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PageRank
The Hyperlink Matrix H

Hij = 1/|Oi|

The Stochastic Matrix S

S = H + avT
(ai=1 for i∈D, 0, o.w.)

The Google Matrix G

G = αS + (1 − α)evT

= αH + (αa + (1 − α)e)vT

• G is irreducible, aperiodic Markov chain.

• Stationary vector of G is PageRank vector πT .

πi is long-run proportion of time that random surfer spends on page i.



Computing πT

A Big Problem

Solve πT = πTG (stationary distribution vector)

πT (I − G) = 0 (too big for direct solves)



Computing πT

A Big Problem

Solve πT = πTG (stationary distribution vector)

πT (I − G) = 0 (too big for direct solves)

Start with πT
0

= e/n and iterate πT
j+1

= πT
j G (power method)



Power Method to compute PageRank
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Power Method to compute PageRank

πT
0

= eT/n

until convergence, do

X πT
j+1

= πT
j G (dense computation)

X πT
j+1

= α πT
j S + (1 − α) πT

j e vT
(sparser computation)

• πT
j+1

= α πT
j H + (α πT

j a + (1− α)) vT
(even less computation)

end

• H is very, very sparse with about 3-10 nonzeros per row.

• ⇒ one vector-matrix mult. is O(nnz(P)) ≈ O(n).



Convergence

Can prove λ2(G) ≤ α

(⇒ asymptotic rate of convergence of PageRank method is rate at which αk → 0)

Google

– uses α = .85 (5/6, 1/6 interpretation)

– report 50-100 iterations til convergence

– still takes days to converge



Enhancements to the PR power method

• Kamvar et al. Extrapolation

• Kamvar et al. Adaptive PageRank

• Kamvar et al. BlockRank

• Lee et al. Lumpability of Dangling Nodes

• Langville/Meyer: Updating PageRank

• Ipsen/Kirkland: more theory for Langville/Meyer



Langville/Meyer Updating
Motivation

– Updating PR is huge problem. Currently done monthly, but

web changes hourly.

– Chien et al. use aggregation to focus on pages whose PR

is most likely to change.

Idea

– Use iterative aggregation to extend Chien idea.

– Focus on bad states, aggregate good, fast-converging states

into one superstate.

– ⇒ only work on much smaller aggregated chain.

Results

– speedup by factor of 5-10 on some datasets.

Issue

– Partitioning into good and bad states is hard, and IAD is very

sensitive to partition.



Idea behind Aggregation
Best for NCD systems (Simon and Ando (1960s), Courtois (1970s))
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Iterative Aggregation

• Problem: repeated aggregation leads to fixed point.

• Solution: Do a power step to move off fixed point.

• Do this iteratively. Approximations improve and approach
exact solution.

• Success with NCD systems, not in general.
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Exact Aggregation
(Meyer 1989)
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Back to Updating . . .
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Aggregation
Partitioned Matrix

Pn×n =

( G G
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G P21 P22

)
=
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πT = (π1, . . .πg |πg+1, . . ., πn)

Advantages of this Partition

p11
. . .pgg are 1 × 1 =⇒ Stochastic complements = 1

=⇒ censored distributions = 1

Only one significant complement S2 = P22 + P21(I − P11)−1P12

Only one significant censored dist sT
2
S2 = sT

2

A/D Theorem =⇒ sT
2

= (πg+1, . . ., πn)/
∑n

i=g+1
πi



Aggregation Matrix
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(g+1)×(g+1)

=

[
P11 P12e

sT
2
P21 1 − sT

2
P21e

]

The Aggregation/Disaggregation Theorem

If αT = (α1, . . ., αg, αg+1) = stationary dist for A

Then πT =
(
α1, . . ., αg |αg+1sT

2

)
= stationary dist for P

Trouble! Always A Big Problem

G small ⇒ G big ⇒ S2 = P22 + P21(I − P11)−1P12 large

G big ⇒ A large



Approximate Aggregation
Assumption

Updating involves relatively few states

G small ⇒ A =

[
P11 P12e

sT
2
P21 1 − sT

2
P21e

]

(g+1)×(g+1)

small

Approximation (πg+1, . . ., πn) ≈ (φg+1, . . ., φn),

where φT
is old PageRank vector and πT

is new, updated PageRank

sT
2

=
(πg+1, . . ., πn)∑n

i=g+1
πi

≈
(φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

(avoids computing s̃T
2

for large S2)

A ≈ Ã =

[
P11 P12e

s̃T
2
P21 1 − s̃T

2
P21e

]

αT ≈ α̃
T =

(
α̃1, . . ., α̃g, α̃g+1

)

πT ≈ π̃
T =

(
α̃1, . . ., α̃g | α̃g+1s̃T

2

)
(not bad)



Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

NO

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution

˜̃πT = π̃
TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Approximate A/D step generates approximation π̃
T

Smooth the result ˜̃πT = π̃
TP

Use ˜̃πT as input to another approximate aggregation step
.
.
.



How to Partition for Updating Problem?

Intuition

• There are some bad states (G) and some good states (G).

• Give more attention to bad states. Each state in G forms

a partitioning level. Much progress toward correct

PageRank is made during aggregation step.

• Lump good states in G into 1 superstate. Progress

toward correct PageRank is made during smoothing

step (power iteration).



Definitions for “Good” and “Bad”

1. Good = states least likely to have πi change

Bad = states most likely to have πi change

2. Good = states with smallest πi after k transient steps

Bad = states “nearby”, with largest πi after k transient steps

3. Good = smallest πi from old PageRank vector

Bad = largest πi from old PageRank vector

4. Good = fast–converging states

Bad = slow–converging states



Determining “Fast” and “Slow”
Consider power method and its rate of convergence

πT
k+1

= πT
k P = πT

k eπT + λk
2
πT

k x2yT
2

+ λk
3
πT

k x3yT
3

+ . . . + λk
nπ

T
k xnyT

n

Asymptotic rate of convergence is rate at which λk
2
→ 0

Consider convergence of elements

Some states converge to stationary value faster than λ2–rate,
due to LH e–vector yT

2
.

Partitioning Rule

Put states with largest |yT
2
|i values in bad group G, where

they receive more individual attention in aggregation method.

Practicality

yT
2

expensive, but for PageRank problem, Kamvar et al. show

states with large πi are slow-converging. ⇒ inexpensive soln =
use old πT to determine G. (adaptively approximate yT

2
)



Implications of Web’s scale-free nature

Facts:

(1) πT follows power law since WWW is scale-free

(experimental and theoretical justification)

(2) not all pages converge to their PageRanks at same rate

(3) pages with high PR are slow-converging

⇒ very few pages are slow-converging, but these are the

pages that cause power method to drag on



Power law for PageRank
Scale-free Model of Web network creates power laws

(Kamvar, Barabasi, Raghavan)



Convergence
Theorem

Always converges to stationary dist πT for P

Converges for all partitions S = G ∪ G

Rate of convergence is rate at which Sn
2

converges

S2 = P22+P21(I−P11)−1P12

Dictated by Jordan structure of λ2(S2)

λ2(S2) simple =⇒ πT
k → πT at the rate at which λn

2
→ 0

The Game

Goal now is to find a relatively small G that minimizes λ2(S2)



Ipsen/Kirkland Updating Theory

Motivation

– L/M prove updating method converges at rate (λ2(S2))k → 0.

– Ipsen/Kirkand wonder: can λ2(S2) > α ?

Results

– λ2(S2) ≤ α for all partitions.

– λ2(S2) < α under two trivial assumptions on P.

(P is reducible, and at least one page in each essential class does not self-link)



Ipsen/Kirkland Updating Theory

Motivation

– L/M prove updating method converges at rate (λ2(S2))k → 0.

– Ipsen/Kirkand wonder: can λ2(S2) > α ?

Results

– λ2(S2) ≤ α for all partitions.

– λ2(S2) < α under two trivial assumptions on P.

(P is reducible, and at least one page in each essential class does not self-link)

But ... how do we find partition so that λ2(S2) << α ?



Experiments

Test Networks From Crawl Of Web

NCState (NCSU internal crawl)

10,000 nodes 101,118 links

California (Sites concerning “california” query)

9,664 nodes 16,150 links



Parameters

Number Of Nodes (States) Added

50

Number Of Nodes (States) Removed

30

Number Of Links Added (Different values have little effect on results)

300

Number Of Links Removed

200

Stopping Criterion

1-norm of residual < 10
−10



NC State

Power Method Iterative Aggregation

Iterations Time

162 9.79

|G| Iterations Time

500 160 10.18

1000 51 3.92

1500 33 2.82

2500 16 2.15

3000 13 1.99

5000 7 1.77

nodes = 10,000 links = 101,118



NC State

Power Method Iterative Aggregation

Iterations Time

162 9.79

|G| Iterations Time

500 160 10.18

1000 51 3.92

1500 33 2.82

2000 21 2.22

2500 16 2.15

3000 13 1.99

5000 7 1.77

nodes = 10,000 links = 101,118



California

Power Method Iterative Aggregation

Iterations Time

176 5.85

|G| Iterations Time

500 19 1.12

1000 15 .92

1250 20 1.04

2000 13 1.17

5000 6 1.25

nodes = 9,664 links = 16,150



California

Power Method Iterative Aggregation

Iterations Time

176 5.85

|G| Iterations Time

500 19 1.12

1000 15 .92

1250 20 1.04

1500 14 .90

2000 13 1.17

5000 6 1.25

nodes = 9,664 links = 16,150



Advantage

— updating algorithm can be combined with other PR acceleration
methods.

Power Power+Quad(10) Iter. Agg. Iter.Agg.+Quad(10)

Iter. Time Iter. Time

162 9.69 81 5.93

|G| Iter. Time Iter. Time

500 160 10.18 57 5.25

1000 51 3.92 31 2.87

1500 33 2.82 23 2.38

2000 21 2.22 16 1.85

2500 16 2.15 12 1.88

3000 13 1.99 11 1.91

5000 7 1.77 6 1.86

nodes = 10,000 links = 101,118



Residual Plot for NC State
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Large-Scale Implementation

Partitioning

— need more theoretical work on good partitioning.

IAD’s Aggregated System Solve

— direct vs. sparse methods

Simulating updates to Web

— how to do this accurately, and keep scale-free properties of
web

— need collections of the web over time.



Conclusions

• Aggregation methods reduce PageRank computation for

the updating problem. However, partitioning is a difficult,
unresolved issue.

• Many of the acceleration methods can be combined to achieve

even greater speedups.

• We are moving closer to lofty goal of computing real-time

personalized PageRank.


