

Updating Markov Chains

Carl Meyer Amy Langville

Department of Mathematics North Carolina State University Raleigh, NC

A. A. Markov Anniversary Meeting June 13, 2006

Intro

Assumptions

Very large irreducible chain

- $m = O(10^9)$
- $\mathbf{Q}_{m \times m}$
- $\phi^T = (\phi_1, \phi_2, ..., \phi_m)$

number of states old transition matrix old stationary distribution

Intro

Assumptions

Very large irreducible chain

- $m = O(10^9)$
- $\mathbf{Q}_{m \times m}$

 $- \phi^T = (\phi_1, \phi_2, \dots, \phi_m)$

number of states old transition matrix old stationary distribution

Updates

Change some transition probabilities

Add or delete some states

- $\mathbf{P}_{n \times n}$ new transition matrix (irreducible)- $\pi^T = (\pi_1, \pi_2, \dots, \pi_n)$ new distribution (unknown)

Intro

Assumptions

Very large irreducible chain

- $m = O(10^9)$
- $\mathbf{Q}_{m \times m}$

 $- \phi^T = (\phi_1, \phi_2, \dots, \phi_m)$

number of states old transition matrix old stationary distribution

Updates

Change some transition probabilities

Add or delete some states

- $\mathbf{P}_{n \times n}$ new transition matrix (irreducible)- $\pi^T = (\pi_1, \pi_2, \dots, \pi_n)$ new distribution (unknown)

Aim

Use ϕ^T to compute π^T

Exact (Theoretical) Updating

Perturbation Formula

 $\mathbf{P} = \mathbf{Q} - \mathbf{E} \implies \pi^T = \phi^T - \epsilon^T$

Exact (Theoretical) Updating

Perturbation Formula

 $\mathbf{P} = \mathbf{Q} - \mathbf{E} \implies \pi^T = \phi^T - \epsilon^T \qquad \epsilon^T = \phi^T \mathbf{E} \mathbf{Z} (\mathbf{I} + \mathbf{E} \mathbf{Z})^{-1}$

 $\mathbf{Z} = \begin{cases} \text{Fundamental Matrix} \\ (\mathbf{I} - \mathbf{Q})^{\text{#}} & \text{(group inverse)} \end{cases}$

Exact (Theoretical) Updating

Perturbation Formula

 $\mathbf{P} = \mathbf{Q} - \mathbf{E} \implies \pi^T = \phi^T - \epsilon^T \qquad \epsilon^T = \phi^T \mathbf{E} \mathbf{Z} (\mathbf{I} + \mathbf{E} \mathbf{Z})^{-1}$

Requires m = n (No states added or deleted)

 $\mathbf{Z} = \begin{cases} \text{Fundamental Matrix} \\ (\mathbf{I} - \mathbf{Q})^{\text{#}} \\ \text{(group inverse)} \end{cases}$

Exact (Theoretical) Updating Perturbation Formula $P = Q - E \implies \pi^{T} = \phi^{T} - \epsilon^{T} \qquad \epsilon^{T} = \phi^{T} EZ(I + EZ)^{-1}$ $Requires m = n \qquad (No states added or deleted) \qquad Z = \begin{cases} Fundamental Matrix \\ (I - Q)^{\#} \qquad (group inverse) \end{cases}$

 $\mathbf{p}_i^T = \mathbf{q}_i^T - \boldsymbol{\delta}_i^T \implies \pi^T = \boldsymbol{\phi}^T - \boldsymbol{\epsilon}^T$

One Row At A Time (Sherman–Morrison)

$\begin{array}{l} \hline \textbf{Exact (Theoretical) Updating} \\ \hline \textbf{Perturbation Formula} \\ \textbf{P} = \textbf{Q} - \textbf{E} \implies \pi^{T} = \phi^{T} - \epsilon^{T} \qquad \epsilon^{T} = \phi^{T} \textbf{EZ}(\textbf{I} + \textbf{EZ})^{-1} \\ \hline \textbf{Requires } m = n \qquad (No states added or deleted) \qquad \textbf{Z} = \begin{cases} Fundamental Matrix \\ (\textbf{I} - \textbf{Q})^{\#} \qquad (group inverse) \end{cases}$

One Row At A Time (Sherman-Morrison)

 $\mathbf{p}_i^T = \mathbf{q}_i^T - \boldsymbol{\delta}_i^T \implies \pi^T = \boldsymbol{\phi}^T - \boldsymbol{\epsilon}^T$

$$\boldsymbol{\epsilon}^{T} = \left(\frac{\phi_{i}}{\mathbf{1} + \boldsymbol{\delta}_{i}^{T} \mathbf{A}_{*i}^{\#}}\right) \boldsymbol{\delta}^{T} \mathbf{A}^{\#} \qquad \mathbf{A}^{\#} = (\mathbf{I} - \mathbf{Q})^{\#}$$

$\begin{array}{l} \hline \bullet & \ \bullet & \ \hline \bullet & \ \hline \bullet & \ \hline \bullet & \ \hline \bullet & \ \bullet & \ \hline \bullet & \ \hline \bullet & \ \bullet$

One Row At A Time (Sherman-Morrison)

 $\mathbf{p}_i^T = \mathbf{q}_i^T - \boldsymbol{\delta}_i^T \implies \pi^T = \boldsymbol{\phi}^T - \boldsymbol{\epsilon}^T$

$$\boldsymbol{\epsilon}^{T} = \left(\frac{\phi_{i}}{1 + \boldsymbol{\delta}_{i}^{T} \mathbf{A}_{*i}^{\#}}\right) \boldsymbol{\delta}^{T} \mathbf{A}^{\#} \qquad \mathbf{A}^{\#} = (\mathbf{I} - \mathbf{Q})^{\#}$$

 $(\mathbf{I} - \mathbf{P})^{\#} = \mathbf{A}^{\#} + \mathbf{e}\epsilon^{T} \left[\mathbf{A}^{\#} - \gamma \mathbf{I}\right] - \frac{\mathbf{A}_{*i}^{\#}\epsilon^{T}}{\phi_{i}} \qquad \gamma = \frac{\epsilon^{T}\mathbf{A}_{*i}^{\#}}{\phi_{i}}$

$$Fruction Formula$$

$$P = Q - E \implies \pi^{T} = \phi^{T} - \epsilon^{T} \qquad \epsilon^{T} = \phi^{T} EZ(I + EZ)^{-1}$$

$$Requires m = n \quad (No \text{ states added or deleted}) \qquad Z = \begin{cases} Fundamental Matrix \\ (I - Q)^{\#} \quad (group inverse) \end{cases}$$
One Row At A Time (Sherman-Morrison)
$$p_{i}^{T} = q_{i}^{T} - \delta_{i}^{T} \implies \pi^{T} = \phi^{T} - \epsilon^{T}$$

$$\epsilon^{T} = \left(\frac{\phi_{i}}{1 + \delta_{i}^{T} A_{*i}^{\#}}\right) \delta^{T} A^{\#} \qquad A^{\#} = (I - Q)^{\#}$$

$$(I - P)^{\#} = A^{\#} + e\epsilon^{T} [A^{\#} - \gamma I] - \frac{A_{*i}^{\#} \epsilon^{T}}{\phi_{i}} \qquad \gamma = \frac{\epsilon^{T} A_{*i}^{\#}}{\phi_{i}}$$

Not Practical For Large Problems

 $\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$ with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

$$\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$$
 with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

- Requires m = n

(no states added or deleted)

 $\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$ with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

- Requires m = n (no states added or deleted)
- Requires $\phi^T \approx \pi^T$

(generally means $\mathbf{P} \approx \mathbf{Q}$)

 $\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$ with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

- Requires m = n(no states added or deleted)— Requires $\phi^T \approx \pi^T$ (generally means $\mathbf{P} \approx \mathbf{Q}$)
- Asymptotic rate of convergence: $R = -\log_{10} |\lambda_2|$

Need about 1/R iterations to eventually gain one additional significant digit of accuracy

$\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$ with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

- Requires m = n (no states added or deleted)
- Requires $\phi^T \approx \pi^T$ (generally means $\mathbf{P} \approx \mathbf{Q}$)
- Asymptotic rate of convergence: $R = -\log_{10} |\lambda_2|$

Need about 1/R iterations to eventually gain one additional significant digit of accuracy

Example:

▷ Suppose $digit_1(\phi^T) = digit_1(\pi^T)$

Want 12 digits of accuracy

$\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$ with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

- Requires m = n (no states added or deleted)
- Requires $\phi^T \approx \pi^T$ (generally means $\mathbf{P} \approx \mathbf{Q}$)
- Asymptotic rate of convergence: $R = -\log_{10} |\lambda_2|$

Need about 1/R iterations to eventually gain one additional significant digit of accuracy

Example:

- $\triangleright \text{ Suppose } digit_1(\phi^T) = digit_1(\pi^T)$
- ▷ Want 12 digits of accuracy
- \triangleright RPM about 11/R iterations
- > Start from scratch about 12/R iterations

$\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$ with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

- Requires m = n (no states added or deleted)
- Requires $\phi^T \approx \pi^T$ (generally means $\mathbf{P} \approx \mathbf{Q}$)
- Asymptotic rate of convergence: $R = -\log_{10} |\lambda_2|$

Need about 1/R iterations to eventually gain one additional significant digit of accuracy

Example:

- $\triangleright \text{ Suppose } digit_1(\phi^T) = digit_1(\pi^T)$
- Want 12 digits of accuracy
- \triangleright RPM about 11/R iterations
- \triangleright Start from scratch about 12/R iterations
- ▷ Only 8.3% reduction

 $\mathbf{x}_{j+1}^T = \mathbf{x}_j^T \mathbf{P}$ with $\mathbf{x}_0^T = \boldsymbol{\phi}^T$

(assume aperiodic)

- Requires m = n (no states added or deleted)
- Requires $\phi^T \approx \pi^T$ (generally means $\mathbf{P} \approx \mathbf{Q}$)
- Asymptotic rate of convergence: $R = -\log_{10} |\lambda_2|$

Need about 1/R iterations to eventually gain one additional significant digit of accuracy

Example:

- $\triangleright \text{ Suppose } digit_1(\phi^T) = digit_1(\pi^T)$
- ▷ Want 12 digits of accuracy
- \triangleright RPM about 11/R iterations
- \triangleright Start from scratch about 12/R iterations
- ▷ Only 8.3% reduction

A Little Better, But Not Great

~\$⊳

Censoring

Partition (not necessarily NCD)

$$\mathbf{P}_{n \times n} = \begin{array}{cccc} G_1 & G_2 & \cdots & G_k \\ G_1 \begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} & \cdots & \mathbf{P}_{1k} \\ \mathbf{P}_{21} & \mathbf{P}_{22} & \cdots & \mathbf{P}_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ G_k \begin{pmatrix} \mathbf{P}_{k1} & \mathbf{P}_{k2} & \cdots & \mathbf{P}_{kk} \end{pmatrix} \end{array}$$

~\$⊳

Censoring

Partition (not necessarily NCD)

Censored Chains

Records state of process only when chain visits states in G_i . Visits to states outside of G_i are ignored.

•\$⊧

Censoring

Partition (not necessarily NCD)

$$\mathbf{P}_{n \times n} = \begin{array}{cccc} G_1 & G_2 & \cdots & G_k \\ G_1 \begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} & \cdots & \mathbf{P}_{1k} \\ \mathbf{P}_{21} & \mathbf{P}_{22} & \cdots & \mathbf{P}_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ G_k \begin{pmatrix} \mathbf{P}_{k1} & \mathbf{P}_{k2} & \cdots & \mathbf{P}_{kk} \end{pmatrix} \end{array}$$

Censored Chains

Records state of process only when chain visits states in G_i .

Visits to states outside of G_i are ignored.

Censored Transition Matrices

 $\mathbf{C}_i = \mathbf{P}_{ii} + \mathbf{P}_{i\star} (\mathbf{I} - \mathbf{P}_i^{\star})^{-1} \mathbf{P}_{\star i}$

Stochastic Complements

Aggregation

Censored Distributions

$$\mathbf{S}_i^T \mathbf{C}_i = \mathbf{S}_i^T$$

~\$⊳

Aggregation

Censored Distributions

 $\mathbf{S}_i^T \mathbf{C}_i = \mathbf{S}_i^T$

Aggregation Matrix

$$\mathcal{A}_{k \times k} = \begin{bmatrix} \mathbf{s}_1^T \mathbf{P}_{11} \mathbf{e} & \cdots & \mathbf{s}_1^T \mathbf{P}_{1k} \mathbf{e} \\ \vdots & \ddots & \vdots \\ \mathbf{s}_k^T \mathbf{P}_{k1} \mathbf{e} & \cdots & \mathbf{s}_k^T \mathbf{P}_{kk} \mathbf{e} \end{bmatrix}$$

Aggregation

Censored Distributions

 $\mathbf{S}_i^T \mathbf{C}_i = \mathbf{S}_i^T$

Aggregation Matrix

$$\mathcal{A}_{k \times k} = \begin{bmatrix} \mathbf{s}_1^T \mathbf{P}_{11} \mathbf{e} & \cdots & \mathbf{s}_1^T \mathbf{P}_{1k} \mathbf{e} \\ \vdots & \ddots & \vdots \\ \mathbf{s}_k^T \mathbf{P}_{k1} \mathbf{e} & \cdots & \mathbf{s}_k^T \mathbf{P}_{kk} \mathbf{e} \end{bmatrix}$$

e = $\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

Aggregated Distribution

$$\boldsymbol{\alpha}^T \boldsymbol{\mathcal{A}} = \boldsymbol{\alpha}^T \qquad \boldsymbol{\alpha}^T = (\alpha_1, \alpha_2, \dots, \alpha_k)$$

Aggregation

Censored Distributions

 $\mathbf{S}_i^T \mathbf{C}_i = \mathbf{S}_i^T$

Aggregation Matrix

$$\mathcal{A}_{k \times k} = \begin{bmatrix} \mathbf{s}_{1}^{T} \mathbf{P}_{11} \mathbf{e} & \cdots & \mathbf{s}_{1}^{T} \mathbf{P}_{1k} \mathbf{e} \\ \vdots & \ddots & \vdots \\ \mathbf{s}_{k}^{T} \mathbf{P}_{k1} \mathbf{e} & \cdots & \mathbf{s}_{k}^{T} \mathbf{P}_{kk} \mathbf{e} \end{bmatrix} \qquad \mathbf{e} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Aggregated Distribution

$$\boldsymbol{\alpha}^T \boldsymbol{\mathcal{A}} = \boldsymbol{\alpha}^T \qquad \boldsymbol{\alpha}^T = (\alpha_1, \alpha_2, \dots, \alpha_k)$$

Aggregation Theorem

$$\boldsymbol{\pi}^{T} = (\boldsymbol{\pi}_{1}^{T} \mid \boldsymbol{\pi}_{2}^{T} \mid \cdots \mid \boldsymbol{\pi}_{k}^{T}) = (\boldsymbol{\alpha}_{1} \mathbf{S}_{1}^{T} \mid \boldsymbol{\alpha}_{2} \mathbf{S}_{2}^{T} \mid \cdots \mid \boldsymbol{\alpha}_{2} \mathbf{S}_{2}^{T})$$

Intuition

Update relatively small number of states in large sparse chain

- Effects are primarily local
- Most stationary probabilities not significantly affected.

Intuition

Update relatively small number of states in large sparse chain

- Effects are primarily local

Most stationary probabilities not significantly affected.

State Space Partition

 $S = G \cup \overline{G}$ $G = \begin{cases} \text{states likely to be most affected} \\ \text{newly added states} \end{cases}$

Intuition

Update relatively small number of states in large sparse chain

- Effects are primarily local
- Most stationary probabilities not significantly affected.

State Space Partition

 $S = G \cup \overline{G}$ $G = \begin{cases} \text{states likely to be most affected} \\ \text{newly added states} \end{cases}$ $- g = |G| << |\overline{G}|$

Intuition

Update relatively small number of states in large sparse chain

- Effects are primarily local
- Most stationary probabilities not significantly affected.

State Space Partition

 $S = G \cup \overline{G}$ $G = \begin{cases} \text{states likely to be most affected} \\ \text{newly added states} \end{cases}$

Induced Matrix Partition

 $- g = |G| << |\overline{G}|$

$$\mathbf{P}_{n \times n} = \begin{array}{ccc} G & \overline{G} \\ \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{array} = \begin{bmatrix} p_{11} & \cdots & p_{1g} & \mathbf{P}_{1\star} \\ \vdots & & \vdots & \vdots \\ p_{g1} & \cdots & p_{gg} & \mathbf{P}_{g\star} \\ \hline \mathbf{P}_{\star 1} & \cdots & \mathbf{P}_{\star g} & \mathbf{P}_{22} \end{array}$$

Censored Transition Matrices

 $\mathbf{C}_1 = \cdots = \mathbf{C}_g = [1]_{1 \times 1}$ $\mathbf{C}_{g+1} = \mathbf{P}_{22} + \mathbf{P}_{21}(\mathbf{I} - \mathbf{P}_{11})^{-1}\mathbf{P}_{12}$

Censored Transition Matrices

 $\mathbf{C}_1 = \cdots = \mathbf{C}_g = [1]_{1 \times 1}$ $\mathbf{C}_{g+1} = \mathbf{P}_{22} + \mathbf{P}_{21}(\mathbf{I} - \mathbf{P}_{11})^{-1}\mathbf{P}_{12}$

Censored Distributions

$$\mathbf{S}_1^T = \cdots = \mathbf{S}_g^T = \mathbf{1} \qquad \qquad \mathbf{S}_{g+1}^T = \mathbf{S}_{g+1}^T \mathbf{C}_{g+1}$$

Censored Transition Matrices

 $C_1 = \cdots = C_g = [1]_{1 \times 1}$ $C_{g+1} = P_{22} + P_{21}(I - P_{11})^{-1}P_{12}$

Censored Distributions

$$\mathbf{s}_1^T = \cdots = \mathbf{s}_g^T = \mathbf{1}$$
 $\mathbf{s}_{g+1}^T = \mathbf{s}_{g+1}^T \mathbf{C}_{g+1}$

Aggregation Matrix

$$\mathcal{A} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}_{g+1}^T \mathbf{P}_{21} & 1 - \mathbf{s}_{g+1}^T \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(g+1)\times(g+1)}$$

Censored Transition Matrices

 $C_1 = \cdots = C_g = [1]_{1 \times 1}$ $C_{g+1} = P_{22} + P_{21}(I - P_{11})^{-1}P_{12}$

Censored Distributions

$$\mathbf{s}_1^T = \cdots = \mathbf{s}_g^T = \mathbf{1}$$
 $\mathbf{s}_{g+1}^T = \mathbf{s}_{g+1}^T \mathbf{C}_{g+1}$

 $\mathcal{A} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}_{a+1}^T \mathbf{P}_{21} & \mathbf{1} - \mathbf{s}_{a+1}^T \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(a+1)\times(a+1)}$

Aggregation Matrix

Aggregated Distribution

$$\boldsymbol{\alpha}^{T} = (\alpha_{1}, \dots, \alpha_{g}, \alpha_{g+1})$$

Aggregation Theorem

$$\boldsymbol{\pi}^{T} = (\pi_{1}, \dots, \pi_{g} \mid \overline{\boldsymbol{\pi}}^{T}) = (\alpha_{1}, \dots, \alpha_{g}, \mid \alpha_{g+1} \mathbf{s}_{g+1}^{T})$$

Censored Transition Matrices

 $C_1 = \cdots = C_g = [1]_{1 \times 1}$ $C_{g+1} = P_{22} + P_{21}(I - P_{11})^{-1}P_{12}$

Censored Distributions

$$\mathbf{s}_1^T = \cdots = \mathbf{s}_g^T = \mathbf{1}$$
 $\mathbf{s}_{g+1}^T = \mathbf{s}_{g+1}^T \mathbf{C}_{g+1}$

Aggregation Matrix

Aggregated Distribution

$$\mathcal{A} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}_{g+1}^T \mathbf{P}_{21} & 1 - \mathbf{s}_{g+1}^T \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(g+1)\times(g+1)} \qquad \boldsymbol{\alpha}^T = (\alpha_1, \dots, \alpha_g, \alpha_{g+1})$$

Aggregation Theorem

$$\boldsymbol{\pi}^{T} = (\pi_{1}, \dots, \pi_{g} \mid \overline{\boldsymbol{\pi}}^{T}) = (\alpha_{1}, \dots, \alpha_{g}, \mid \alpha_{g+1} \mathbf{s}_{g+1}^{T})$$

Old Distribution (reorded)

$$\boldsymbol{\phi}^T = (\phi_1, \phi_2, \dots | \, \overline{\boldsymbol{\phi}}^T)$$

Censored Transition Matrices

 $C_1 = \cdots = C_g = [1]_{1 \times 1}$ $C_{g+1} = P_{22} + P_{21}(I - P_{11})^{-1}P_{12}$

Censored Distributions

$$\mathbf{s}_1^T = \cdots = \mathbf{s}_g^T = \mathbf{1}$$
 $\mathbf{s}_{g+1}^T = \mathbf{s}_{g+1}^T \mathbf{C}_{g+1}$

Aggregation Matrix

Aggregated Distribution

$$\mathcal{A} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}_{g+1}^T \mathbf{P}_{21} & \mathbf{1} - \mathbf{s}_{g+1}^T \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(g+1)\times(g+1)} \qquad \boldsymbol{\alpha}^T = (\alpha_1, \dots, \alpha_g, \alpha_{g+1})$$

Aggregation Theorem

$$\boldsymbol{\pi}^{T} = (\pi_{1}, \dots, \pi_{g} \mid \overline{\boldsymbol{\pi}}^{T}) = (\alpha_{1}, \dots, \alpha_{g}, \mid \alpha_{g+1} \mathbf{s}_{g+1}^{T})$$

Old Distribution (reorded)

$$\boldsymbol{\phi}^T = (\phi_1, \phi_2, \dots | \overline{\boldsymbol{\phi}}^T)$$

The Assumption

 $\overline{\phi}^T \approx \overline{\pi}^T$
Specialized Aggregation

Censored Transition Matrices

 $C_1 = \cdots = C_g = [1]_{1 \times 1}$ $C_{g+1} = P_{22} + P_{21}(I - P_{11})^{-1}P_{12}$

Censored Distributions

$$\mathbf{s}_1^T = \cdots = \mathbf{s}_g^T = \mathbf{1}$$
 $\mathbf{s}_{g+1}^T = \mathbf{s}_{g+1}^T \mathbf{C}_{g+1}$

Aggregation Matrix

Aggregated Distribution

$$\mathcal{A} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}_{g+1}^T \mathbf{P}_{21} & 1 - \mathbf{s}_{g+1}^T \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(g+1)\times(g+1)} \qquad \boldsymbol{\alpha}^T = (\alpha_1, \dots, \alpha_g, \alpha_{g+1})$$

Aggregation Theorem

$$\boldsymbol{\pi}^{T} = (\pi_{1}, \dots, \pi_{g} \mid \overline{\boldsymbol{\pi}}^{T}) = (\alpha_{1}, \dots, \alpha_{g}, \mid \alpha_{g+1} \mathbf{s}_{g+1}^{T})$$

Old Distribution (reorded)

$$\boldsymbol{\phi}^T = (\phi_1, \phi_2, \dots | \overline{\boldsymbol{\phi}}^T)$$

The Assumption

$$\overline{\phi}^T \approx \overline{\pi}^T \implies \overline{\phi}^T \approx \alpha_{g+1} \mathbf{s}_{g+1}^T$$

Specialized Aggregation

Censored Transition Matrices

 $C_1 = \cdots = C_g = [1]_{1 \times 1}$ $C_{g+1} = P_{22} + P_{21}(I - P_{11})^{-1}P_{12}$

Censored Distributions

$$\mathbf{s}_1^T = \cdots = \mathbf{s}_g^T = \mathbf{1}$$
 $\mathbf{s}_{g+1}^T = \mathbf{s}_{g+1}^T \mathbf{C}_{g+1}$

Aggregation Matrix

Aggregated Distribution

$$\mathcal{A} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}_{g+1}^T \mathbf{P}_{21} & \mathbf{1} - \mathbf{s}_{g+1}^T \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(g+1)\times(g+1)} \qquad \boldsymbol{\alpha}^T = (\alpha_1, \dots, \alpha_g, \alpha_{g+1})$$

Aggregation Theorem

$$\boldsymbol{\pi}^{T} = (\pi_{1}, \dots, \pi_{g} \mid \overline{\boldsymbol{\pi}}^{T}) = (\alpha_{1}, \dots, \alpha_{g}, \mid \alpha_{g+1} \mathbf{s}_{g+1}^{T})$$

Old Distribution (reorded)

$$\boldsymbol{\phi}^T = (\phi_1, \phi_2, \dots | \overline{\boldsymbol{\phi}}^T)$$

The Assumption

$$\overline{\phi}^T \approx \overline{\pi}^T \implies \overline{\phi}^T \approx \alpha_{g+1} \mathbf{s}_{g+1}^T \implies \mathbf{s}_{g+1}^T \approx \frac{\overline{\phi}^T}{\overline{\phi}^T \mathbf{e}}$$

Specialized Aggregation Censored Transition Matrices $C_1 = \cdots = C_q = [1]_{1 \times 1}$ $C_{q+1} = P_{22} + P_{21}(I - P_{11})^{-1}P_{12}$ **Censored Distributions** $\mathbf{S}_1^T = \cdots = \mathbf{S}_a^T = \mathbf{1}$ $\mathbf{S}_{q+1}^T = \mathbf{S}_{q+1}^T \mathbf{C}_{q+1}$ **Aggregated Distribution Aggregation Matrix** $\mathcal{A} = \begin{vmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}_{a+1}^T \mathbf{P}_{21} & 1 - \mathbf{s}_{a+1}^T \mathbf{P}_{21}\mathbf{e} \end{vmatrix}_{(a+1)\times(a+1)}$ $\boldsymbol{\alpha}^T = (\alpha_1, \dots, \alpha_q, \alpha_{q+1})$ Aggregation Theorem $\boldsymbol{\pi}^{T} = (\pi_{1}, \dots, \pi_{g} \mid \boldsymbol{\pi}^{T}) = (\alpha_{1}, \dots, \alpha_{g}, \mid \alpha_{g+1} \mathbf{s}_{g+1}^{T})$ **Old Distribution** (reorded) $\boldsymbol{\phi}^T = (\phi_1, \phi_2, \dots \mid \overline{\boldsymbol{\phi}}^T)$ **The Assumption** $\overline{\phi}^T \approx \overline{\pi}^T \implies \overline{\phi}^T \approx \alpha_{g+1} \mathbf{s}_{g+1}^T \implies$ $\mathbf{S}_{g+1}^T \approx \frac{\boldsymbol{\phi}}{\overline{\boldsymbol{u}}^T}$

Reorder & Partition Updated State Space

 $\mathcal{S} = G \cup \overline{G}$

 $G = \{\text{New + Most affected}\} \quad \overline{G} = \{\text{Less affected}\}$

~\$⊧

Summary

Reorder & Partition Updated State Space $S = G \cup \overline{G}$ $G = \{\text{New + Most affected}\}$ $\overline{G} = \{\text{Less affected}\}$

Use Less Affected Components From Old Distribution \overline{T}

 $\overline{\phi}^T \leftarrow \text{components from } \phi^T \text{ corresponding to states in } \overline{G}$

√\$⊳

Summary

Reorder & Partition Updated State Space

 $S = G \cup \overline{G}$ $G = \{\text{New + Most affected}\}$ $\overline{G} = \{\text{Less affected}\}$

Use Less Affected Components From Old Distribution $\overline{\phi}^T \leftarrow$ components from ϕ^T corresponding to states in \overline{G}

Approximate Censored Distribution

$$\mathbf{s}^T \leftarrow \overline{oldsymbol{\phi}}^T / (\overline{oldsymbol{\phi}}^T \mathbf{e})$$

Reorder & Partition Updated State Space $S = G \cup \overline{G}$ $G = \{\text{New + Most affected}\}$ $\overline{G} = \{\text{Less affected}\}$ **Use Less Affected Components From Old Distribution** $\overline{\phi}^T \leftarrow \text{components from } \phi^T \text{ corresponding to states in } \overline{G}$ **Approximate Censored Distribution** $\mathbf{s}^T \leftarrow \overline{\phi}^T / (\overline{\phi}^T \mathbf{e})$

Form Approximate Aggregation Matrix

$$\mathcal{A} \leftarrow \begin{bmatrix} \mathsf{P}_{11} & \mathsf{P}_{12}\mathsf{e} \\ \mathsf{s}^T\mathsf{P}_{21} & 1-\mathsf{s}^T\mathsf{P}_{21}\mathsf{e} \end{bmatrix}_{\scriptscriptstyle (g+1)\times(g+1)}$$

Reorder & Partition Updated State Space $S = G \cup \overline{G}$ $G = \{\text{New + Most affected}\}$ $\overline{G} = \{\text{Less affected}\}$ **Use Less Affected Components From Old Distribution** $\overline{\phi}^T \leftarrow \text{components from } \phi^T \text{ corresponding to states in } \overline{G}$ **Approximate Censored Distribution** $\mathbf{s}^T \leftarrow \overline{\boldsymbol{\phi}}^T / (\overline{\boldsymbol{\phi}}^T \mathbf{e})$ **Form Approximate Aggregation Matrix** $\mathcal{A} \leftarrow \begin{bmatrix} \mathsf{P}_{11} & \mathsf{P}_{12}\mathsf{e} \\ \mathsf{s}^T\mathsf{P}_{21} & 1 - \mathsf{s}^T\mathsf{P}_{21}\mathsf{e} \end{bmatrix}_{(a+1)\times(a+1)}$

Compute Approximate Aggregated Distribution $\boldsymbol{\alpha}^T \leftarrow (\alpha_1, ..., \alpha_g, \alpha_{g+1})$

Reorder & Partition Updated State Space $S = G \cup \overline{G}$ $G = \{\text{New + Most affected}\}$ $\overline{G} = \{\text{Less affected}\}$ **Use Less Affected Components From Old Distribution** $\overline{\phi}^T \leftarrow \text{components from } \phi^T \text{ corresponding to states in } \overline{G}$ **Approximate Censored Distribution** $\mathbf{s}^T \leftarrow \overline{\boldsymbol{\phi}}^T / (\overline{\boldsymbol{\phi}}^T \mathbf{e})$ **Form Approximate Aggregation Matrix** $\mathcal{A} \leftarrow \begin{bmatrix} \mathsf{P}_{11} & \mathsf{P}_{12}\mathsf{e} \\ \mathsf{s}^T\mathsf{P}_{21} & 1 - \mathsf{s}^T\mathsf{P}_{21}\mathsf{e} \end{bmatrix}_{(a+1)\times(a+1)}$ **Compute Approximate Aggregated Distribution**

 $\boldsymbol{\alpha}^T \leftarrow (\alpha_1, \dots, \alpha_g, \alpha_{g+1})$

Approximate Updated Distribution

$$\boldsymbol{\pi}^T \leftarrow (\alpha_1, \dots, \alpha_g, \mid \alpha_{g+1} \mathbf{S}^T)$$

Iterative Aggregation

Move Off Of Fixed Point With Power Step

$$\begin{array}{l} \mathbf{s}^{T} \leftarrow \overline{\phi}^{T} / (\overline{\phi}^{T} \mathbf{e}) \\ \rightarrow & \mathcal{A} \leftarrow \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \mathbf{e} \\ \mathbf{s}^{T} \mathbf{P}_{21} & 1 - \mathbf{s}^{T} \mathbf{P}_{21} \mathbf{e} \end{bmatrix}_{(g+1) \times (g+1)} \\ & \boldsymbol{\alpha}^{T} \leftarrow (\alpha_{1}, \ldots, \alpha_{g}, \alpha_{g+1}) \\ & \boldsymbol{\pi}^{T} \leftarrow (\alpha_{1}, \ldots, \alpha_{g}, | \alpha_{g+1} \mathbf{s}^{T}) \\ & \boldsymbol{\psi}^{T} \leftarrow \boldsymbol{\pi}^{T} \mathbf{P} \\ & \text{(Also makes progress toward convergence when aperiodic)} \\ & \text{If } \| \boldsymbol{\psi}^{T} - \boldsymbol{\chi}^{T} \| < \tau \text{ then quit } - \text{else} \\ & \mathbf{s}^{T} \leftarrow \overline{\boldsymbol{\psi}^{T}} / (\overline{\boldsymbol{\psi}^{T}} \mathbf{e}) \end{array}$$

Iterative Aggregation

Move Off Of Fixed Point With Power Step

$$\mathbf{s}^{T} \leftarrow \overline{\boldsymbol{\phi}}^{T} / (\overline{\boldsymbol{\phi}}^{T} \mathbf{e})$$

$$\rightarrow \mathcal{A} \leftarrow \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}^{T} \mathbf{P}_{21} & 1 - \mathbf{s}^{T} \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(g+1) \times (g+1)}$$

$$\alpha^{T} \leftarrow (\alpha_{1}, \dots, \alpha_{g}, \alpha_{g+1})$$

$$\pi^{T} \leftarrow (\alpha_{1}, \dots, \alpha_{g}, |\alpha_{g+1}\mathbf{s}^{T})$$

$$\psi^{T} \leftarrow \pi^{T} \mathbf{P}$$
(Also makes progress toward convergence when aperiodic)
If $\| \boldsymbol{\psi}^{T} - \boldsymbol{\chi}^{T} \| < \tau$ then quit — else

$$\mathbf{s}^{T} \leftarrow \overline{\boldsymbol{\psi}^{T}} / (\overline{\boldsymbol{\psi}^{T}} \mathbf{e})$$

Theorem

If $\mathbf{C} = \mathbf{P}_{22} + \mathbf{P}_{21}(\mathbf{I} - \mathbf{P}_{11})^{-1}\mathbf{P}_{12}$ is aperiodic, then convergent for all partitions $\mathcal{S} = G \cup \overline{G}$

Iterative Aggregation

Move Off Of Fixed Point With Power Step

$$\mathbf{s}^{T} \leftarrow \overline{\boldsymbol{\phi}}^{T} / (\overline{\boldsymbol{\phi}}^{T} \mathbf{e})$$

$$\overset{T}{\longrightarrow} \mathcal{A} \leftarrow \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12}\mathbf{e} \\ \mathbf{s}^{T} \mathbf{P}_{21} & 1 - \mathbf{s}^{T} \mathbf{P}_{21}\mathbf{e} \end{bmatrix}_{(g+1) \times (g+1)}$$

$$\alpha^{T} \leftarrow (\alpha_{1}, \dots, \alpha_{g}, \alpha_{g+1})$$

$$\pi^{T} \leftarrow (\alpha_{1}, \dots, \alpha_{g}, |\alpha_{g+1}\mathbf{s}^{T})$$

$$\psi^{T} \leftarrow \pi^{T} \mathbf{P}$$
(Also makes progress toward convergence when aperiodic)
If $\|\boldsymbol{\psi}^{T} - \boldsymbol{\chi}^{T}\| < \tau$ then quit — else

$$\mathbf{s}^{T} \leftarrow \overline{\boldsymbol{\psi}^{T}} / (\overline{\boldsymbol{\psi}^{T}} \mathbf{e})$$

Theorem

If $\mathbf{C} = \mathbf{P}_{22} + \mathbf{P}_{21}(\mathbf{I} - \mathbf{P}_{11})^{-1}\mathbf{P}_{12}$ is aperiodic, then convergent for all partitions $\mathcal{S} = G \cup \overline{G}$

- $|\lambda_2(\mathbf{C})|$ determines rate of convergence

Google's PageRank

Random Walk On WWW Link Structure

 $\mathbf{H}_{ij} = \begin{cases} 1/(\text{total # outlinks from page } \mathcal{P}_i) & \text{if } \mathcal{P}_i \to \mathcal{P}_j, \\ 0 & \text{otherwise} \end{cases}$

Google's PageRank

Random Walk On WWW Link Structure

 $\mathbf{H}_{ij} = \begin{cases} 1/(\text{total # outlinks from page } \mathcal{P}_i) & \text{if } \mathcal{P}_i \to \mathcal{P}_j, \\ 0 & \text{otherwise} \end{cases}$

Google Matrix

- $\mathbf{P} = \alpha (\mathbf{H} + \mathbf{E}) + (1 \alpha) \mathbf{F}$
 - (H + E) & F are stochastic

$$rank(\mathbf{E}) = rank(\mathbf{F}) = \mathbf{1}$$

 $- 0 < \alpha < 1$

Google's PageRank

Random Walk On WWW Link Structure

 $\mathbf{H}_{ij} = \begin{cases} \mathbf{1}/(\text{total } \# \text{ outlinks from page } \mathcal{P}_i) & \text{if } \mathcal{P}_i \to \mathcal{P}_j, \\ \mathbf{0} \end{cases}$

Google Matrix

 $\mathbf{P} = \alpha (\mathbf{H} + \mathbf{E}) + (1 - \alpha) \mathbf{F}$

- (H + E) & F are stochastic rank(E) = rank(F) = 1

 $- 0 < \alpha < 1$

- PageRank = π^T

√\$⊧

Google's PageRank

Random Walk On WWW Link Structure

 $\mathbf{H}_{ij} = \begin{cases} 1/(\text{total # outlinks from page } \mathcal{P}_i) & \text{if } \mathcal{P}_i \to \mathcal{P}_j, \\ \mathbf{0} & \text{otherwise} \end{cases}$

Google Matrix

 $\mathbf{P} = \alpha (\mathbf{H} + \mathbf{E}) + (\mathbf{1} - \alpha) \mathbf{F}$

— (H + E) & F are stochastic

$$rank(\mathbf{E}) = rank(\mathbf{F}) = 1$$

 $- 0 < \alpha < 1$

- PageRank = π^T

Power Law Distribution

If ordered by magnitude $\pi(1) \ge \pi(2) \ge \cdots \ge \pi(n)$, then

- $\pi(i)pprox lpha i^{-k}$ for kpprox 2.109 [Donato, Laura, Leonardi, 2002] [Pandurangan, Raghavan,& Upfal, 2004]
- Relatively few large states (i.e., important sites)

"L" Curves

Experiments

The Updates

Nodes Added = 3

Nodes Removed = 50

Links Added = 10

(Different values have little effect on results)

Links Removed = 20

Stopping Criterion

1-norm of residual $< 10^{-10}$

Movies

Power Method Iterative Aggregation |G|Iterations Time Iterations Time 17.40 $\mathbf{5}$ 12.39 .37 10 12.36 1511 $\mathbf{20}$ 11 .35 .31 25 11 **50** .31 9 1009 .33 2008 .35 300 7 .39 **400** 6 .47

nodes = **451** *links* = **713**

Censorship

Power Method Iterative Aggregation

Iterations	Time	G	Iterations	Time
38	1.40	5	38	1.68
		10	38	1.66
		15	38	1.56
		20	20	1.06
		25	20	1.05
		50	10	.69
		100	8	.55
		200	6	.53
		300	6	.65
		400	5	.70

nodes = 562 links = 736

Power Method

MathWorks

Iterative Aggregation

Iterations	Time	G	Iterations	Time
54	1.25	5	53	1.18
		10	52	1.29
		15	52	1.23
		20	42	1.05
		25	20	1.13
		50	18	.70
		100	16	.70
		200	13	.70
		300	11	.83
		400	10	1.01

nodes = 517 links = 13, 531

Abortion

Power Method Iterative Aggregation |G|Iterations Time Iterations Time 106 37.08 $\mathbf{5}$ 109 38.5610 10536.021510738.05 $\mathbf{20}$ 107 38.45 $\mathbf{25}$ 97 34.81**50** 5318.80100 13 5.185.62250125006 5.21

750

1000

 $\mathbf{5}$

5

10.22

14.61

nodes = 1,693 links = 4,325

Genetics

Power Method Iterative Aggregation Iterations Time |G|Iterations Time 92 91.78 $\mathbf{5}$ 91 88.22 10 92 92.12 $\mathbf{20}$ 7172.5350 $\mathbf{25}$ 25.42100 1920.722501314.9711.14**500** 7 1000 $\mathbf{5}$ 17.7615005 **31.84**

nodes = 2,952 links = 6,485

California

Power Method Iterative Aggregation

Iterations	Time	G	Iterations	Time
176	5.85	500	19	1.12
		1000	15	.92
		1250	20	1.04
		1500	14	.90
		2000	13	1.17
		5000	6	1.25

nodes = 9,664 *links* = 16,150

"L" Curves

Quadratic Extrapolation

iteration

Timings

	Iterations	Time (sec)	G
Power	162	9.69	
Power+Quad	81	5.93	
IAD	21	2.22	2000
IAD+Quad	16	1.85	2000

nodes = 10,000 links = 101,118

Conclusion

Iterative aggregation shows promise for updating Markov chains

Especially for those having power law distributions

Leveling Off Point

 $\pi(i) \approx \alpha i^{-k}$

$$\left|\frac{d\pi(i)}{di}\right| \approx \epsilon$$
 for some user-defined tolerance ϵ

$$i_{level} \approx \left(\frac{k\alpha}{\epsilon}\right)^{1/k+1}$$

Perhaps better:
$$i_{level} \approx f(n) \left(\frac{k\alpha}{\epsilon}\right)^{1/k+1}$$

For WWW:
$$g_{opt} \approx f(n) \left[\frac{2.109\alpha}{\epsilon}\right]^{1/3.109}$$