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Introduction

Introduction

Why clustering? Who does this?
Is there one clustering method that is better than others?
How does this affect me?
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Document Clustering Document Data

What Does Document Data Look Like?

Figure: A pdf document

Figure: An email
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Document Clustering Term by Document Matrix

Term by Document Matrix (TBD)

The element Ai,j counts the number of times word i appears in
document j
Consider the example with 3 documents:

document 1 has the words “apple” twice, “bear” once, “cannon” four
times
document 2 has the words “bear” three times, “cannon” once, and
“disco” once
document 3 has the words “apple” 5 times, and “disco” twice.

TBD =


2 0 5
1 3 0
4 1 0
0 1 2
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Clustering Methods K-means

What is K-means?

Goal is to minimize:
n∑

i=1

k∑
j=1

(di − cj)
2

Iterative process in which iterations continue until convergence to
a local minimum
At each step: assign documents to the centroid to which they are
closest to in the Euclidean sense
Then recalculate centroids by finding the average of all documents
assigned to the centroid, that is: cj =

∑L
i=1

di
L , where L is the

number of documents assigned to cluster j, and the division is a
scalar division of the elements of d.
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Clustering Methods Non-negative Matrix Factorization (NMF)

What is the Non-negative Matrix Factorization?

Am×n ≈Wm×r Hr×n, A,W ,H ≥ 0, r ∈ N is user defined
The goal is to minimize ‖A−WH‖
A class of algorithms - not just one
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Clustering Methods Non-negative Matrix Factorization (NMF)

An Algorithm for the NMF

Lee and Seung 1999
Iteratively update until the error ‖A−WH‖2F is below some
threshold.

Hi,j = Hi,j
(W T A)i,j

(W T WH)i,j + ε

Wi,j = Wi,j
(AHT )i,j

(WHHT )i,j + ε

Guaranteed convergence to a local min
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Clustering Methods Non-negative Matrix Factorization (NMF)

NMF used in Clustering

Remember, we are looking at Am×n ≈Wm×r Hr×n

âj =
∑r

i=1 hi,jwi The coefficients in H are (approximately) the
coordinates of the data points with respect to the basis for the
feature space.
The standard method of clustering using the NMF is done by
setting r = k , where k is the number of clusters desired.
The clustering is then computed by associating document i with
cluster j if the j th element in column i of H is the maximum entry in
that column.
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NMF as a preprocessor with K-Means

NMF preprocessing

The coefficients in H are (approximately) the coordinates of the
data points with respect to the basis for the feature space.
Thus we can treate H as a “new” TBD, in which the “terms” are
really the columns of W . We call W the “feature basis”, as it has
picked out features to be the new terms in H.
Now we can cluster H. There is no restriction on the r we choose
for the NMF, but observation has shown that r ≈ 3k works well.
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Results

Benchmark Document Sets

Used Medline, Cranfield, Cisi datasets, with 1033, 1460, and 1398
documents respectively
Combined the three document sets into one overall set, and then
clustered with k = 3 to try to recover the original separated sets
The metric for determining cluster quality was an accuracy metric∑k

i=1
#correctly clustered

total# - can think of as a percent correct
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Results

Results

Each were run 200 times

Table: Results of k-means, and nmf preprocessing to k-means

k-means nmf r = 6 r = 9 r = 12
min. acc. 0.586 0.465 0.493 0.498 0.523
max acc. 0.886 0.957 0.962 0.965 0.965
avg. acc. 0.727 0.623 0.766 0.771 0.755
var. acc. 0.0077 0.0055 0.0269 0.0285 0.0251
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Results

Results continued

Figure: Methods of clustering with means and 95% confidence intervals

k−means nmf r=6 r=9 r=12
0.6

0.65

0.7

0.75

0.8
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Concluding Remarks

Concluding Remarks

K-means and NMF work well on their own, but work better
together
NMF has already been used for preprocessing in information
retrieval
Further areas of research:

Apply this method to other areas aside from document clustering
Try other clustering algorithms along with NMF preprocessing
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