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The PageRank Vector

Definition

w! = stationary distribution of a Markov chain

P=tT+(1—-¢E 0<t<1

Irreducible & Aperiodic

Big Eigenvector Problem
Solve 7!’ = w'P mle=1
n = 0(10°)

“World’s Largest Matrix Computation”

(too big for direct solves)

(Cleve Moler)
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Computing 7

Iterate

Start with 71'3; =e/n and iterate 71'%1 = 7T]TP (power method)

Convergence Time
Use to be measured in days

Now ??7

Recent Advances

Extrapolation methods for accelerating PageRank, Kamwvar, Haveliwala, Manning, Golub, 03
Exploiting the block structure of the web for computing PageRank, K, H, M, Golub, 03
Adaptive methods for the computation of PageRank, Kamvar, Haveliwala, Golub, 03

Partial state space aggregation based on lumpability and its application to PageRank,

Chris Lee, 03
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Updating
Easy Problem
No pages added — No pages removed

— Size does not change — only probabilities change

Hard Problem
Both pages & links are added or removed

— Both size & probabilities change

The Trouble
Prior results are not much help

— Google just restarts from scratch every few weeks
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Perron Complementation

Perron Frobenius
P>0 irreducible =— p=p(P) simple eigenvalue

Unique Left-Hand Perron Vector

nlP=pn! 7l >0 [l =1
Partition P-=
[P21 P2

Shift Pby p —— Schur Complements —— Shift back by p

Perron Complements
S1 =P11+Pia(pl — Pa2) 'Pyy
Sy = P22 + Pai(pl — P11) P12
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Inherited Properties
For P > 0O irreducible with p = p(P)
S, >0
S, is irreducible

p(Si) = p(P) = p

For P stochastic
S, is stochastic

S; represents a censored Markov chain

Censored Perron vectors
s/ = Left-hand Perron vector for S,

s!S, =ps!
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Aggregation

Objective

Use s! sl .-+ to build «!

Aggregation Matrix

S{Plle S{Plze

siPyie siPye],.
Inherited Properties
A>0
A is irreducible

p(A) = p = p(P) = p(S;)
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Aggregation

Objective

Use si sl --- to build «!

Aggregation Matrix

S{Plle S{Plze

siPye slPye],. .
Inherited Properties
A>0
A is irreducible

p(A) = p = p(P) = p(S;)

P stochastic —=— A stochastic
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Disaggregation

The A/ D Theorem

If

then

s! = Perron vectors for S; = P;; + P;.(pl — P..) 1P,

T T

s:P;;e s;Pse
ol = (a1, az) = Perron vector for A = ; ;1r
S5 P>, e S5 P..e 2% 2

7wl = (o181 | asl ) = Perron vector for P,
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Disaggregation

The A/ D Theorem

|
= Perron vectors for S; =P;; + P;.(p1 — P..) P,

T T

s:P;;e s;Pse
ol = (a1, az) = Perron vector for A = ; ;1r
S5 P>, e S5 P..e 2% 2

then

7wl = (o181 | asl ) = Perron vector for P,

Corollary

S{_ 7'(‘1,... /Zz_l v Sg= (7Tg+17°'°77‘-n)/ Z?=g+1ﬂ-i
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Updating By Aggregation

Prior Data
Q,.» = Old Google Matrix (known)
ol = (61, ¢a, ..., Om) = Old PageRank Vector (known)

Updated Data
P.... = New Google Matrix (known)

!l = (71, ma, ..., m,) = New PageRank Vector (unknown)

Separate Pages Likely To Be Most Affected
G = {most affected} G = {less affected} S=GUG

New pages (and neighbors) go into G
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Aggregation

Partition
G G D11 e DP1g r{ |
21 Fa2 Dol e Dy rg
L C1 e Cy P2 |
!l = (74, .. g | Mgty e e, Th)

Perron Complements

p11°°'pyy; are 1 x1 = Perron complements= 1
— Perron vectors =1

One significant complement Sy = P2y + Po1 (I — P11) 7 1P12
One significant Perron vector sS,=sl

A/D corollary — sT=(wg+1,...,wn)/2?=g+lm
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G : :
Approximate Aggregation
Some Old PageRanks Approximate New Ones

(Tgs1y e ooy Tn) = (Pga1s e+ o On) (the smaller ones)

By A/D Corollary

Approximate Aggregation Matrix

~ P11 Pi.e
A= A <7
S5P21 S5Pase ] 1541
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Approximate Aggregation

Some Old PageRanks Approximate New Ones
(7Tg+1, e, ) R (gbg+1, ey Op) (the smaller ones)

By A/D Corollary

sl = ' = sl
n n
Zz=g+1 gy Zz‘=g+1 ¢z
Approximate Aggregation Matrix
~ P11 Pi.e
A = [ ] &T — (&17 ,& a )
— ~ ceey Og, O
S5P21 S5P2se ] 1y

By A/D Theorem

~T ~ ~ |~ ~
T = (041,...,049 ag+1s§) ~ T (not bad)
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Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

NQO! Can’t do twice — fixed point emerges

Solution

Perturb A/D output to move off of fixed point
Move in direction of solution

~ ~T
ﬂ'T =7 P (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partiton S=GUG

Approximate A/D step generates 7
Smooth 77 =#'P

Use =7 as iInput to another approximate aggregation step
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Convergence

THEOREM
Always converges to the new PageRank vector =’
Converges for all partitions S=GUG
Rate of convergence governed by |\2(S,)]

Sy = Pog+Pyi(1-P11) P2

THE GAME

Find a relatively small G to minimize |\2(S-)|
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Experiments

Test Networks From Crawl Of Web (Supplied by Ronny Lempel)

Censorship
562 nodes 736 links

Movies
451 nodes 713 links

MathWorks (Supplied by Cleve Moler)
517 nodes 13,531 links

Abortion
1,693 nodes 4,325 links

Genetics
2,952 nodes 6,485 links

California
9,664 nodes 16,150 links




G

Perturbations

The Updates
# Nodes Added = 3
# Nodes Removed = 50
# Links Added = 10
# Links Removed = 20
Stopping Criterion

1-norm of residual < 1010

(Different values have little effect on results)



Movies

Power Method Iterative Aggregation
lterations Time |G| lterations Time
17 40 5 12 .39

10 12 37

15 11 .36

20 11 .39

100 9 33

200 8 .35

300 7 .39

400 6 A7

nodes =451 links =713



Movies

Power Method Iterative Aggregation
lterations Time |G| lterations Time
17 40 5 12 .39
10 12 37

15 11 .36

20 11 .39

25 11 31

o0 9 31

100 9 33

200 8 .35

300 7 .39

400 6 A7

nodes = 451 links =713
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Censorship

Power Method

lterations Time G

Iterative Aggregation

lterations Time

38 1.40 5)
10
15
20
25
50
100

300
400

nodes = 562 [inks =736

38
38
38
20
20
10
8

6
5)

1.68
1.66
1.56
1.06
1.05
.69
09D

.65
.70
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Censorship

Power Method

lterations Time

38

1.40

nodes = 562

Iterative Aggregation

G|

lterations Time

5)
10
15
20
25
50

100
200
300
400

links = 736

38
38
38
20
20
10
8

ot O O

1.68
1.66
1.56
1.06
1.05
.69
.05
03
.65
.70
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MathWorks

Iterative Aggregation

Power Method

lterations Time

o4 1.25

nodes = 517

G|

lterations Time

5)
10
15
20
25

300
400

links = 13,531

53
52
D52
42
20

11
10

1.18
1.29
1.23
1.05
1.13

.83
1.01
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MathWorks

Power Method Iterative Aggregation
lterations Time |G| Ilterations Time
54 1.25 5 53 1.18
10 52 1.29

15 52 1.23

20 42 1.05

25 20 1.13

o0 18 .70

100 16 .70

200 13 .70

300 11 .83

400 10 1.01

nodes = 517 links =13,531
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Abortion

Power Method

lterations Time

106

37.08

nodes = 1,693

Iterative Aggregation

|G| Iterations Time

5) 109
10 105
15 107
20 107
25 97
50 93
250 12
500 6
750 5

1000 5]

links = 4,325

38.56
36.02
38.05
38.45
34.81
18.80

5.62
5.21
10.22
14.61



Abortion

Power Method Iterative Aggregation
lterations Time |G| lterations Time
106 37.08 5 109 38.56
10 105 36.02
15 107 38.05
20 107 38.45
25 97 34.81
50 53 18.80
100 13 5.18
250 12 5.62
500 6 5.21
750 5 10.22
1000 5 14.61

nodes = 1,693 links =4,325
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Genetics

Power Method

lterations Time

92

91.78

nodes = 2,952

Iterative Aggregation

|G| Iterations Time

5)
10
20
50

100
250

1000
1500

links = 6,485

91
92
71
25
19
13

5
5]

88.22
92.12
72.53
25.42
20.72
14.97

17.76
31.84
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Genetics

Power Method

lterations Time

92

91.78

nodes = 2,952

Iterative Aggregation

|G| Iterations Time

5)
10
20
50

100

250

500
1000
1500

links = 6,485

91
92
71
25
19
13
7
5’
5]

88.22
92.12
72.53
25.42
20.72
14.97
11.14
17.76
31.84
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California

Power Method Iterative Aggregation
lterations Time |G| Iterations Time
176 5.85 500 19 1.12
1000 15 92

1250 20 1.04

2000 13 1.17

5000 6 1.25

nodes =9,664 [inks =16,150
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California

Power Method

Iterative Aggregation

lterations Time |G| Iterations Time
176 5.85 500 19 1.12
1000 15 92
1250 20 1.04
1500 14 90
2000 13 1.17
5000 6 1.25

nodes = 9,664 [inks =16,150
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“L” Curves
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Comparisons

Race
— Power Method

— Power Method + Quadratic Extrapolation
— lterative Aggregation

— lterative Aggregation + Quadratic Extrapolation
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Comparisons

Race
— Power Method

— Power Method + Quadratic Extrapolation
— lterative Aggregation

— lterative Aggregation + Quadratic Extrapolation

NC State Internal Crawl
— 10,000 nodes + 101,118 links
— 50 nodes added
— 30 nodes removed
— 300 links added
— 200 links removed
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lterations
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Power
Power+Quad
IAD
IAD+Quad

nodes = 10, 000

Timings

Iterations Time (sec)

162 9.69

links =101,118

G|
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Power
Power+Quad
IAD
IAD+Quad

nodes = 10, 000

Timings

Iterations Time (sec)
162 9.69
81 5.93

links =101,118

G|
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Timings

Iterations Time (sec)

Power 162 9.69
Power+Quad 81 5.93
IAD 21 2.22
IAD+Quad

nodes = 10,000 [inks=101,118

G|

2000



Timings

Iterations Time (sec) |G|

Power 162 9.69
Power+Quad 81 5.93
IAD 21 2.22 2000
IAD+Quad 16 1.85 2000

nodes = 10,000 [inks=101,118



G

¢

Conclusion

Iterative A/D with appropriate
partitioning and smoothing
shows promise for updating
Markov chains with power

law distributions



