
MathematicalFuel
ForSearchEngines

Carl Meyer
Amy Langville

Department of Mathematics
North Carolina State University
Raleigh, NC SIAM SEAS 4/2/2004

Search Engines

System for the Mechanical Analysis and Retrieval of Text

Harvard 1962 – 1965

IBM 7094 & IBM 360

Gerard Salton

Implemented at Cornell (1965 – 1970)

Based on matrix methods

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Robots crawl the web — software does indexing

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Robots crawl the web — software does indexing

Count fij = # times term i appears in document j

Term–Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Robots crawl the web — software does indexing

Count fij = # times term i appears in document j

Term–Document Matrix

⎛⎜⎜⎜⎝
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

⎞⎟⎟⎟⎠ = Am×n

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol

Term Weighting
A Problem

Suppose query = NCSU

Suppose NCSU occurs once in D1 and twice in D2

Term Weighting
A Problem

Suppose query = NCSU

Suppose NCSU occurs once in D1 and twice in D2

— Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

Term Weighting
A Problem

Suppose query = NCSU

Suppose NCSU occurs once in D1 and twice in D2

— Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Term Weighting
A Problem

Suppose query = NCSU

Suppose NCSU occurs once in D1 and twice in D2

— Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Query Weighting

Terms Boeing and airplanes not equally important in queries

Term Weighting
A Problem

Suppose query = NCSU

Suppose NCSU occurs once in D1 and twice in D2

— Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Query Weighting

Terms Boeing and airplanes not equally important in queries

Importance of Term Ti in a query tends to be inversely
proportional to νi = # Docs containing Ti

Term Weighting
A Problem

Suppose query = NCSU

Suppose NCSU occurs once in D1 and twice in D2

— Then δ2 ≈ 2δ1 (if ‖A1‖≈‖A2‖)

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Query Weighting

Terms Boeing and airplanes not equally important in queries

Importance of Term Ti in a query tends to be inversely
proportional to νi = # Docs containing Ti

To Compensate

Set qi =
{

log(n/νi) if νi �= 0
0 if νi = 0

(Other weights also possible)

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Variation in Indexing Conventions

— No two people index documents the same way

— Computer indexing is inexact and can be unpredictable

Theory vs Practice

In Theory — it’s simple and elegant

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

— D2 indexed by automobile, fuel, and tire (missed)

Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

— D2 indexed by automobile, fuel, and tire (missed)

The Challenge

— Find D2 by revealing the latent connection through tire

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

Possible expansions
— URV: A = URVT =

∑
rijuivT

j

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

Possible expansions
— URV: A = URVT =

∑
rijuivT

j — SVD: A = UDVT =
∑

σiuivT
j

Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

Possible expansions
— URV: A = URVT =

∑
rijuivT

j — SVD: A = UDVT =
∑

σiuivT
j

— Haar: A = HmBHT
n =

∑
i,j βijhihT

j (h’s only use -1, 0, 1)

Limitations

• Rankings are query dependent

Rank of each doc is recomputed for each query

Limitations

• Rankings are query dependent

Rank of each doc is recomputed for each query

• Only semantic content is used

Link structure completely ignored

Limitations

• Rankings are query dependent

Rank of each doc is recomputed for each query

• Only semantic content is used

Link structure completely ignored

• Difficult to add & delete documents

Requires updating & downdating SVD

Limitations

• Rankings are query dependent

Rank of each doc is recomputed for each query

• Only semantic content is used

Link structure completely ignored

• Difficult to add & delete documents

Requires updating & downdating SVD

• Determining optimal k is not easy

Empirical tuning required

Limitations

• Rankings are query dependent

Rank of each doc is recomputed for each query

• Only semantic content is used

Link structure completely ignored

• Difficult to add & delete documents

Requires updating & downdating SVD

• Determining optimal k is not easy

Empirical tuning required

• Doesn’t scale up well

Impractical for www

Using WWW Link Structure

Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ∼ ri

Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ∼ ri

— ri based only on link structure (i.e., query independent)

Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ∼ ri

— ri based only on link structure (i.e., query independent)

— ri computed prior to any query

Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ∼ ri

— ri based only on link structure (i.e., query independent)

— ri computed prior to any query

Direct Query Matching
• Query = (Term1, T erm2) −→ (Pi, ri), (Pj, rj), (Pk, rk), . . .

Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ∼ ri

— ri based only on link structure (i.e., query independent)

— ri computed prior to any query

Direct Query Matching
• Query = (Term1, T erm2) −→ (Pi, ri), (Pj, rj), (Pk, rk), . . .

Return Pi, Pj, Pk, . . . in order of ranks ri, rj, rk, . . .

How To Measure “Importance”

Authorities Hubs

How To Measure “Importance”

Authorities Hubs

• Good hub pages point to good authority pages

How To Measure “Importance”

Authorities Hubs

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1)

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =
{

1 Pi → Pj

0 Pi �→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =
{

1 Pi → Pj

0 Pi �→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

hi(k) =
∑

j:Pi→Pj

aj(k)

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =
{

1 Pi → Pj

0 Pi �→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

hi(k) =
∑

j:Pi→Pj

aj(k) ⇒ hk = Lak

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =
{

1 Pi → Pj

0 Pi �→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

hi(k) =
∑

j:Pi→Pj

aj(k) ⇒ hk = Lak

— A = LTL ak = Aak−1 → e-vector (direction)

HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =
{

1 Pi → Pj

0 Pi �→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

hi(k) =
∑

j:Pi→Pj

aj(k) ⇒ hk = Lak

— A = LTL ak = Aak−1 → e-vector (direction)

— H = LLT hk = Hhk−1 → e-vector (direction)

Compromise

1. Do direct query matching

Compromise

1. Do direct query matching

2. Build neighborhood graph

Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood

Pros & Cons

Advantages

• Returns satisfactory results

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

• Scores can be manipulated by creating artificial hubs

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

• Depends primarily on link structure of web

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

PageRank Shares The Vote

• Yahoo! casts many “votes” =⇒ value of vote from Y is diluted

Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

PageRank Shares The Vote

• Yahoo! casts many “votes” =⇒ value of vote from Y is diluted

— If Yahoo! “votes” for n pages

— then P receives only r(Y)/n credit from Y

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

r2(Pi) =
∑

P∈BPi

r1(P)
|P |

PageRank
The Definition

r(P) =
∑
P∈BP

r(P)
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)
|P |

r2(Pi) =
∑

P∈BPi

r1(P)
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P)
|P |

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

It’s A Markov Chain

P =
[
pij

]
is a stochastic matrix (set pii=1 when all other pij=0)

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

It’s A Markov Chain

P =
[
pij

]
is a stochastic matrix (set pii=1 when all other pij=0)

Each πT
j is a probability distribution vector

(∑
i
rj(Pi)=1

)

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

It’s A Markov Chain

P =
[
pij

]
is a stochastic matrix (set pii=1 when all other pij=0)

Each πT
j is a probability distribution vector

(∑
i
rj(Pi)=1

)
πT

j+1 = πT
j P is random walk on the graph defined by links

In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

It’s A Markov Chain

P =
[
pij

]
is a stochastic matrix (set pii=1 when all other pij=0)

Each πT
j is a probability distribution vector

(∑
i
rj(Pi)=1

)
πT

j+1 = πT
j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = steady-state probability distribution

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Convergence

Markov chain must be irreducible and aperiodic

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Replace P by P̃ = αP + (1 − α)E eij = 1/n α ≈ .85

Random Surfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Replace P by P̃ = αP + (1 − α)E eij = 1/n α ≈ .85

Different E = evT and α allow customization & speedup

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Prior results don’t help to restart

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]
Shift P by ρ

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]
Shift P by ρ −→ Schur Complements

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]
Shift P by ρ −→ Schur Complements −→ Shift back by ρ

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]
Shift P by ρ −→ Schur Complements −→ Shift back by ρ

Perron Complements
S1 = P11 + P12(ρI − P22)−1P21 S2 = P22 + P21(ρI − P11)−1P12

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]
Shift P by ρ −→ Schur Complements −→ Shift back by ρ

Perron Complements
S1 = P11 + P12(ρI − P22)−1P21 S2 = P22 + P21(ρI − P11)−1P12

Inherited Properties
Si ≥ 0

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]
Shift P by ρ −→ Schur Complements −→ Shift back by ρ

Perron Complements
S1 = P11 + P12(ρI − P22)−1P21 S2 = P22 + P21(ρI − P11)−1P12

Inherited Properties
Si ≥ 0

Si is irreducible

Perron Complementation
Perron Frobenius

P ≥ 0, irreducible =⇒ ρ(P) = ρ ∈ σ(P) (simple)

Unique Left-Hand Perron Vector
πTP = ρπT πT > 0 ‖πT‖1 = 1

Partition & Aggregate P =
[

P11 P12

P21 P22

]
Shift P by ρ −→ Schur Complements −→ Shift back by ρ

Perron Complements
S1 = P11 + P12(ρI − P22)−1P21 S2 = P22 + P21(ρI − P11)−1P12

Inherited Properties
Si ≥ 0

Si is irreducible

ρ(Si) = ρ = ρ(P)

Exact Aggregation
Aggregation Matrix

sT
i = Left-hand Perron vector for Si

A =
[

sT
1S1e sT

1S2e

sT
2S1e sT

2S2e

]
2×2

Exact Aggregation
Aggregation Matrix

sT
i = Left-hand Perron vector for Si

A =
[

sT
1S1e sT

1S2e

sT
2S1e sT

2S2e

]
2×2

Inherited Properties

A ≥ 0

Exact Aggregation
Aggregation Matrix

sT
i = Left-hand Perron vector for Si

A =
[

sT
1S1e sT

1S2e

sT
2S1e sT

2S2e

]
2×2

Inherited Properties

A ≥ 0

A is irreducible

Exact Aggregation
Aggregation Matrix

sT
i = Left-hand Perron vector for Si

A =
[

sT
1S1e sT

1S2e

sT
2S1e sT

2S2e

]
2×2

Inherited Properties

A ≥ 0

A is irreducible

ρ(A) = ρ = ρ(P) = ρ(Si)

Exact Aggregation
Aggregation Matrix

sT
i = Left-hand Perron vector for Si

A =
[

sT
1S1e sT

1S2e

sT
2S1e sT

2S2e

]
2×2

Inherited Properties

A ≥ 0

A is irreducible

ρ(A) = ρ = ρ(P) = ρ(Si)

The Aggregation/Disaggregation Theorem

Left-hand Perron vector for A = (α1, α2)
=⇒

Left-hand Perron vector for P = (α1sT
1 | α2sT

2)

Updating By Aggregation

Prior Data

Qm×m = Old Google Matrix (known)

φT = (φ1, φ2, . . ., φm) = Old PageRank Vector (known)

Updating By Aggregation

Prior Data

Qm×m = Old Google Matrix (known)

φT = (φ1, φ2, . . ., φm) = Old PageRank Vector (known)

Updated Data

Pn×n = New Google Matrix (known)

πT = (π1, π2, . . ., πn) = New PageRank Vector (unknown)

Updating By Aggregation

Prior Data

Qm×m = Old Google Matrix (known)

φT = (φ1, φ2, . . ., φm) = Old PageRank Vector (known)

Updated Data

Pn×n = New Google Matrix (known)

πT = (π1, π2, . . ., πn) = New PageRank Vector (unknown)

Separate Pages Likely To Be Most Affected

G = {most affected} G = {less affected} S = G ∪ G

Updating By Aggregation

Prior Data

Qm×m = Old Google Matrix (known)

φT = (φ1, φ2, . . ., φm) = Old PageRank Vector (known)

Updated Data

Pn×n = New Google Matrix (known)

πT = (π1, π2, . . ., πn) = New PageRank Vector (unknown)

Separate Pages Likely To Be Most Affected

G = {most affected} G = {less affected} S = G ∪ G

New pages (and neighbors) go into G

Aggregation
Partitioned Matrix

Pn×n =

(G G
G P11 P12

G P21 P22

)
=

⎡⎢⎢⎢⎢⎣
p11

. . . p1g rT
1

...
. . .

...
...

pg1
. . . pgg rT

g

c1
. . . cg P22

⎤⎥⎥⎥⎥⎦
πT = (π1, . . .πg |πg+1, . . ., πn)

Aggregation
Partitioned Matrix

Pn×n =

(G G
G P11 P12

G P21 P22

)
=

⎡⎢⎢⎢⎢⎣
p11

. . . p1g rT
1

...
. . .

...
...

pg1
. . . pgg rT

g

c1
. . . cg P22

⎤⎥⎥⎥⎥⎦
πT = (π1, . . .πg |πg+1, . . ., πn)

Perron Complements

p11
. . .pgg are 1 × 1 =⇒ Perron complements = 1

=⇒ Perron vectors = 1

Aggregation
Partitioned Matrix

Pn×n =

(G G
G P11 P12

G P21 P22

)
=

⎡⎢⎢⎢⎢⎣
p11

. . . p1g rT
1

...
. . .

...
...

pg1
. . . pgg rT

g

c1
. . . cg P22

⎤⎥⎥⎥⎥⎦
πT = (π1, . . .πg |πg+1, . . ., πn)

Perron Complements

p11
. . .pgg are 1 × 1 =⇒ Perron complements = 1

=⇒ Perron vectors = 1

One significant complement S2 = P22 + P21(I − P11)−1P12

One significant Perron vector sT
2S2 = sT

2

A/D Theorem =⇒ sT
2 = (πg+1, . . ., πn)/

∑n
i=g+1 πi

Approximate Aggregation

Use Some Old PageRanks to Approximate New Ones

(πg+1, . . ., πn) ≈ (φg+1, . . ., φn)

Approximate Aggregation

Use Some Old PageRanks to Approximate New Ones

(πg+1, . . ., πn) ≈ (φg+1, . . ., φn)

Approximate Perron Vector

sT
2 =

(πg+1, . . ., πn)∑n

i=g+1
πi

≈ (φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

Approximate Aggregation

Use Some Old PageRanks to Approximate New Ones

(πg+1, . . ., πn) ≈ (φg+1, . . ., φn)

Approximate Perron Vector

sT
2 =

(πg+1, . . ., πn)∑n

i=g+1
πi

≈ (φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

Approximate Aggregation Matrix

Ã =
[

P11 P12e

s̃T
2P21 1 − s̃T

2P21e

]
α̃T =

(
α̃1, . . ., α̃g, α̃g+1

)

Approximate Aggregation

Use Some Old PageRanks to Approximate New Ones

(πg+1, . . ., πn) ≈ (φg+1, . . ., φn)

Approximate Perron Vector

sT
2 =

(πg+1, . . ., πn)∑n

i=g+1
πi

≈ (φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

Approximate Aggregation Matrix

Ã =
[

P11 P12e

s̃T
2P21 1 − s̃T

2P21e

]
α̃T =

(
α̃1, . . ., α̃g, α̃g+1

)
Approximate New PageRank Vector

π̃T =
(
α̃1, . . ., α̃g | α̃g+1s̃T

2

)
(not bad)

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Approximate A/D step generates approximation π̃T

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Approximate A/D step generates approximation π̃T

Smooth the result ˜̃πT = π̃TP

Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Approximate A/D step generates approximation π̃T

Smooth the result ˜̃πT = π̃TP

Use ˜̃πT as input to another approximate aggregation step
...

Convergence

THEOREM

Always converges to the new PageRank vector πT

Convergence

THEOREM

Always converges to the new PageRank vector πT

Converges for all partitions S = G ∪ G

Convergence

THEOREM

Always converges to the new PageRank vector πT

Converges for all partitions S = G ∪ G

Rate of convergence governed by |λ2(S2)|
S2 = P22+P21(I−P11)−1P12

Convergence

THEOREM

Always converges to the new PageRank vector πT

Converges for all partitions S = G ∪ G

Rate of convergence governed by |λ2(S2)|
S2 = P22+P21(I−P11)−1P12

THE GAME

Find a relatively small G to minimize |λ2(S2)|

Convergence

THEOREM

Always converges to the new PageRank vector πT

Converges for all partitions S = G ∪ G

Rate of convergence governed by |λ2(S2)|
S2 = P22+P21(I−P11)−1P12

THE GAME

Find a relatively small G to minimize |λ2(S2)|

Can do — Use “power law” distribution of the web

Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS

Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS

Google Now Uses Many Other “Metrics” to augment PR

Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS

Google Now Uses Many Other “Metrics” to augment PR

Search Is Opening New Areas Ripe For Inovative Ideas

Exciting Work That Is Changing The World

Conclusions
Elegant Blend of NA, LA, Graph Theory, MC, & CS

Google Now Uses Many Other “Metrics” to augment PR

Search Is Opening New Areas Ripe For Inovative Ideas

Exciting Work That Is Changing The World

Thanks For Your Attention

