### **ALS Algorithms**

#### for the Nonnegative Matrix Factorization in Text Mining

Amy Langville Carl Meyer

SAS NMF Day 6/9/2005

# Outline



- Alternating Least Squares Algorithm
- Multiplicative Update Algorithms
- Our ALS Algorithms: ACLS and AHCLS

### SVD

 $A_{m \times n}$ : rank *r* term-by-document matrix

- SVD:  $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- LSI: use  $\mathbf{A}_{k} = \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$  in place of  $\mathbf{A}$
- Why?
  - reduce storage when  $k \ll r$  (but, not true in practice, since even though **A** is sparse, **u**<sub>*i*</sub>'s, **v**<sub>*i*</sub>'s are dense)
  - filter out uncertainty, so that performance on text mining tasks (e.g., query processing and clustering) improves

### What's Really Happening?

#### Change of Basis

using truncated SVD  $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T$ 

- Original Basis: docs represented in Term Space using Standard Basis S = {e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>m</sub>}
- New Basis: docs represented in smaller Latent Semantic Space using Basis  $B = \{u_1, u_2, ..., u_k\}$  (k<<min(m,n))



### **Properties of SVD**

basis vectors u<sub>i</sub> are orthogonal

- $u_{ij}, v_{ij}$  are mixed in sign •  $\mathbf{A}_k = \mathbf{U}_k \sum_k \mathbf{V}_k^T$ nonneg mixed nonneg mixed
- U, V are dense
- uniqueness—while there are many SVD algorithms, they all create the same (truncated) factorization
- of all rank-k approximations,  $\mathbf{A}_k$  is optimal (in Frobenius norm)  $\|\mathbf{A} - \mathbf{A}_k\|_F = \min_{rank(\mathbf{B}) \leq k} \|\mathbf{A} - \mathbf{B}\|_F$
- sequential buildup of essential components of A
  ⇒ computing A<sub>100</sub> means you also have A<sub>k</sub> for k < 100</li>

#### **Better Basis for Text Mining**

#### **Change of Basis**

using NMF  $\mathbf{A}_k = \mathbf{W}_k \mathbf{H}_k$ , where  $\mathbf{W}_k$ ,  $\mathbf{H}_k \ge \mathbf{0}$ 

- Use of NMF: replace **A** with  $A_k = W_k H_k$   $(W_k = [w_1 | w_2 | \dots | w_k])$
- New Basis: docs represented in smaller Topic Space using Basis  $B = {\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k}$ (k<<min(m,n))



### **Properties of NMF**

- basis vectors  $\mathbf{w}_i$  are not  $\perp \Rightarrow$  can have overlap of topics
- can restrict **W**, **H** to be sparse
- $W_k$ ,  $H_k \ge 0 \Rightarrow$  immediate interpretation (additive parts-based rep.)

**EX:** large  $w_{ij}$ 's  $\Rightarrow$  basis vector  $\mathbf{w}_i$  is mostly about terms j

**EX:**  $h_{i1}$  how much  $doc_1$  is pointing in the "direction" of topic vector  $\mathbf{w}_i$ 

$$\mathbf{A}_{k}\mathbf{e}_{1} = \mathbf{W}_{k}\mathbf{H}_{*1} = \begin{bmatrix} \vdots \\ \mathbf{w}_{1} \\ \vdots \end{bmatrix} h_{11} + \begin{bmatrix} \vdots \\ \mathbf{w}_{2} \\ \vdots \end{bmatrix} h_{21} + \dots + \begin{bmatrix} \vdots \\ \mathbf{w}_{k} \\ \vdots \end{bmatrix} h_{k1}$$

• NMF is algorithm-dependent: **W**, **H** not unique



#### **Interpretation of Basis Vectors**

#### MED dataset (k = 10)



#### Papers report NMF is

 $\cong$  LSI for query processing

- $\cong$  LSI for query processing
- $\cong$  LSI for document clustering

- $\cong$  LSI for query processing
- $\cong$  LSI for document clustering
- > LSI for interpretation of elements of factorization

- $\cong$  LSI for query processing
- $\cong$  LSI for document clustering
- > LSI for interpretation of elements of factorization
- > LSI potentially in terms of storage (sparse implementations)

- $\cong$  LSI for query processing
- $\cong$  LSI for document clustering
- > LSI for interpretation of elements of factorization
- > LSI potentially in terms of storage (sparse implementations)
- most NLP algorithms require O(kmn) computation per iteration

### **Computation of NMF**

#### (Lee and Seung 2000)

MEAN SQUARED ERROR OBJECTIVE FUNCTION

 $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2 \quad s.t. \quad \mathbf{W}, \mathbf{H} \ge \mathbf{0}$ 

**Nonlinear Optimization Problem** 

- convex in W or H, but not both  $\Rightarrow$  tough to get global min
- huge # unknowns: mk for W and kn for H (EX:  $A_{70K \times 1K}$  and k=10 topics  $\Rightarrow$  800K unknowns)
  - above objective is one of many possible
  - convergence to local min only guaranteed for some algorithms

# **NMF Algorithms**

- Alternating Least Squares
  - Paatero 1994
- Multiplicative update rules
  - Lee-Seung 2000
  - Hoyer 2002
- Gradient Descent
  - Hoyer 2004
  - Berry-Plemmons 2004

## **PMF Algorithm: Paatero & Tapper 1994**

MEAN SQUARED ERROR—ALTERNATING LEAST SQUARES

 $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$  $s.t. \quad \mathbf{W}, \mathbf{H} > \mathbf{0}$ 

$$\begin{split} \mathbf{W} &= \operatorname{abs}(\operatorname{randn}(\mathsf{m},\mathsf{k}));\\ \text{for } \mathsf{i} &= \mathsf{1} : \operatorname{maxiter}\\ \mathtt{Ls} \quad \mathsf{for } \mathsf{j} &= \mathsf{1} : \ \#docs, \ \mathsf{solve}\\ & \min_{\mathsf{H}_{*j}} \|\mathsf{A}_{*j} - \mathsf{W}\mathsf{H}_{*j}\|_2^2\\ & \qquad \mathsf{s.t.} \ \mathsf{H}_{*j} \geq \mathbf{0}\\ \mathtt{Ls} \quad \mathsf{for } \mathsf{j} &= \mathsf{1} : \ \#terms, \ \mathsf{solve}\\ & \min_{\mathsf{W}_{j*}} \|\mathsf{A}_{j*} - \mathsf{W}_{j*}\mathsf{H}\|_2^2\\ & \qquad \mathsf{s.t.} \ \mathsf{W}_{j*} \geq \mathbf{0} \end{split}$$

# **ALS Algorithm**

 $\mathbf{W} = abs(randn(m,k));$ 

- for i = 1 : maxiter
  - LS solve matrix equation  $\mathbf{W}^T \mathbf{W} \mathbf{H} = \mathbf{W}^T \mathbf{A}$  for  $\mathbf{H}$
  - NONNEG  $\mathbf{H} = \mathbf{H} \cdot \mathbf{H} >= \mathbf{0}$
  - LS solve matrix equation  $\mathbf{H}\mathbf{H}^T\mathbf{W}^T = \mathbf{H}\mathbf{A}^T$  for  $\mathbf{W}$ NONNEG  $\mathbf{W} = \mathbf{W} \cdot \mathbf{W} >= \mathbf{0}$

end

# **ALS Summary**

#### Pros

#### + fast

- + works well in practice
- + speedy convergence
- + only need to initialize  $\mathbf{W}^{(0)}$
- + 0 elements not *locked*

#### Cons

- no sparsity of W and H incorporated into mathematical setup
- ad hoc nonnegativity: negative elements are set to 0
- ad hoc sparsity: negative elements are set to 0
- no convergence theory

### **Alternating LP**

Alternating Least Squares (one column at a time)  $\begin{aligned} \min_{\mathbf{H}_{*j}} \|\mathbf{A}_{*j} - \mathbf{W}\mathbf{H}_{*j}\|_2^2 \\ \text{s.t. } \mathbf{H}_{*j} \geq \mathbf{0} \end{aligned}$ 

"Linear L1 minimization can be solved by LP"---Warren Sarle, SAS

Alternating Linear Programming  $\min_{\mathbf{H}_{*j}} \|\mathbf{A}_{*j} - \mathbf{W}\mathbf{H}_{*j}\|_{1}^{2}$ s.t.  $\mathbf{H}_{*j} \ge 0$ 

becomes

$$egin{aligned} \min_{\mathbf{H}_{*j},\mathbf{r}} & \mathbf{r}^T \mathbf{e} \ & \mathbf{s.t.} & -r_i \leq \mathbf{A}_{ij} - \mathbf{W} \mathbf{H}_{*j} \leq r_i, \quad i = 1, \dots, m \ & \mathbf{H}_{*j} \geq \mathbf{0} \end{aligned}$$

### **Alternating LP**

Considering entire matrix **H** at once...

#### **Alternating Least Squares**

solve matrix equation  $\mathbf{W}^T \mathbf{W} \mathbf{H} = \mathbf{W}^T \mathbf{A}$  for  $\mathbf{H}$ 

(**W**<sup>T</sup>**W** is small  $k \times k$  matrix.)

Alternating Linear Programming  $\min_{H,R} e^T Re$ s.t.  $-R \le A - WH \le R$   $H, R \ge 0$ (H is laws and R is mayn)

- (H is  $k \times n$  and R is  $m \times n$ .)
- ALP has mn more variables than ALS
- not easy to add in sparsity rewards
- + no ad-hoc enforcement of nonnegativity

### NMF Algorithm: Lee and Seung 2000

MEAN SQUARED ERROR OBJECTIVE FUNCTION

 $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$  $s.t. \quad \mathbf{W}, \mathbf{H} \ge \mathbf{0}$ 

W = abs(randn(m,k)); H = abs(randn(k,n));for i = 1 : maxiter  $H = H .* (W^{T}A) ./ (W^{T}WH + 10^{-9});$   $W = W .* (AH^{T}) ./ (WHH^{T} + 10^{-9});$ end

(proof of convergence to local min based on E-M convergence proof) (objective function tails off after 50-100 iterations)

### NMF Algorithm: Lee and Seung 2000

DIVERGENCE OBJECTIVE FUNCTION

$$\begin{split} \min \sum_{i,j} (\mathbf{A}_{ij} \log \frac{\mathbf{A}_{ij}}{[\mathbf{WH}]_{ij}} - \mathbf{A}_{ij} + [\mathbf{WH}]_{ij}) \\ s.t. \quad \mathbf{W}, \mathbf{H} \geq \mathbf{0} \end{split}$$

$$\begin{split} & \textbf{W} = abs(randn(m,k)); \\ & \textbf{H} = abs(randn(k,n)); \\ & \text{for } i = 1 : maxiter \\ & \textbf{H} = \textbf{H} .^{*} (\textbf{W}^{T}(\textbf{A} ./ (\textbf{W}\textbf{H} + 10^{-9}))) ./ \textbf{W}^{T}\textbf{e}\textbf{e}^{T}; \\ & \textbf{W} = \textbf{W} .^{*} (((\textbf{A} ./ (\textbf{W}\textbf{H} + 10^{-9}))\textbf{H}^{T}) ./ \textbf{e}\textbf{e}^{T}\textbf{H}^{T}; \\ & \text{end} \end{split}$$

(proof of convergence to local min based on E-M convergence proof) (objective function tails off after 50-100 iterations)

# **Multiplicative Update Summary**

#### Pros

- convergence theory: guaranteed to converge to local min, but possibly poor local min
- + good initialization  $\mathbf{W}^{(0)}$ ,  $\mathbf{H}^{(0)}$  speeds convergence and gets to better local min

#### Cons

- good initialization  $\mathbf{W}^{(0)}, \mathbf{H}^{(0)}$  speeds convergence and gets to better local min
- slow: many M-M multiplications at each iteration
- hundreds/thousands of iterations until convergence
- no sparsity of W and H incorporated into mathematical setup
- 0 elements locked

## **Multiplicative Update and Locking**

During iterations of mult. update algorithms, once an element in W or H becomes 0, it can never become positive.

- Implications for **W**: In order to improve objective function, algorithm can only take terms out, not add terms, to topic vectors.
- Very inflexible: once algorithm starts down a path for a topic vector, it must continue in that vein.
- ALS-type algorithms do not *lock* elements, greater flexibility allows them to escape from path heading towards poor local min

### **Sparsity Measures**

• Berry et al.  $\|\mathbf{x}\|_2^2$ 

• Hoyer 
$$spar(\mathbf{x}_{n \times 1}) = \frac{\sqrt{n} - \|\mathbf{x}\|_1 / \|\mathbf{x}\|_2}{\sqrt{n} - 1}$$

• Diversity measure  $E^{(p)}(\mathbf{x}) = \sum_{i=1}^{n} |x_i|^p, \ \mathbf{0} \le p \le \mathbf{1}$  $E^{(p)}(\mathbf{x}) = -\sum_{i=1}^{n} |x_i|^p, \ p < \mathbf{0}$ 

Rao and Kreutz-Delgado: algorithms for minimizing  $E^{(p)}(\mathbf{x})$  s.t.  $\mathbf{A}\mathbf{x} = \mathbf{b}$ , but expensive iterative procedure

• Ideal  $nnz(\mathbf{x})$  not continuous, NP-hard to use this in optim.

### NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT-CONSTRAINED LEAST SQUARES

 $\mathbf{W} = abs(randn(m,k));$ (scale cols of **W** to unit norm)  $\mathbf{H} = \operatorname{zeros}(k,n);$ for i = 1 : maxiter **CLS** for j = 1 : #docs, solve  $\min_{\mathbf{H}_{*i}} \|\mathbf{A}_{*i} - \mathbf{W}\mathbf{H}_{*i}\|_{2}^{2} + \lambda \|\mathbf{H}_{*i}\|_{2}^{2}$ s.t.  $H_{*i} \ge 0$ **GD**  $W = W .* (AH^T) ./ (WHH^T + 10^{-9});$ (scale cols of W) end

### NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT-CONSTRAINED LEAST SQUARES

 $\mathbf{W} = abs(randn(m,k));$ (scale cols of **W** to unit norm)  $\mathbf{H} = \operatorname{zeros}(k,n);$ for i = 1 : maxiter **CLS** for j = 1 : #docs, solve  $\min_{\mathbf{H}_{*i}} \|\mathbf{A}_{*i} - \mathbf{W}\mathbf{H}_{*i}\|_{2}^{2} + \lambda \|\mathbf{H}_{*i}\|_{2}^{2}$ s.t.  $H_{*i} \ge 0$ solve for H:  $(W^TW + \lambda I) H = W^TA$ ; (small matrix solve) **GD**  $W = W .* (AH^T) ./ (WHH^T + 10^{-9});$ (scale cols of  $\overline{W}$ ) end

(objective function tails off after 15-30 iterations)

# Berry et al. 2004 Summary

#### Pros

- + fast: less work per iteration than most other NMF algorithms
- + fast: small # of iterations until convergence
- + sparsity parameter for H

#### Cons

- 0 elements in W are *locked*
- no sparsity parameter for W
- ad hoc nonnegativity: negative elements in H are set to 0, could run Isqnonneg Or snnIs instead
- no convergence theory

# **Alternating Constrained Least Squares**

If the very fast ALS works well in practice and the only NMF algorithms guaranteeing convergence to local min are slow multiplicative update rules, why not use ALS?

$$\begin{split} \mathbf{W} &= abs(randn(m,k)); \\ \text{for } i &= 1 : \text{ maxiter} \\ \text{cLs } \text{for } j &= 1 : \# docs, \text{ solve} \\ & \min_{\mathbf{H}_{*j}} \|\mathbf{A}_{*j} - \mathbf{W}\mathbf{H}_{*j}\|_{2}^{2} + \lambda_{H} \|\mathbf{H}_{*j}\|_{2}^{2} \\ & \text{s.t. } \mathbf{H}_{*j} \geq \mathbf{0} \\ \text{cLs } \text{for } j &= 1 : \# terms, \text{ solve} \\ & \min_{\mathbf{W}_{j*}} \|\mathbf{A}_{j*} - \mathbf{W}_{j*}\mathbf{H}\|_{2}^{2} + \lambda_{W} \|\mathbf{W}_{j*}\|_{2}^{2} \\ & \text{s.t. } \mathbf{W}_{j*} \geq \mathbf{0} \end{split}$$

end

# **Alternating Constrained Least Squares**

If the very fast ALS works well in practice and the only NMF algorithms guaranteeing convergence to local min are slow multiplicative update rules, why not use ALS?

$$\begin{split} \mathbf{W} &= \operatorname{abs}(\operatorname{randn}(\mathsf{m},\mathsf{k})); \\ \text{for } \mathsf{i} &= \mathsf{1} : \operatorname{maxiter} \\ \\ \text{cls} & \operatorname{solve} \text{ for } \mathsf{H} : \left( \mathbf{W}^T \mathbf{W} + \lambda_H \mathsf{I} \right) \mathsf{H} = \mathbf{W}^T \mathsf{A} \\ \\ \text{NONNEG} & \mathsf{H} &= \mathsf{H} . * \left( \mathsf{H} > = 0 \right) \\ \\ \text{cls} & \operatorname{solve} \text{ for } \mathsf{W} : \left( \mathsf{H} \mathsf{H}^T + \lambda_W \mathsf{I} \right) \mathsf{W}^T = \mathsf{H} \mathsf{A}^T \\ \\ \\ \text{NONNEG} & \mathsf{W} &= \mathsf{W} . * \left( \mathsf{W} > = 0 \right) \\ \\ \text{end} \end{split}$$

# **ACLS Summary**

#### Pros

- + fast: 6.6 sec vs. 9.8 sec (gd-cls)
- + works well in practice
- + speedy convergence
- + only need to initialize  $\mathbf{W}^{(0)}$
- + 0 elements not *locked*
- + allows for sparsity in both W and H

#### Cons

- ad hoc nonnegativity: after LS, negative elements set to 0, could run lsqnonneg or snnls instead (doesn't improve accuracy much)
- no convergence theory

### ACLS + spar(x)

Is there a better way to measure sparsity and still maintain speed of ACLS?

 $\operatorname{spar}(\mathbf{x}_{n\times 1}) = \frac{\sqrt{n} - \|\mathbf{x}\|_1 / \|\mathbf{x}\|_2}{\sqrt{n} - 1} \quad \Leftrightarrow \quad ((1 - \operatorname{spar}(\mathbf{x}))\sqrt{n} + \operatorname{spar}(\mathbf{x})) \|\mathbf{x}\|_2 - \|\mathbf{x}\|_1 = 0$  $(\operatorname{spar}(\mathbf{W}_{j*}) = \alpha_W \text{ and } \operatorname{spar}(\mathbf{H}_{*j}) = \alpha_H)$ 

$$\begin{split} \mathbf{W} &= abs(randn(m,k)); \\ \text{for } i &= 1 : \text{ maxiter} \\ \text{cLs } \text{for } j &= 1 : \# docs, \text{ solve} \\ &\min_{\mathbf{H}_{*j}} \|\mathbf{A}_{*j} - \mathbf{W}\mathbf{H}_{*j}\|_{2}^{2} + \lambda_{H}(((1 - \alpha_{H})\sqrt{k} + \alpha_{H})\|\mathbf{H}_{*j}\|_{2}^{2} - \|\mathbf{H}_{*j}\|_{1}^{2}) \\ &\quad \text{s.t. } \mathbf{H}_{*j} \geq 0 \\ \text{cLs } \text{for } j &= 1 : \# terms, \text{ solve} \\ &\min_{\mathbf{W}_{i*}} \|\mathbf{A}_{j*} - \mathbf{W}_{j*}\mathbf{H}\|_{2}^{2} + \lambda_{W}(((1 - \alpha_{W})\sqrt{k} + \alpha_{W})\|\mathbf{W}_{j*}\|_{2}^{2} - \|\mathbf{W}_{j*}\|_{1}^{2}) \end{split}$$

s.t.  $\mathbf{W}_{j*} \geq \mathbf{0}$ 

end

### AHCLS

```
(\operatorname{spar}(\mathbf{W}_{j*}) = \alpha_W \text{ and } \operatorname{spar}(\mathbf{H}_{*j}) = \alpha_H)
```

 $\mathbf{W} = abs(randn(m,k));$ for i = 1 : maxiter  $\beta_H = ((1 - \alpha_H)\sqrt{k} + \alpha_H)^2$ solve for H:  $(\mathbf{W}^T\mathbf{W} + \lambda_H\beta_H \mathbf{I} - \lambda_H\mathbf{E}) \mathbf{H} = \mathbf{W}^T\mathbf{A}$ CLS NONNEG  $H = H \cdot (H >= 0)$  $\beta_W = ((1 - \alpha_W)\sqrt{k} + \alpha_W)^2$ solve for W:  $(HH^T + \lambda_W \beta_W I - \lambda_W E) W^T = HA^T$ CLS NONNEG  $W = W \cdot (W >= 0)$ end

# **AHCLS Summary**

#### Pros

- + fast: 6.8 sec vs. 9.8 sec (gd-cls)
- + works well in practice
- + speedy convergence
- + only need to initialize  $\mathbf{W}^{(0)}$
- + 0 elements not *locked*
- + allows for *more* explicit sparsity in both W and H

#### Cons

- ad hoc nonnegativity: after LS, negative elements set to 0, could run Isqnonneg Or snnIs instead (doesn't improve accuracy much)
- no convergence theory

# Initialization of W

- Random initialization: done by most NMF algorithms
- Centroid initialization: shown by Wilds to converge to better local min., but expensive
- SVD-centroid initialization: run kmeans to cluster rows of V<sub>n×k</sub> from SVD and form cheap centroid decomposition.
   W<sup>(0)</sup>=Centroid vectors ⇒ shown to converge to better local min.

Random Acol initialization: works better than Random init., not as good as SVD-Centroid initialization. Very inexpensive.
 EX: (k=3) W<sup>(0)</sup> = [∑<sub>i∈{1,4,10,12}</sub> A<sub>\*i</sub> | ∑<sub>i∈{2,3,9,11}</sub> A<sub>\*i</sub> | ∑<sub>i∈{5,6,7,8}</sub> A<sub>\*i</sub>]

# **Remaining Work**

- Other Sparsity Measures
- Nonnegativity Enforcement
  - add negativity penalty to ALS objective

ex: min error + density + negativity, where negativity= $\sum e^{-x_i}$ 

 Basis-constrained problem: user with dataset knowledge sets some basis vectors (cols of W), NMF algorithm must converge to solution that contains these vectors.

Duality theory