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Change some transition probabilities

Add or delete some states

— Pn×n new transition matrix (irreducible)

— πT = (π1, π2, . . ., πn) new distribution (unknown)

Aim

Use φT to compute πT
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Not Practical For Large Problems



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)

— Requires m = n (no states added or deleted)



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|
Need about 1/R iterations to eventually gain one
additional significant digit of accuracy



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|
Need about 1/R iterations to eventually gain one
additional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|
Need about 1/R iterations to eventually gain one
additional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy

� RPM — about 11/R iterations

� Start from scratch — about 12/R iterations



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|
Need about 1/R iterations to eventually gain one
additional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy

� RPM — about 11/R iterations

� Start from scratch — about 12/R iterations

� Only 8.3% reduction



Restarted Power Method
xT

j+1 = xT
j P with xT

0 = φT
(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|
Need about 1/R iterations to eventually gain one
additional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy

� RPM — about 11/R iterations

� Start from scratch — about 12/R iterations

� Only 8.3% reduction

A Little Better, But Not Great
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Censored Chains

Records state of process only when chain visits states in Gi.

Visits to states outside of Gi are ignored.

Censored Transition Matrices

Ci = Pii + Pi�(I − P�
i )
−1P�i Stochastic Complements
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Aggregated Distribution

αTA = αT αT = (α1, α2, . . ., αk)

Aggregation Theorem

πT = (πT
1 |πT

2 | . . . |πT
k ) = (α1sT
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Partitioning
Intuition

Update relatively small number of states in large sparse chain

— Effects are primarily local

— Most stationary probabilities not significantly affected.

State Space Partition

S = G ∪ G G =
{

states likely to be most affected
newly added states

— g = |G| << |G|

Induced Matrix Partition

Pn×n =

( G G
G P11 P12

G P21 P22

)
=

⎡
⎢⎢⎢⎣

p11
. . . p1g P1�

...
...

...
pg1

. . . pgg Pg�

P�1
. . . P�g P22

⎤
⎥⎥⎥⎦
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Iterate ? No! — At A Fixed Point
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sT ← φ
T
/(φ

T
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A ←
[

P11 P12e
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αT ←
(
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)
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ψT ← πTP (Also makes progress toward convergence when aperiodic)

If ‖ψT − χT‖ < τ then quit — else

sT ←− ψT/(ψTe)

−−→

Theorem
If C = P22 + P21(I − P11)−1P12 is aperiodic, then convergent for
all partitions S = G ∪ G

— |λ2(C)| determines rate of convergence
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Google’s PageRank
Random Walk On WWW Link Structure

Hij =
{

1/(total # outlinks from page Pi) if Pi → Pj,

0 otherwise

Google Matrix

P = α(H + E) + (1 − α)F

— (H + E) & F are stochastic rank (E) = rank (F) = 1

— 0 < α < 1

— PageRank = πT

Power Law Distribution

If ordered by magnitude π(1) ≥ π(2) ≥ . . . ≥ π(n), then

— π(i) ≈ αi−k for k ≈ 2.109
[Donato, Laura, Leonardi, 2002]

[Pandurangan, Raghavan,& Upfal, 2004]

— Relatively few large states (i.e., important sites)



“L” Curves
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Experiments

The Updates

# Nodes Added = 3

# Nodes Removed = 50

# Links Added = 10 (Different values have little effect on results)

# Links Removed = 20

Stopping Criterion

1-norm of residual < 10−10



Movies

Power Method Iterative Aggregation

Iterations Time

17 .40

|G| Iterations Time

5 12 .39
10 12 .37
15 11 .36
20 11 .35
25 11 .31
50 9 .31
100 9 .33
200 8 .35
300 7 .39
400 6 .47

nodes = 451 links = 713



Censorship

Power Method Iterative Aggregation

Iterations Time

38 1.40

|G| Iterations Time

5 38 1.68
10 38 1.66
15 38 1.56
20 20 1.06
25 20 1.05
50 10 .69
100 8 .55
200 6 .53
300 6 .65
400 5 .70

nodes = 562 links = 736



MathWorks

Power Method Iterative Aggregation

Iterations Time

54 1.25

|G| Iterations Time

5 53 1.18
10 52 1.29
15 52 1.23
20 42 1.05
25 20 1.13
50 18 .70
100 16 .70
200 13 .70
300 11 .83
400 10 1.01

nodes = 517 links = 13,531



Abortion

Power Method Iterative Aggregation

Iterations Time

106 37.08

|G| Iterations Time

5 109 38.56
10 105 36.02
15 107 38.05
20 107 38.45
25 97 34.81
50 53 18.80
100 13 5.18
250 12 5.62
500 6 5.21
750 5 10.22
1000 5 14.61

nodes = 1,693 links = 4,325



Genetics

Power Method Iterative Aggregation

Iterations Time

92 91.78

|G| Iterations Time

5 91 88.22
10 92 92.12
20 71 72.53
50 25 25.42
100 19 20.72
250 13 14.97
500 7 11.14
1000 5 17.76
1500 5 31.84

nodes = 2,952 links = 6,485



California

Power Method Iterative Aggregation

Iterations Time

176 5.85

|G| Iterations Time

500 19 1.12
1000 15 .92
1250 20 1.04
1500 14 .90
2000 13 1.17
5000 6 1.25

nodes = 9,664 links = 16,150
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Quadratic Extrapolation
nodes = 10,000 links = 101,118 [Kamvar, Haveliwala, Manning, Golub, 2003]
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Quadratic Extrapolation
nodes = 10,000 links = 101,118 [Kamvar, Haveliwala, Manning, Golub, 2003]
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Timings

Iterations Time (sec) |G|

Power 162 9.69

Power+Quad 81 5.93

IAD 21 2.22 2000

IAD+Quad 16 1.85 2000

nodes = 10,000 links = 101,118



Conclusion

Iterative aggregation shows

promise for updating

Markov chains

Especially for those having

power law distributions



LevelingOffPoint
π(i) ≈ αi−k

∣∣∣∣dπ(i)
di

∣∣∣∣ ≈ ε for some user-defined tolerance ε

ilevel ≈
(

kα

ε

)1/k+1

Perhaps better: ilevel ≈ f (n)
(

kα

ε

)1/k+1

For WWW: gopt ≈ f (n)
[
2.109α

ε

]1/3.109


