

Text Mining

using the

Nonnegative Matrix Factorization

Amy Langville Carl Meyer

Department of Mathematics North Carolina State University Raleigh, NC

SIAM-SEAS-Charleston 3/25/2005

Outline

Traditional IR

- Vector Space Model (1960s and 1970s)
- Latent Semantic Indexing (1990s)
- Nonnegative Matrix Factorization (2000)

Vector Space Model (1960s and 1970s)

Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn *n* textual documents into *n* document vectors d_1, d_2, \ldots, d_n
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector **q**, which is a pseudo-doc

Vector Space Model (1960s and 1970s)

Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn *n* textual documents into *n* document vectors d_1, d_2, \ldots, d_n
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector **q**, which is a pseudo-doc

GOAL: find doc. d_i closest to q

- angular cosine measure used: $\delta_i = \cos \theta_i = \mathbf{q}^T \mathbf{d}_i / (\|\mathbf{q}\|_2 \|\mathbf{d}_i\|_2)$

Example from Berry's book

Terms

Documents

- T1: Bab(y,ies,y's)
- T2: Child(ren's)
- T3: Guide
- T4: Health
- T5: Home
- T6: Infant
- T7: Guide
- T8: Safety
- T9: Toddler

- D1: Infant & Toddler First Aid
 - D2: Babies & Children's Room (For Your Home)
- D3: Child Safety at Home
 - D4: Your Baby's Health & Safety : From Infant to Toddler
 - D5: Baby Proofing Basics
 - D6: Your Guide to Easy Rust Proofing
 - D7: Beanie Babies Collector's Guide

Example from Berry's book

Terms

- T1: Bab(y,ies,y's)
- T2: Child(ren's)
- T3: Guide
- T4: Health
- T5: Home
- T6: Infant
- T7: Guide
- T8: Safety
- T9: Toddler

Documents

- D1: Infant & Toddler First Aid
- D2: Babies & Children's Room (For Your Home)
- D3: Child Safety at Home
- D4: Your Baby's Health & Safety : From Infant to Toddler
- D5: Baby Proofing Basics
- D6: Your Guide to Easy Rust Proofing
- D7: Beanie Babies Collector's Guide

		d_1	d_{2}	d_{3}	d_4	d_{5}	d_{6}	d_{7}						
	t_1	0	1	0	1	1	0	1		1				
	t_2	0	1	1	0	0	0	0		0		$\lceil \delta_1 \rceil$		0
	t_{3}	0	0	0	0	0	1	1		0		δ_{2}		.5774
	t_4	0	0	0	1	0	0	0		1		δ_{3}		0
A =	t_{5}	0	1	1	0	0	0	0	q =	0	$\delta =$	δ_4	=	.8944
	t_{6}	1	0	0	1	0	0	0		0		δ_{5}		.7071
	t_{7}	0	0	0	0	1	1	0		0		δ_{6}		0
	t_{8}	0	0	1	1	0	0	0		0		$\lfloor \delta_7 \rfloor$		7071 _
	t_{9}	1	0	0	1	0	0	0		0				

Strengths and Weaknesses of VSM

Strengths

- A is sparse
- $\mathbf{q}^T \mathbf{A}$ is fast and can be done in parallel
- relevance feedback: $\tilde{\mathbf{q}} = \delta_1 \mathbf{d}_1 + \delta_3 \mathbf{d}_3 + \delta_7 \mathbf{d}_7$

Weaknesses

- synonyms and polysems—noise in A
- decent performance
- basis vectors are standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$, which are orthogonal \Rightarrow independence of terms

Latent Semantic Indexing (1990s)

Susan Dumais's improvement to VSM = LSI Idea: use low-rank approximation to A to filter out noise

- Great Idea! 2 patents for Bell/Telcordia
 - Computer information retrieval using latent semantic structure. U.S. Patent No. 4,839,853, June 13, 1989.
 - Computerized cross-language document retrieval using latent semantic indexing.
 U.S. Patent No. 5,301,109, April 5, 1994.

(Resource: USPTO http://patft.uspto.gov/netahtml/srchnum.htm)

SVD

 $A_{m \times n}$: rank r term-by-document matrix

- SVD: $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- LSI: use $\mathbf{A}_{k} = \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ in place of \mathbf{A}
- Why?
 - reduce storage when $k \ll r$
 - filter out uncertainty, so that performance on text mining tasks (e.g., query processing and clustering) improves

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T$

- Original Basis: docs represented in Term Space using Standard Basis S = {e₁, e₂, ..., e_m}
- New Basis: docs represented in smaller Latent Semantic Space using Basis $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ (k<<min(m,n))

What's Really Happening?

Change of Basis

using truncated SVD $\mathbf{A}_k = \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T$

- Original Basis: docs represented in Term Space using Standard Basis S = {e₁, e₂, ..., e_m}
- New Basis: docs represented in smaller Latent Semantic Space using Basis $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ (k<<min(m,n))

$$\begin{array}{c} doc_{1} \\ nonneg. \\ \left(\begin{array}{c} \vdots \\ \mathbf{A}_{*1} \\ \vdots \end{array} \right)_{m \times 1} \approx \begin{bmatrix} \vdots \\ \mathbf{u}_{1} \\ \vdots \end{bmatrix} \sigma_{1} v_{11} + \begin{bmatrix} \vdots \\ \mathbf{u}_{2} \\ \vdots \end{bmatrix} \sigma_{2} v_{12} + \dots + \begin{bmatrix} \vdots \\ \mathbf{u}_{k} \\ \vdots \end{bmatrix} \sigma_{k} v_{1k} \end{array}$$

still use angular cosine measure $\delta_i = \cos \theta_i = \mathbf{q}^T \mathbf{d}_i / (\|\mathbf{q}\|_2 \|\mathbf{d}_i\|_2) = \mathbf{q}^T \mathbf{A}_k \mathbf{e}_i / (\|\mathbf{q}\|_2 \|\mathbf{A}_k \mathbf{e}_i\|_2)$ $= \mathbf{q}^T \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T \mathbf{e}_i / (\|\mathbf{q}\|_2 \|\boldsymbol{\Sigma}_k \mathbf{V}_k^T \mathbf{e}_i\|_2)$

Properties of SVD

- basis vectors u_i are orthogonal
- u_{ij}, v_{ij} are mixed in sign • $\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$ nonneg mixed nonneg mixed
- **U**, **V** are dense
- uniqueness—while there are many SVD algorithms, they all create the same (truncated) factorization
- of all rank-k approximations, \mathbf{A}_k is optimal (in Frobenius norm) $\|\mathbf{A} - \mathbf{A}_k\|_F = \min_{rank(\mathbf{B}) \leq k} \|\mathbf{A} - \mathbf{B}\|_F$

Strengths and Weaknesses of LSI

Strengths

- using \mathbf{A}_k in place of \mathbf{A} gives improved performance
- dimension reduction considers only essential components of term-by-document matrix, filters out noise
- best rank-k approximation

Weaknesses

- storage— \mathbf{U}_k and \mathbf{V}_k are usually completely dense
- interpretation of basis vectors u_i is impossible due to mixed signs
- good truncation point k is hard to determine
- orthogonality restriction

Nonnegative Matrix Factorization (2000)

Daniel Lee and Sebastian Seung's Nonnegative Matrix Factorization

Idea: use low-rank approximation with nonnegative factors to improve LSI

\mathbf{A}_k	=	\mathbf{U}_k	$oldsymbol{\Sigma}_k$	\mathbf{V}_k^T
nonneg		mixed	nonneg	mixee

$$\mathbf{A}_k = \mathbf{W}_k \quad \mathbf{H}_k$$

nonneg

nonneg nonneg

Better Basis for Text Mining

Change of Basis

using NMF $\mathbf{A}_k = \mathbf{W}_k \mathbf{H}_k$, where \mathbf{W}_k , $\mathbf{H}_k \ge \mathbf{0}$

- Use of NMF: replace **A** with $A_k = W_k H_k$ $(W_k = [w_1 | w_2 | \dots | w_k])$
- New Basis: docs represented in smaller Topic Space using Basis $B = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ (k<<min(m,n))

Properties of NMF

- basis vectors \mathbf{w}_i are not $\perp \Rightarrow$ can have overlap of topics
- can restrict **W**, **H** to be sparse
- W_k , $H_k \ge 0 \Rightarrow$ immediate interpretation (additive parts-based rep.)
 - **EX:** large w_{ij} 's \Rightarrow basis vector \mathbf{w}_i is mostly about terms j
 - **EX:** h_{i1} how much doc_1 is pointing in the "direction" of topic vector \mathbf{w}_i

$$\mathbf{A}_{k}\mathbf{e}_{1} = \mathbf{W}_{k}\mathbf{H}_{*1} = \begin{bmatrix} \vdots \\ \mathbf{w}_{1} \\ \vdots \end{bmatrix} h_{11} + \begin{bmatrix} \vdots \\ \mathbf{w}_{2} \\ \vdots \end{bmatrix} h_{21} + \dots + \begin{bmatrix} \vdots \\ \mathbf{w}_{k} \\ \vdots \end{bmatrix} h_{k1}$$

Interpretation of Basis Vectors

MED dataset (k = 10)

2

weight

3

4

1 oxygen 2 flow 3 pressure

Highest Weighted Terms in Basis Vector W_o

Highest Weighted Terms in Basis Vector We

term

3

4

5

6

7

8

9

10

0

autistic

speech

group

early

visual

anxiety

autism

emotional

1

Interpretation of Basis Vectors

MED dataset (k = 10)

Papers report NMF is

 \cong LSI for query processing

- \cong LSI for query processing
- \cong LSI for document clustering

- \cong LSI for query processing
- \cong LSI for document clustering
- > LSI for interpretation of elements of factorization

- \cong LSI for query processing
- \cong LSI for document clustering
- > LSI for interpretation of elements of factorization
- > LSI potentially in terms of storage (sparse implementations)

- \cong LSI for query processing
- \cong LSI for document clustering
- > LSI for interpretation of elements of factorization
- > LSI potentially in terms of storage (sparse implementations)
- most NLP algorithms require O(kmn) computation per iteration

Computation of NMF

(Lee and Seung 2000)

MEAN SQUARED ERROR OBJECTIVE FUNCTION

 $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2 \quad s.t. \quad \mathbf{W}, \mathbf{H} \ge \mathbf{0}$

Nonlinear Optimization Problem

— convex in **W** or **H**, but not both \Rightarrow can't get global min

- huge # unknowns: mk for W and kn for H (EX: $A_{70K \times 1K}$ and k=10 topics \Rightarrow 800K unknowns)

- above objective is one of many possible

convergence to local min only guaranteed for some algorithms

Computation of NMF

(Lee and Seung 2000)

 $Mean \ \ \text{squared error objective function}$

 $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2 \quad s.t. \quad \mathbf{W}, \mathbf{H} \ge \mathbf{0}$

```
 \begin{split} & \textbf{W} = abs(randn(m,k)); \\ & \textbf{H} = abs(randn(k,n)); \\ & \text{for } i = 1 : maxiter \\ & \textbf{H} = \textbf{H} .* (\textbf{W}^T \textbf{A}) ./ (\textbf{W}^T \textbf{W} \textbf{H} + 10^{-9}); \\ & \textbf{W} = \textbf{W} .* (\textbf{A} \textbf{H}^T) ./ (\textbf{W} \textbf{H} \textbf{H}^T + 10^{-9}); \\ & \text{end} \end{split}
```

Many parameters affect performance (k, obj. function, sparsity constraints, algorithm, etc.).
— NMF is not unique!

NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT-CONSTRAINED LEAST SQUARES

 $\mathbf{W} = abs(randn(m,k));$ (scale cols of **W** to unit norm) $\mathbf{H} = \operatorname{zeros}(k,n);$ for i = 1 : maxiter **CLS** for j = 1 : #docs, solve $\min_{\mathbf{H}_{*i}} \|\mathbf{A}_{*i} - \mathbf{W}\mathbf{H}_{*i}\|_{2}^{2} + \lambda \|\mathbf{H}_{*i}\|_{2}^{2}$ s.t. $H_{*i} \ge 0$ $W = W .* (AH^T) ./ (WHH^T + 10^{-9});$ GD (scale cols of W) end

NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT-CONSTRAINED LEAST SQUARES

 $\mathbf{W} = abs(randn(m,k));$ (scale cols of **W** to unit norm) $\mathbf{H} = \operatorname{zeros}(k,n);$ for i = 1 : maxiter cls for j = 1 : #docs, solve $\min_{\mathbf{H}_{*i}} \|\mathbf{A}_{*i} - \mathbf{W}\mathbf{H}_{*i}\|_{2}^{2} + \lambda \|\mathbf{H}_{*i}\|_{2}^{2}$ s.t. $H_{*i} \ge 0$ Solve $(\mathbf{W}^T\mathbf{W} + \lambda \mathbf{I})\mathbf{H} = \mathbf{W}^T\mathbf{A}$ for **H** (small $k \times k$ system solve) **GD** $W = W .* (AH^T) ./ (WHH^T + 10^{-9});$ (scale cols of W) end

--- convergence to local min not guaranteed, but works well in practice

---- objective function tails off after 15-30 iterations

Strengths and Weaknesses of NMF

Strengths

- Great Interpretability
- Performance for query processing/clustering comparable to LSI
- Sparsity of factorization allows for significant storage savings
- Scalability good as k, m, n increase
- possibly faster computation time than SVD

Weaknesses

- Factorization is not unique \Rightarrow dependency on algorithm and parameters
- Convergence, when guaranteed, only to local min

Basis Vectors & Random Initialization

(gd-cls $\lambda = 2$, 50 iter. on REUTERS10)

W_1	W_2	W_3	W_4	W_5	W_6	\mathbf{W}_7	W_8	W_9	W_{10}
MIN	A=22658	seed=59							
+tonne	+billion	+share	stg	mln-mln	gulf	+dollar	+oil	+ loss	+trade
+wheat	+year	+offer	+bank	cts	iran	+rate	opec	+profit	japan
+grain	+earn	+ company	money	mln	+attack	+curr.	+ barrel	oper	japanese
+crop	+qrtr	+stock	+bill	shr	+iranian	+bank	bpd	+exclude	+tariff
corn	+rise	+sharehol.	+market	+ net	+ship	yen	crude	+ net	+import
agricul.	pct	+common	england	avg	+ tanker	monetary	+price	dlrs	reagan

Basis Vectors & Random Initialization

(gd-cls $\lambda = 2$, 50 iter. on REUTERS10)

W_1	W_2	W_3	W_4	W_5	W_6	W_7	W_8	W_9	W_{10}
MIN	A=22658	seed=59							
+tonne	+billion	+share	stg	mln-mln	gulf	+dollar	+oil	+ loss	+trade
+wheat	+year	+offer	+bank	cts	iran	+rate	opec	+profit	japan
+grain	+earn	+ company	money	mln	+attack	+curr.	+ barrel	oper	japanese
+crop	+qrtr	+stock	+bill	shr	+iranian	+bank	bpd	+exclude	+tariff
corn	+rise	+sharehol.	+market	+ net	+ship	yen	crude	+net	+import
agricul.	pct	+common	england	avg	+ tanker	monetary	+price	dlrs	reagan
AVER	A=22688	seed=1							
+tonne	+billion	+share	stg	+rate	analy.	+dollar	+oil	+ loss	+trade
+wheat	+quarter	+offer	+bank	+bank	+market	+curr.	+ barrel	cts	japan
+grain	+earn	+stock	money	+econom.	+sell	yen	opec	mln	japanese
+crop	+year	+ company	+bill	+ fed	+firm	+paris	bpd	+ net	+tariff
corn	+rise	+common	london	+cut	+ business	japan	crude	shr	+import
usda	dlrs	+sharehol.	england	$+\mathrm{pct}$	+wall	+exhch.	+price	mln2	u.s.a

Basis Vectors & Random Initialization

(gd-cls $\lambda = 2$, 50 iter. on REUTERS10)

W_1	W_2	W_3	W_4	W_5	W_6	W_7	W_8	W_9	W_{10}
MIN	A=22658	seed=59							
+tonne	+billion	+share	stg	mln-mln	gulf	+dollar	+oil	+ loss	+trade
+wheat	+year	+offer	+bank	cts	iran	+rate	opec	+profit	japan
+grain	+ earn	+company	money	mln	+attack	+curr.	+barrel	oper	japanese
+crop	+qrtr	+stock	+bill	shr	+iranian	+bank	bpd	+exclude	+tariff
corn	+rise	+sharehol.	+market	+net	$+{\rm ship}$	yen	crude	+ net	+import
agricul.	pct	+common	england	avg	+ tanker	monetary	+price	dlrs	reagan
AVER	A=22688	seed=1							
+tonne	+billion	+share	stg	+rate	analy.	+dollar	+ oil	+ loss	+trade
+wheat	+quarter	+offer	+bank	+bank	+market	+curr.	+ barrel	cts	japan
+grain	+ earn	+stock	money	econom.	+sell	yen	opec	mln	japanese
+crop	+year	+company	+bill	+ fed	$+ \mathrm{firm}$	+paris	bpd	+net	+tariff
corn	+rise	+common	london	+cut	+ business	japan	crude	shr	+import
usda	dlrs	+sharehol.	england	$+\mathrm{pct}$	+wall	+exhch.	+price	mln-mln	u.s.a
MAX	A=22727	seed = 58							
+tonne	+bank	+share	japanes	+rate	gulf	+dollar	+oil	+ loss	+trade
+wheat	brazil	+offer	japan	pct	iran	+curr.	+barrel	mln	+import
+grain	+strike	+ company	semicon.	+rise	+iranian	yen	opec	cts	+country
+crop	+loan	+stock	tokyo	money	+attack	+central	bpd	+net	+surplus
corn	+billion	dlrs	+ chip	econom.	+ship	paris	crude	shr	+deficit
usda	seaman	+sharehol.	+official	+ bank	+missile	+bank	+price	+profit	reagan

SVD Acc = 22656 vs. NMF Acc = 22658

- NMF algorithm gd-cls only needs to initialize **W**.
- Since Text Miner builds SVD basis vectors **U** (from $\mathbf{A}_k = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T$), and **U** is optimal basis in some sense . . .

can we use **U** to initialize **W**?

- Does this improve convergence rate?
- Does this improve accuracy, i.e., does gd-cls converge to better local min?

- NMF algorithm gd-cls only needs to initialize **W**.
- Since Text Miner builds SVD basis vectors **U** (from $\mathbf{A}_k = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T$), and **U** is optimal basis in some sense . . .

can we use **U** to initialize **W**?

- Does this improve convergence rate? No, on aver., 30 iter.
- Does this improve accuracy, i.e., does gd-cls converge to better local min?

How should we use U to initialize W?

- Column *i* of **U** contains +, -, 0 values. Maybe this means that basis vector *i* is positively and negatively correlated with terms.
 - $W_0 = U > 0$ (initialize basis vectors to terms with + correlation)
 - $W_0 = U < 0$ (initialize basis vectors to terms with correlation)
 - $W_0 = abs(U > .001)$ (initialize basis vectors to terms with any large correlation)

How should we use U to initialize W?

- Maybe +, signs in column i of U connote positive and negative correlation with terms.
 - $W_0 = U > 0$ (initialize basis vectors to terms with + correlation) Acc=22725
 - $W_0 = U < 0$ (initialize basis vectors to terms with correlation) Acc=22765

-
$$W_0 = abs(U > .001)$$

(initialize basis vectors to terms with any large correlation)

Acc=22688

(Recall: Best Acc=22658)

How should we use U to initialize W?

- Maybe +, signs in column i of U connote positive and negative correlation with terms.
 - $W_0 = U > 0$ (initialize basis vectors to terms with + correlation) Acc=22725
 - $W_0 = U < 0$ (initialize basis vectors to terms with correlation) Acc=22765

$$- W_0 = abs(U > .001)$$

(initialize basis vectors to terms with any large correlation)

Acc=22680

(Recall: Best Acc=22658)

Mixed signs in **U** make correspondence with **W** impossible. They are completely different bases built from completely different philosophies.

• Wilds has shown Concept/Centroid Decomposition makes for good initialization. (unfortunately, too expensive: 26 sec., which is > gd-cls)

Can we use SVD output to form cheap centroid basis vectors?

• Wilds has shown Concept/Centroid Decomposition makes for good initialization.

Can we use SVD output to form cheap centroid basis vectors? Yes. Use low dimension \mathbf{V}^T to cluster documents.

- Run clustering algorithm on $V_{n \times k}$. (EX: k-means on $V_{9,248 \times 10}$)
- Locate documents (cols of **A**) corresponding to clusters of **V**. (EX: cluster $1 = [A_1, A_5, A_9]$, etc.)
- Compute centroid of these document clusters.

 $(\mathsf{EX:} \ \mathbf{C}_1 = \mathbf{A}_1 + \mathbf{A}_5 + \mathbf{A}_9)$

• Wilds has shown Concept/Centroid Decomposition makes for good initialization.

Can we use SVD output to form cheap centroid basis vectors? Yes. Use low dimension \mathbf{V}^T to cluster documents.

- Run clustering algorithm on $V_{n \times k}$. (EX: k-means on $V_{9,248 \times 10}$)
- Locate documents (cols of A) corresponding to clusters of V. (EX: cluster 1 = [A₁,A₅,A₉], etc.)
 - Compute centroid of these document clusters.

 $(EX: C_1 = A_1 + A_5 + A_9)$

Results when $\mathbf{W}_0 = [\mathbf{C}_1 | \cdots | \mathbf{C}_k]$

- Time: clustering on V^T about 1 sec. + 15 sec. for NMF gd-cls.
- Acc: 22666, slightly better than average random W_0 case.

Basis Vectors & Centroid Initialization

(gd-cls $\lambda = 2$, 50 iter. on REUTERS10)

W_1	W_2	W_3	W_4	W_5	W_6	W_7	W_8	W_9	W_{10}
centroids									
+tonne	+billion	+share	$+\mathrm{comp}$	cts	iran	+bank	+oil	+ loss	+trade
+wheat	+ earn	+offer	pct	shr	+gulf	+rate	+barrel	oper	japan
+grain	+qrtr	+ company	+bank	mln	+attack	money	opec	+profit	japanese
corn	+year	+stock	dlrs	+ net	+iranian	+market	bpd	cts	+offic.
+crop	dlrs	pct	+type	mln2	+missile	+dollar	crude	mln	+tariff
agricul.	+rise	+common	inc	$+\mathrm{rev}$	+ship	central	+price	+net	+import
MIN	A=22658	$seed{=}59$							
+tonne	+billion	+share	stg	mln2	gulf	+dollar	+oil	+ loss	+trade
+wheat	+year	+offer	+bank	cts	iran	+rate	opec	+profit	japan
+grain	+earn	+ company	money	mln	+attack	+curr.	+barrel	oper	japanese
+crop	+qrtr	+stock	+bill	shr	+iranian	+bank	bpd	+exclude	+tariff
corn	+rise	+sharehol.	+market	+ net	+ship	yen	crude	+ net	+ import
agricul.	pct	+common	england	avg	+tanker	monetary	+price	dlrs	reagan

Future Work

- Other algorithms: quasi-Newton methods
- New NLP objective: pseudo NMF, discrete NMF