Beating the Spread: Predicting Game Outcomes with a New Ranking Model.

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

October 2008

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

1 Introduction

- 2 Offense-Defense Model
- 3 Other Ranking Methods

4 Data

5 Prediction Results

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

-

- The rank of an object is its relative importance to the other objects in the finite set of size n. The ranks are 1,2,3, etc.
- Ranking models produce ratings.
- Ratings provide the degree of relative importance of each object.
- Applications of ranking include sports and search of web and literature.

Russell Albright Anjela Govan Amy Langville Carl Meyer Beating the Spread: Predicting Game Outcomes with a New Ranking Model. data mining conference M2008 Las Vegas

ODM Development

 $A_{ij} =$ score team j generated against team i $A_{ij} = 0$ otherwise

offensive rating of team j

$$o_j = A_{1j}(1/d_1) + \dots + A_{nj}(1/d_n)$$

defensive rating of team i

d

$$\mathbf{i} = A_{i1}(1/o_1) + \dots + A_{in}(1/o_n)$$
$$\mathbf{o}^{(k)} = \mathbf{A}^T \frac{1}{\mathbf{d}^{(k-1)}}$$
$$\mathbf{d}^{(k)} = \mathbf{A} \frac{1}{\mathbf{o}^{(k)}}$$

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

Sinkhorn-Knopp Theorem (1967)

Definition

A square matrix $A \ge 0$ is said to have total support if $A \ne 0$ and if every positive element of A lies on a positive diagonal.

Theorem

For each $A \ge 0$ with total support there exists a unique doubly stochastic matrix S of the form RAC where R and C are unique (up to a scalar multiplication) diagonal matrices with positive main diagonal.

A necessary and sufficient condition that the iterative process of alternatively normalizing the rows and columns of A will converge to a doubly stochastic limit is that A has support.

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

- e 2 m een ergenee
 - If A has total support $\rightarrow {\mathbf{o}^{(k)}}$, and ${\mathbf{d}^{(k)}}$ converge
 - A may not have total support (but will have support)
 - Can force total support

$$\mathbf{P} = \mathbf{A} + \epsilon \mathbf{e} \mathbf{e}^T$$

• As ϵ decreases number of iterations increases

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

- 1. Represent the season using a weighted digraph with n nodes. On $i \rightarrow j$ the wight w_{ij} = amount of the statistic acquired by team j against team i.
 - 2. Form adjacency matrix A, $\mathbf{P} = \mathbf{A} + \epsilon \mathbf{e} \mathbf{e}^T$.
 - 3. Team *i* has two rating scores, offensive o_i and defensive d_i

$$\mathbf{o}^{(k)} = \mathbf{P}^T \frac{1}{\mathbf{d}^{(k-1)}}$$
$$\mathbf{d}^{(k)} = \mathbf{P} \frac{1}{\mathbf{o}^{(k)}}$$

4. Overall rating score - rank aggregation (e.g. $r_i = o_i/d_i$).

Russell Albright Anjela Govan Amy Langville Carl Meyer

2007 season NFL Example - ODM

Adjacency matrix A:

	Car	Dal	Hou	NO	Phi	Was
Car	(0	0	34	44	0	0
Dal	0	0	0	0	17	50
Hou	21	0	0	10	0	0
NO	22	0	23	0	38	0
Phi	0	38	0	0	0	45
Was	$\begin{pmatrix} 0 \end{pmatrix}$	34	0	0	45	0 /

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

2007 season NFL Example (ODM)-result

■ $\mathbf{A} + 0.001 \mathbf{e} \mathbf{e}^T$, tol = 0.01 $\mathbf{o} \approx (0.134 \ 7.043 \ 0.098 \ 0.091 \ 6.396 \ 12.383)^T$ $\mathbf{d} \approx (827.666 \ 6.736 \ 266.663 \ 403.771 \ 9.074 \ 11.912)^T$ $\mathbf{r} \approx (0.00016 \ 1.0456 \ 0.00037 \ 0.00023 \ 0.705 \ 1.04)^T$

The list of ranked teams (from best to worst) is

Dal Was Phi Hou NO Car

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

Colley Method

1. Form Colley matrix C

$$\mathbf{C}_{ij} = \begin{cases} -n_{ij} & \text{if } i \neq j, \\ 2 + n_i & \text{if } i = j, \end{cases}$$

where n_i = total number of games played by team T_i and n_{ij} = number of times T_i played T_j .

2. Form vector b

$$b_i = 1 + (w_i - l_i)/2,$$

where w_i = number of T_i wins and l_i = number of T_i loses.

3. Solve

$$\mathbf{Cr} = \mathbf{b},$$

the vector ${\bf r}$ contains rating scores of each team.

Russell Albright Anjela Govan Amy Langville Carl Meyer

2007 season NFL Example - Colley Method

				Callor	motrix	<i>,</i> , ,				
Car	16	NO	13	Colley	main	(C:				
Dal	38	Phi	17							
Dal	28	Was	23		Car	Dal	Hou	NO	Phi	Was
Hou	34	Car	21	Car	/ 5	0	-1	-2	0	0 \
Hou	23	NO	10	Dal	0	5	0	0	-1	-2
NO	31	Car	6	Hou	-1	0	4	-1	0	0
Phi	33	Was	25	NO	-2	0	-1	6	-1	0
Phi	38	NO	23	Phi	0	-1	0	-1	6	-2
Was	27	Dal	6	Was	0	-2	0	0	-2	6 /
Was	20	Phi	12		\					/

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

2007 season NFL Example (Colley)-result

$\mathbf{r} \approx \begin{pmatrix} 0.3597 & 0.616 & 0.6687 & 0.3149 & 0.5015 & 0.5392 \end{pmatrix}^T$

The list of ranked teams (from best to worst) is

Hou Dal Was Phi Car NO

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

1. Form Keener nonnegative matrix K

$$\label{eq:K} \bullet \ \mathbf{K}(i,j) = \left\{ \begin{array}{ll} h\left(\frac{S_{ij}+1}{S_{ij}+S_{ji}+2}\right) & \text{team i played team j} \\ 0 & \text{otherwise} \end{array} \right. \text{,}$$

where S_{ii} is the amount of points scored by team T_i against team T_i and

$$h(x) = \frac{1}{2} + \frac{1}{2} \operatorname{sgn}(x - \frac{1}{2})\sqrt{|2x - 1|}$$

2. Rank vector r is the Perron vector of A.

Russell Albright Anjela Govan Amy Langville Carl Meyer data mining conference M2008 Las Vegas

2007 season NFL Example - Keener Method

				Koong	or motri	V TZ ·				
Car	16	NO	13	Reene	er man	λ Π .				
Dal	38	Phi	17							
Dal	28	Was	23		Car	Dal	Hou	NO	Phi	Was
Hou	34	Car	21	Car	(0	0	0.26	0.22	0	0 \
Hou	23	NO	10	Dal	0	0	0	0	0.80	0.28
NO	31	Car	6	Hou	0.74	0	0	0.80	0	0
Phi	33	Was	25	NO	0.78	0	0.20	0	0.26	
Phi	38	NO	23	Phi	0	0.20	0	0.74	0	0.5
Was	27	Dal	6	Was	0	0.72	0	0	0.5	0 /
Was	20	Phi	12		`					,

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

2007 season NFL Example (Keener)-result

$\mathbf{r} \approx \begin{pmatrix} 0.0474 & 0.2385 & 0.1107 & 0.1079 & 0.2342 & 0.2614 \end{pmatrix}^T$

The list of ranked teams (from best to worst) is

Was Dal Phi Hou NO Car

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

Generalized Markov Method (GeM)

- 1. A sport season is a weighted directed graph with n nodes. Each game is loser $T_i \rightarrow$ winner T_j with weight w_{ij} = the positive difference of the game scores.
- 2. Form matrix H

$$\mathbf{H}_{ij} = \left\{ \begin{array}{ll} w_{ij} / \sum_{k=1}^{n} w_{ik} & \text{if } i \text{ played } j \\ 0 & \text{otherwise} \end{array} \right.$$

3. Form GeM matrix G

$$\mathbf{G} = \alpha [\mathbf{H} + \mathbf{a} \mathbf{u}^T] + (1 - \alpha) \mathbf{e} \mathbf{v}^T$$

where $0 < \alpha < 1$, $\mathbf{v} > 0$ and \mathbf{u} are probability distribution vectors and $a_i = 1$ if $\mathbf{H}_i^T = \mathbf{0}$ and 0 otherwise.

4. The vector containing the rating scores is π such that

$$\boldsymbol{\pi}^T = \boldsymbol{\pi}^T \mathbf{G}$$

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

2007 season NFL Example - GeM

$$\mathbf{H} + \mathbf{a}(1/6)\mathbf{e}^T =$$

Car	Dal	Hou	NO	Phi	Was
/ 0	0	$\frac{13}{38}$	$\frac{25}{38}$	0	0
0	0	0	0	0	1
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
$\frac{3}{31}$	Ő	$\frac{13}{31}$	Ő	$\frac{15}{31}$	Ő
0	$\frac{21}{29}$	0	0	0^{1}	$\frac{8}{29}$
0	$\frac{\overline{5}}{13}$	0	0	$\frac{8}{13}$	Õ /
	$ \begin{array}{c} \text{Car} \\ 0 \\ \frac{1}{6} \\ \frac{3}{31} \\ 0 \\ 0 \end{array} $	$\begin{array}{c ccc} Car & Dal \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{6} & \frac{1}{6} \\ \frac{3}{31} & 0 \\ 0 & \frac{21}{29} \\ 0 & \frac{5}{13} \end{array}$	$\begin{array}{c ccccc} \text{Car} & \text{Dal} & \text{Hou} \\ 0 & 0 & \frac{13}{38} \\ 0 & 0 & 0 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{3}{31} & 0 & \frac{13}{31} \\ 0 & \frac{21}{29} & 0 \\ 0 & \frac{5}{13} & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

2007 season NFL Example (GeM)

$$\mathbf{G} = 0.85 [\mathbf{H} + \mathbf{a}(1/6)\mathbf{e}^T] + 0.15(1/6)\mathbf{e}\mathbf{e}^T =$$

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

2007 season NFL Example (GeM)-result

$\pi^T \approx (0.0389 \ 0.2824 \ 0.0656 \ 0.056 \ 0.2289 \ 0.3281)$

The list of the teams in the order of rating scores (from best to worst) is

Was Dal Phi Hou NO Car

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

Point Spread

- Assume that point spread for game between T_i and $T_j = M$ |rating T_i – rating T_j |
- Use previous results to estimate M (Least Squares)

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

Data Gathering Challenges

Reliable data sources

Data format

Amount of data

Team names and league expansions

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

- Sources http://www.jt-sw.com/football/boxes/index.nsf (John M. Troan); http://scores.espn.go.com/ncf/scoreboard (ESPN);
 - Data collection and parsing automated with Perl scripts

Russell Albright Anjela Govan Amy Langville Carl Meyer

NFL Game Prediction

2001-2007 with preseason padding

ODM
$$tol = 0.01, \epsilon = 0.00001$$

• GeM
$$\alpha = 0.6$$

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

NFL Foresight Prediction Results

	Colley	GeM	Keener	Massey	ODM
2001	57.92	57.92	58.69	60.23	60.62
2002	59.18	56.18	58.43	60.30	63.30
2003	63.30	54.68	58.05	64.04	61.05
2004	61.80	61.42	59.93	62.17	58.43
2005	61.80	65.54	62.55	65.17	64.04
2006	58.80	57.68	57.68	60.30	58.05
2007	66.67	62.92	62.55	68.16	68.91

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

NFL Hindsight Prediction Results

	Colley	GeM	Keener	Massey	ODM
2001	72.97	70.27	72.97	69.88	69.88
2002	68.16	66.67	68.91	67.04	68.54
2003	75.66	69.66	73.78	71.91	72.28
2004	74.16	69.66	70.79	67.42	68.54
2005	73.03	75.66	75.66	75.28	76.40
2006	72.66	64.79	69.29	71.16	70.04
2007	75.66	71.91	76.03	73.41	72.28

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

< A

Data

Prediction Results

NFL Foresight/Hindsight Prediction Results

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

NCAA Football Game Prediction

Div I-A

2003-2007 starting week 5

ODM
$$tol = 0.01, \epsilon = 0.00001$$

• GeM
$$\alpha = 0.6$$

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

NCAA Football Foresight Prediction Results

	Colley	GeM	Keener	Massey	ODM
2003	66.30	66.30	70.29	69.62	68.96
2004	66.14	65.02	63.68	67.71	66.82
2005	67.34	67.34	64.21	67.79	64.43
2006	68.74	67.24	65.74	73.23	71.73
2007	67.10	64.30	68.82	69.89	68.60

Russell Albright Anjela Govan Amy Langville Carl Meyer

(4) E (4) E (4) E data mining conference M2008 Las Vegas

< 🗇 >

Prediction Results

NCAA Football Hindsight Prediction Results

	Colley	GeM	Keener	Massey	ODM
2003	82.04	77.38	76.72	77.38	76.05
2004	81.17	79.15	77.80	76.91	79.15
2005	81.66	75.39	77.63	76.06	74.27
2006	82.23	78.16	78.37	77.09	77.30
2007	79.35	74.84	76.77	77.42	75.48
	1				

Russell Albright Anjela Govan Amy Langville Carl Meyer

(4) E (4) E (4) E data mining conference M2008 Las Vegas

NCAA Football Foresight/Hindsight Prediction Results

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

Thank You! Questions?

Russell Albright Anjela Govan Amy Langville Carl Meyer

data mining conference M2008 Las Vegas

-

A D > <
 A D >
 A