
Updating

PageRank

Amy Langville

Carl Meyer

Department of Mathematics
North Carolina State University
Raleigh, NC SCCM 11/17/2003

Google
Indexing

• Must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)

Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
.
.
.

Ranking

• Determine a “PageRank” for each page Pi, Pj, Pk, Pl, . . .
Query independent — Based only on link structure

• Query matching

Q = Term1, T erm2, . . . produces Pi, Pj, Pk, Pl, . . .

• Return Pi, Pj, Pk, Pl, . . . to user in order of PageRank

Google’s PageRank Idea
(Sergey Brin & Lawrence Page 1998)

• Rankings are not query dependent

Depend only on link structure

Off-line calculations

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

One link to P from Yahoo! is important

Many links to P from me is not

• Yahoo! points many places — value of link to P is diluted

PageRank
The Definition

r(P) =
∑

P∈BP

r(P)

|P |

BP = {all pages pointing to P}

|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P)

|P |

r2(Pi) =
∑

P∈BPi

r1(P)

|P |

.
.
.

rj+1(Pi) =
∑

P∈BPi

rj(P)

|P |

In Matrix Notation

After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

πT
j+1

= πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

It’s A Markov Chain

P =
[
pij

]
is a stochastic matrix (row sums = 1)

Each πT
j is a probability distribution vector

(∑
i
rj(Pi)=1

)

πT
j+1

= πT
j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = stationary probability distribution

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on)

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Replace P by P̃ = αP + (1 − α)E eij = 1/n α ≈ .85

Different E = evT and α allow customization & speedup

Computing πT

A Big Problem

Solve πT = πTP (stationary distribution vector)

πT (I − P) = 0 (too big for direct solves)

Computing πT

A Big Problem

Solve πT = πTP (stationary distribution vector)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0

= e/n and iterate πT
j+1

= πT
j P (power method)

Computing πT

A Big Problem

Solve πT = πTP (stationary distribution vector)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0

= e/n and iterate πT
j+1

= πT
j P (power method)

A Bigger Problem — Updating

Link structure of web is extremely dynamic

Links on CNN change frequently

Links are added and deleted almost continuously

Google says just start from scratch every 3 to 4 weeks

Old results don’t help to restart

The Updating Problem

Given: Original chain’s P and πT

and new chain’s P̃

Find: new chain’s π̃
T

Idea behind Aggregation
Best for NCD systems (Simon and Ando (1960s), Courtois (1970s))

C 1

C 1

2C

C 3

C 3

2C C 3

2C

C 1

ξ1 ξ2 ξ3~~

i ja = Π P eji
Τ

ξ1 ξ2 ξ3
ξ

Τ
=

C 1 C C2 3

Π

Π

τ

Τ

Π
Τ

Π
Τ

Π
Τ

Π
Τ

A =

P =

Pro
exploits structure to reduce work

Con
produces an approximation, quality is dependent on degree

of coupling

Iterative Aggregation

• Problem: repeated aggregation leads to fixed point.

• Solution: Do a power step to move off fixed point.

• Do this iteratively. Approximations improve and approach
exact solution.

• Success with NCD systems, not in general.

Π
T
Π

T
Π T

Π
T

Π
T

Π
T

Input: approximation to

get censored distributions

get coupling constants

Output: move off fixed point with power step

Output: get approximate global stationary distribution

Π

Π

T

T

ξ i

= ξ ξ ξ
1 2 3

Exact Aggregation
(Meyer 1989)

C 1

C 3

2C C 3

2C

C 1

ξ1 ξ2 ξ3

i ja = P eji
Τ

ξ1 ξ2 ξ3
ξ

Τ
=

C 1 C C2 3

Π
Τ

Τ Τ Τ

A =

P =

s i

s = censored (stat.) dist. of

 stochastic complement
i
T

Si

S = P + P (I - P) Pi i i i i* * *

-1

For 2-level partition,

S = P + P (I - P) P11 11 1

-1

2 22 2

s s 321s=

Pro
only one step needed to produce exact global vector

Con
SC matrices Si are very expensive to compute

Back to Updating . . .

P =

C 1

C 2

C 3

C g-1

C g

C g+1

A =

C 1

C 1

C 2

C 2

C 3

C 3

C g-1

C g-1

C g

C g

C g+1

C g+1

Aggregation
Partitioned Matrix

Pn×n =

(G G
G P11 P12

G P21 P22

)
=

p11
. . . p1g rT

1

.

.

.
.
.
.

.

.

.
.
.
.

pg1
. . . pgg rT

g

c1
. . . cg P22

πT = (π1, . . .πg |πg+1, . . ., πn)

Advantages of this Partition

p11
. . .pgg are 1 × 1 =⇒ Stochastic complements = 1

=⇒ censored distributions = 1

Only one significant complement S2 = P22 + P21(I − P11)−1P12

Only one significant censored dist sT
2
S2 = sT

2

A/D Theorem =⇒ sT
2

= (πg+1, . . ., πn)/
∑n

i=g+1
πi

Aggregation Matrix

A =

p11
. . . p1g rT

1
e

.

.

.
.
.
.

.

.

.
.
.
.

pg1
. . . pgg rT

g e

sT
2
c1

. . . sT
2
cg sT

2
P22e

(g+1)×(g+1)

=

[
P11 P12e

sT
2
P21 1 − sT

2
P21e

]

The Aggregation/Disaggregation Theorem

If αT = (α1, . . ., αg, αg+1) = stationary dist for A

Then πT =
(
α1, . . ., αg |αg+1sT

2

)
= stationary dist for P

Trouble! Always A Big Problem

G small ⇒ G big ⇒ S2 = P22 + P21(I − P11)−1P12 large

G big ⇒ A large

Approximate Aggregation
Assumption

Updating involves relatively few states

G small ⇒ A =

[
P11 P12e

sT
2
P21 1 − sT

2
P21e

]

(g+1)×(g+1)

small

Approximation (πg+1, . . ., πn) ≈ (φg+1, . . ., φn),

where φT
is old PageRank vector and πT

is new, updated PageRank

sT
2

=
(πg+1, . . ., πn)∑n

i=g+1
πi

≈
(φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

(avoids computing s̃T
2

for large S2)

A ≈ Ã =

[
P11 P12e

s̃T
2
P21 1 − s̃T

2
P21e

]

αT ≈ α̃
T =

(
α̃1, . . ., α̃g, α̃g+1

)

πT ≈ π̃
T =

(
α̃1, . . ., α̃g | α̃g+1s̃T

2

)
(not bad)

Iterative Aggregation

Improve By Successive Aggregation / Disaggregation?

NO

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution

˜̃πT = π̃
TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Approximate A/D step generates approximation π̃
T

Smooth the result ˜̃πT = π̃
TP

Use ˜̃πT as input to another approximate aggregation step
.
.
.

How to Partition for Updating Problem?

Intuition

• There are some bad states (G) and some good states (G).

• Give more attention to bad states. Each state in G forms

a partitioning level. Much progress toward correct

PageRank is made during aggregation step.

• Lump good states in G into 1 superstate. Progress

toward correct PageRank is made during smoothing

step (power iteration).

Definitions for “Good” and “Bad”

1. Good = states least likely to have πi change

Bad = states most likely to have πi change

2. Good = states with smallest πi after k transient steps

Bad = states “nearby”, with largest πi after k transient steps

3. Good = smallest πi from old PageRank vector

Bad = largest πi from old PageRank vector

4. Good = fast–converging states

Bad = slow–converging states

Determining “Fast” and “Slow”
Consider power method and its rate of convergence

πT
k+1

= πT
k P = πT

k eπT + λk
2
πT

k x2yT
2

+ λk
3
πT

k x3yT
3

+ . . . + λk
nπ

T
k xnyT

n

Asymptotic rate of convergence is rate at which λk
2
→ 0

Consider convergence of elements

Some states converge to stationary value faster than λ2–rate,
due to LH e–vector yT

2
.

Partitioning Rule

Put states with largest |yT
2
|i values in bad group G, where

they receive more individual attention in aggregation method.

Practicality

yT
2

expensive, but for PageRank problem, Kamvar et al. show

states with large πi are slow-converging. ⇒ inexpensive soln =
use old πT to determine G. (adaptively approximate yT

2
)

Power law for PageRank
Scale-free Model of Web network creates power laws

(Kamvar, Barabasi, Raghavan)

Convergence
Theorem

Always converges to stationary dist πT for P

Converges for all partitions S = G ∪ G

Rate of convergence is rate at which Sn
2

converges

S2 = P22+P21(I−P11)−1P12

Dictated by Jordan structure of λ2(S2)

λ2(S2) simple =⇒ πT
k → πT at the rate at which λn

2
→ 0

The Game

Goal now is to find a relatively small G that minimizes λ2(S2)

Experiments

Test Networks From Crawl Of Web (Supplied by Ronny Lempel)

Censorship (Sites concerning “censorship on the net”)

562 nodes 736 links

Movies (Sites concerning “movies”)

451 nodes 713 links

MathWorks (Supplied by Cleve Moler)

517 nodes 13,531 links

Abortion (Sites concerning “abortion”)

1,693 nodes 4,325 links

Genetics (Sites concerning “genetics”)

2,952 nodes 6,485 links

Parameters

Number Of Nodes (States) Added

3

Number Of Nodes (States) Removed

5

Number Of Links Added (Different values have little effect on results)

10

Number Of Links Removed

20

Stopping Criterion

1-norm of residual < 10
−10

Censorship

Power Method Iterative Aggregation

Iterations Time

38 1.40

|G| Iterations Time

5 38 1.68

10 38 1.66

15 38 1.56

20 20 1.06

25 20 1.05

50 10 .69

100 8 .55

300 6 .65

400 5 .70

nodes = 562 links = 736

Censorship

Power Method Iterative Aggregation

Iterations Time

38 1.40

|G| Iterations Time

5 38 1.68

10 38 1.66

15 38 1.56

20 20 1.06

25 20 1.05

50 10 .69

100 8 .55

200 6 .53

300 6 .65

400 5 .70

nodes = 562 links = 736

Movies

Power Method Iterative Aggregation

Iterations Time

17 .40

|G| Iterations Time

5 12 .39

10 12 .37

15 11 .36

20 11 .35

100 9 .33

200 8 .35

300 7 .39

400 6 .47

nodes = 451 links = 713

Movies

Power Method Iterative Aggregation

Iterations Time

17 .40

|G| Iterations Time

5 12 .39

10 12 .37

15 11 .36

20 11 .35

25 11 .31

50 9 .31

100 9 .33

200 8 .35

300 7 .39

400 6 .47

nodes = 451 links = 713

MathWorks

Power Method Iterative Aggregation

Iterations Time

54 1.25

|G| Iterations Time

5 53 1.18

10 52 1.29

15 52 1.23

20 42 1.05

25 20 1.13

300 11 .83

400 10 1.01

nodes = 517 links = 13,531

MathWorks

Power Method Iterative Aggregation

Iterations Time

54 1.25

|G| Iterations Time

5 53 1.18

10 52 1.29

15 52 1.23

20 42 1.05

25 20 1.13

50 18 .70

100 16 .70

200 13 .70

300 11 .83

400 10 1.01

nodes = 517 links = 13,531

Abortion

Power Method Iterative Aggregation

Iterations Time

106 37.08

|G| Iterations Time

5 109 38.56

10 105 36.02

15 107 38.05

20 107 38.45

25 97 34.81

50 53 18.80

250 12 5.62

500 6 5.21

750 5 10.22

1000 5 14.61

nodes = 1,693 links = 4,325

Abortion

Power Method Iterative Aggregation

Iterations Time

106 37.08

|G| Iterations Time

5 109 38.56

10 105 36.02

15 107 38.05

20 107 38.45

25 97 34.81

50 53 18.80

100 13 5.18

250 12 5.62

500 6 5.21

750 5 10.22

1000 5 14.61

nodes = 1,693 links = 4,325

Genetics

Power Method Iterative Aggregation

Iterations Time

92 91.78

|G| Iterations Time

5 91 88.22

10 92 92.12

20 71 72.53

50 25 25.42

100 19 20.72

250 13 14.97

1000 5 17.76

1500 5 31.84

nodes = 2,952 links = 6,485

Genetics

Power Method Iterative Aggregation

Iterations Time

92 91.78

|G| Iterations Time

5 91 88.22

10 92 92.12

20 71 72.53

50 25 25.42

100 19 20.72

250 13 14.97

500 7 11.14

1000 5 17.76

1500 5 31.84

nodes = 2,952 links = 6,485

Conclusions
First updating algorithm to handle both element– and state–updates.

Algorithm is very sensitive to partition.

For PageRank problem, partition can be determined cheaply from old
PageRanks.

For general Markov updating, use yT
2

to determine partition. When
too expensive, approximate adaptively with Aitken’s δ2 or difference of
successive iterates.

Improvements
Practical

Optimize G-set
Accelerate Smoothing

Theoretical
Relationship between partitioning by yT

2
and λ2(S2)

not well-understood.

Predict algorithm and partitioning by old πT will work very well on
other scale-free networks.

