead (doesn’t improve accuracy much)

– no convergence theory

ACLS + spar(x)
Is there a better way to measure sparsity and still maintain speed of ACLS?

spar(xn×1) =

√
n−‖x‖1/‖x‖2√

n−1

⇔ ((1−spar(x))
√

n+spar(x))‖x‖2−‖x‖1=0

(spar(Wj∗)=αW and spar(H∗j)=αH)

——————————————————————————————

W = abs(randn(m,k));

for i = 1 : maxiter

cls for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2

2
+ λH(((1 − αH)

√
k + αH)‖H∗j‖2

2
− ‖H∗j‖2

1
)

s.t. H∗j ≥ 0

cls for j = 1 : #terms, solve

minWj∗ ‖Aj∗ − Wj∗H‖2

2
+ λW (((1− αW)

√
k + αW)‖Wj∗‖2

2
− ‖Wj∗‖2

1
)

s.t. Wj∗ ≥ 0

end
——————————————————————————————

AHCLS

(spar(Wj∗)=αW and spar(H∗j)=αH)

————————————————————————————

W = abs(randn(m,k));

for i = 1 : maxiter

βH = ((1 − αH)
√

k + αH)2

cls solve for H: (WTW + λHβH I − λHE) H = WTA

nonneg H = H. ∗ (H >= 0)

βW = ((1 − αW)
√

k + αW)2

cls solve for W: (HHT + λWβW I − λWE) WT = HAT

nonneg W = W. ∗ (W >= 0)

end
————————————————————————————

AHCLS Summary

Pros

+ fast: 6.8 sec vs. 9.8 sec (gd-cls)

+ works well in practice

+ speedy convergence

+ only need to initialize W(0)

+ 0 elements not locked

+ allows for more explicit sparsity in both W and H

Cons

– ad hoc nonnegativity: after LS, negative elements set to 0,
could run lsqnonneg or snnls instead (doesn’t improve accuracy much)

– no convergence theory

Initialization of W

• Random initialization: done by most NMF algorithms

• Centroid initialization: shown by Wilds to converge to better
local min., but expensive

• SVD-centroid initialization: run kmeans to cluster rows of Vn×k

from SVD and form cheap centroid decomposition.

W(0)=Centroid vectors ⇒ shown to converge to better local min.

• Random Acol initialization: works better than Random init., not
as good as SVD-Centroid initialization. Very inexpensive.

EX: (k=3) W(0) = [
∑

i∈{1,4,10,12} A∗i|
∑

i∈{2,3,9,11} A∗i|
∑

i∈{5,6,7,8} A∗i]

Remaining Work

• Other Sparsity Measures

• Nonnegativity Enforcement

— add negativity penalty to ALS objective

ex: min error + density + negativity, where negativity=
∑

e−xi

• Basis-constrained problem: user with dataset knowledge sets
some basis vectors (cols of W), NMF algorithm must converge to
solution that contains these vectors.

• Duality theory

