
Introduction
From vectors to similarity

The Running Example
Clustering Similarity Matrices

Clustering the Running Example
Results from another data set

A Comparison of Methods for Creating
Similarity Matrices

Carl D. Meyer
Charles D. Wessel

North Carolina State University

34th SIAM Southeastern-Atlantic Section Conference
March 21, 2010

Carl D. Meyer Charles D. Wessel A Comparison of Methods for Creating Similarity Matrices



Introduction
From vectors to similarity

The Running Example
Clustering Similarity Matrices

Clustering the Running Example
Results from another data set

1 Introduction

2 From vectors to similarity

3 The Running Example

4 Clustering Similarity Matrices

5 Clustering the Running Example

6 Results from another data set

Carl D. Meyer Charles D. Wessel A Comparison of Methods for Creating Similarity Matrices



Introduction
From vectors to similarity

The Running Example
Clustering Similarity Matrices

Clustering the Running Example
Results from another data set

The Big Idea

When clustering a data set with a particular algorithm it is
important that

we have an idea of what we mean by similarity.

the algorithm used meshes with this idea.

the similarity measure is appropriate for the data being
clustered.
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What is a cluster?

A group of objects from a data set

Examples of objects: text documents, visual images,
medical samples, movies, movie critics, voting precincts

Grouped objects are similar in some way

Ungrouped objects are dissimilar in some way

The notion of similarity is very important
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The Fundamental Theorem of Applied Mathematics

Nothing works.
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The Fundamental Theorem of Cluster Analysis

Theorem. There is no best clustering method, that is, one
which is superior to all other methods for solving all problems in
a particular class of problems.

Paraphrased from Introduction to Clustering Large and
High-Dimensional Data by Jacob Kogan, p. xiv, (2007).
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Corollary

Corollary. Those who believe, or claim, that their method is the
best suffer from ignorance and/or arrogance

Paraphrased from Introduction to Clustering Large and
High-Dimensional Data by Jacob Kogan, p. xiv, (2007).
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Starting Point

A data set where each element is described by a vector of
numerical attributes. Some examples:

Element Attributes
Movie Ratings by Netflix Customers

Netflix Customer Movie Ratings
Cancer Patient Gene Expression Levels

Iris Flower Petal and Sepal Measurements
Voting District Vote Counts for Candidates

Scotch Flavor Ratings
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Notation and a Goal

For this presentation

A vector data set with n elements each having m attributes
will be represented the m × n matrix A (i.e. the elements
are stored as columns in matrix A).

Our goal will be to transform A into an n × n matrix S
where Sij gives some measure of the similarity between
element A∗i and element A∗j .
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Measures of similarity between two vectors

Euclidean distance

1-norm

∞-norm

Cosine measure

Gabriel graph

A measure derived from a consensus matrix

Other ideas: Delaunay triangulation, Hamming distance or
variation, a new measure you develop
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For Comparison’s Sake

To make comparison of two similarity matrices easier, I will use
the convention that all similarity values lie in the interval [0,1].

Cosine and Gabriel measures meet this criteria.

For a norm, I will use the function e−
||A∗i−A∗j ||

2

2σ2 .

This is a standard approach to this problem.

The σ is a parameter, which can be varied depending on
your desire to "spread" similarity values across [0,1].

In this presentation σ is the sample standard deviation.
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Why do this?

Conceptually, you like thinking of the data in a "graph-like"
way.

You have powerful graph partitioning software at your
disposal.

You are a fan of spectral clustering.

You need a similarity matrix for the new clustering method
you’re developing for your Ph.D. thesis.
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Running Example

A =



3562 3034 2992 2730 2503 2499
2165 2246 2062 1859 2174 1276
4256 4189 3283 2876 2873 2356

746 724 523 488 506 421
135 295 140 72 136 47
160 117 660 511 714 376

1314 1938 1903 1860 2213 1330
198 897 338 89 123 128

1566 1249 1464 1708 2062 849


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Running Example

A =



Rose Cobb Mays Ott Ruth Fisk
G 3562 3034 2992 2730 2503 2499
R 2165 2246 2062 1859 2174 1276
H 4256 4189 3283 2876 2873 2356
2B 746 724 523 488 506 421
3B 135 295 140 72 136 47
HR 160 117 660 511 714 376
RBI 1314 1938 1903 1860 2213 1330
SB 198 897 338 89 123 128
BB 1566 1249 1464 1708 2062 849


Elements - baseball players.
Attributes - lifetime totals for nine statistics.
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A Sample Similarity Matrix

Sij = e−
||A∗i−A∗j ||

2
2

2σ2



Rose Cobb Mays Ott Ruth Fisk
Rose 1.0000 0.4294 0.2787 0.1229 0.0546 0.0174
Cobb 0.4294 1.0000 0.3579 0.1328 0.0848 0.0209
Mays 0.2787 0.3579 1.0000 0.7570 0.5478 0.1871
Ott 0.1229 0.1328 0.7570 1.0000 0.7469 0.3285
Ruth 0.0546 0.0848 0.5478 0.7469 1.0000 0.1051
Fisk 0.0174 0.0209 0.1871 0.3285 0.1051 1.0000


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A Sample Similarity Matrix

Sij = e−
||A∗i−A∗j ||

2
1

2σ2



Rose Cobb Mays Ott Ruth Fisk
Rose 1.0000 0.4056 0.2380 0.1084 0.0447 0.0202
Cobb 0.4056 1.0000 0.3239 0.0848 0.0424 0.0074
Mays 0.2380 0.3239 1.0000 0.6804 0.5056 0.0973
Ott 0.1084 0.0848 0.6804 1.0000 0.7083 0.2869
Ruth 0.0447 0.0424 0.5056 0.7083 1.0000 0.1031
Fisk 0.0202 0.0074 0.0973 0.2869 0.1031 1.0000


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A Sample Similarity Matrix

Sij =
A∗i ·A∗j

||A∗i ||2||A∗j ||2



Rose Cobb Mays Ott Ruth Fisk
Rose 1.0000 0.9838 0.9816 0.9743 0.9480 0.9836
Cobb 0.9838 1.0000 0.9837 0.9703 0.9533 0.9762
Mays 0.9816 0.9837 1.0000 0.9956 0.9848 0.9928
Ott 0.9743 0.9703 0.9956 1.0000 0.9935 0.9866
Ruth 0.9480 0.9533 0.9848 0.9935 1.0000 0.9639
Fisk 0.9836 0.9762 0.9928 0.9866 0.9639 1.0000


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A Sample Similarity Matrix

Gabriel graph



Rose Cobb Mays Ott Ruth Fisk
Rose 0 1 1 0 0 0
Cobb 1 0 1 0 0 0
Mays 1 1 0 1 0 0
Ott 0 0 1 0 1 1
Ruth 0 0 0 1 0 0
Fisk 0 0 0 1 0 0


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A Sample Similarity Matrix

Consensus matrix built from 100 runs of the NMF algorithm



Rose Cobb Mays Ott Ruth Fisk
Rose 1.0000 0.9800 0.3100 0.1300 0.0300 0.7300
Cobb 0.9800 1.0000 0.3300 0.1500 0.0500 0.7500
Mays 0.3100 0.3300 1.0000 0.8200 0.7200 0.5800
Ott 0.1300 0.1500 0.8200 1.0000 0.9000 0.4000
Ruth 0.0300 0.0500 0.7200 0.9000 1.0000 0.3000
Fisk 0.7300 0.7500 0.5800 0.4000 0.3000 1.0000


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The Fiedler Method

A spectral method

Operates on the Laplacian matrix L = D− S

D = diag(Se)
L has row sums of zero

L is symmetric, positive semi-definite→ its eigenvalues
are real and non-negative
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The Fiedler Method continued

λ1 = 0 and λ2 > 0

Two clusters are formed based on the signs of the entries
in v2, the eigenvector associated with λ2



v2

0.2548
0.2034
−0.1414
−0.2093
−0.1905

0.6077


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The Fiedler Method continued

λ1 = 0 and λ2 > 0

Two clusters are formed based on the signs of the entries
in v2, the eigenvector associated with λ2



v2

0.2548
0.2034
−0.1414
−0.2093
−0.1905

0.6077


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Fiedler with more than two clusters

Remove from S the rows and columns associated with one
cluster. Apply the Fiedler method to the remaining matrix.
Use the sign patterns of additional eigenvectors to assign
clusters. For example, the entries in v2 and v3 can be used
to find up to four clusters.



v2 v3

0.5061 0.2548
0.4799 0.2034
0.0687 −0.1414
−0.2093 −0.2660
−0.1905 −0.6585
−0.6548 0.6077


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Clustering the Running Example

Results from applying the Fiedler method to seven different
similarity matrices

{Rose, Cobb, Mays}, {Ott, Ruth, Fisk} - clustering when
1-norm, 2-norm, and Gabriel graph similarity matrices are
used

{Rose, Cobb}, {Mays, Ott, Ruth, Fisk} -clustering when
∞-norm and k -means consensus similarity matrices are
used

{Rose, Cobb, Fisk}, {Mays, Ott, Ruth} - clustering when
cosine similarity and NMF consensus matrices are used
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A North Carolina election data set

All state-wide elections in North Carolina from 1992 to
2008

Raw vote totals for each candidate in each county

16 races (5 presidential, 5 gubernatorial, and 6 U.S.
Senate)

66 candidates

Source: North Carolina Department of Elections
(http://www.sboe.state.nc.us/content.aspx?id=69)
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Results

Goal: Cluster counties with similar voting behavior

Created seven similarity matrices, using the same seven
measures used on the Running Example

1-norm, 2-norm,∞-norm, cosine measure, Gabriel graph,
k -means consensus, NMF consensus

Clustered using one Fiedler vector
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2-norm similarity matrix
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Cosine similarity matrix
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NMF consensus similarity matrix
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The Big Idea, revisited

When clustering a data set with a particular algorithm it is
important that

we have an idea of what we mean by similarity.
the algorithm used meshes with this idea.
the similarity measure is appropriate for the data being
clustered.

Question: Why did using the 2-norm similarity matrix result in
such a different clustering?
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Conclusion

Lesson for the day:

Measurements of similarity are not necessarily similar to
each other.

When clustering, consider multiple notions of similarity.

Consider how your data when choosing a similarity
measure.
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