Google's PageRank and Beyond

Carl Meyer

Department of Mathematics
North Carolina State University
University of Wisconsin
Raleigh, NC
"Why I Love Perron-Frobenius"

Beautiful mathematics eventually tends to be useful, and useful mathematics eventually tends to be beautiful.

Short History of IR

IR = search within doc. coll. for particular info. need (query)
B. C.

12th cent. A.D.
1450
1700s
1872
Dewey's decimal system
Card catalog
1940s-1950s
Computer

Harvard 1962-1965

Cornell 1965-1970

Gerard Salton

- Implemented on IBM 7094 \& IBM 360
- Based on matrix methods

Term-Document Matrices

Start with dictionary of terms Words or phrases (e.g., landing gear)

Term-Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document
Humans scour pages and mark key terms

Term-Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document
Humans scour pages and mark key terms
Count $f_{i j}=$ \# times term i appears in document j

Term-Document Matrices

Start with dictionary of terms

Words or phrases (e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count $f_{i j}=$ \# times term i appears in document j
Term-Document Matrix

$$
\begin{gathered}
\\
\text { TERM } 1 \\
\text { TERM 2 } \\
\vdots \\
\text { TERM m }
\end{gathered}\left(\begin{array}{cccc}
\text { Doc } 1 & \text { Doc } 2 & \cdots & \text { Doc } \mathrm{n} \\
f_{\mathbf{1 1}} & f_{\mathbf{1 2}} & \cdots & f_{\mathbf{1} n} \\
f_{\mathbf{2 1}} & f_{\mathbf{2 2}} & \cdots & f_{\mathbf{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m \mathbf{1}} & f_{m \mathbf{2}} & \cdots & f_{m n}
\end{array}\right)=\mathbf{A}_{m \times n}
$$

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}\mathbf{1} & \text { if Term } i \text { is requested } \\ \mathbf{0} & \text { if not }\end{cases}
$$

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?
i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

Query Matching

Query Vector

$$
\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}
$$

How Close is Query to Each Document?

i.e., how close is q to each column \mathbf{A}_{i} ?

Use $\delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}$

Query Matching

Query Vector

$\mathbf{q}^{T}=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \quad q_{i}= \begin{cases}1 & \text { if Term } i \text { is requested } \\ 0 & \text { if not }\end{cases}$

How Close is Query to Each Document?

i.e., how close is \mathbf{q} to each column \mathbf{A}_{i} ?

$$
\text { Use } \delta_{i}=\cos \theta_{i}=\frac{\mathbf{q}^{T} \mathbf{A}_{i}}{\|\mathbf{q}\|\left\|\mathbf{A}_{i}\right\|}
$$

Rank documents by size of δ_{i}
Return Document i to user when $\delta_{i} \geq t o l$

Susan Dumais's Improvement

\triangleright Approximate \mathbf{A} with a lower rank matrix
\triangleright Effect is to compress data in A

- 2 patents for Bell/Telcordia
- Computer information retrieval using latent semantic structure. U.S. Patent No. 4,839,853, June 13, 1989.
- Computerized cross-language document retrieval using latent semantic indexing. U.S. Patent No. 5,301,109, April 5, 1994.
- LATENT SEMANTIC INDEXING

Latent Semantic Indexing

Use a Fourier expansion of \mathbf{A}

$$
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right.
$$

$$
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
$$

Latent Semantic Indexing

Use a Fourier expansion of A

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$

- Project \mathbf{A} onto span $\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Latent Semantic Indexing

Use a Fourier expansion of A

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$ - Project \mathbf{A} onto span $\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Truncate: $\quad \mathbf{A}_{k}=P(\mathbf{A})=\sigma_{1} \mathbf{Z}_{1}+\sigma_{2} \mathbf{Z}_{\mathbf{2}}+\cdots+\sigma_{k} \mathbf{Z}_{k}$

Latent Semantic Indexing

Use a Fourier expansion of A

$$
\begin{gathered}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq\left|\sigma_{r}\right|\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{gathered}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$

- Project \mathbf{A} onto span $\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Truncate: $\quad \mathbf{A}_{k}=P(\mathbf{A})=\sigma_{1} \mathbf{Z}_{1}+\sigma_{2} \mathbf{Z}_{2}+\cdots+\sigma_{k} \mathbf{Z}_{k}$
LSI: Query matching with A_{k} in place of A

- Doc ${ }_{2}$ forced closer to $D o c_{1} \Longrightarrow$ better chance of finding $D o c_{2}$

Latent Semantic Indexing

Use a Fourier expansion of A

$$
\begin{array}{r}
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{Z}_{i}, \quad\left\langle\mathbf{Z}_{i} \mid \mathbf{Z}_{j}\right\rangle=\left\{\begin{array}{ll}
1 & i=j, \\
0 & i \neq j,
\end{array} \quad\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots\right. \\
\left|\sigma_{i}\right|=\left|\left\langle\mathbf{Z}_{i} \mid \mathbf{A}\right\rangle\right|=\text { amount of } \mathbf{A} \text { in direction of } \mathbf{Z}_{i}
\end{array}
$$

Realign data along dominant directions $\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}, \mathbf{Z}_{k+1}, \ldots, \mathbf{Z}_{r}\right\}$ - Project \mathbf{A} onto span $\left\{\mathbf{Z}_{1}, \mathbf{Z}_{2}, \cdots, \mathbf{Z}_{k}\right\}$

Truncate: $\quad \mathbf{A}_{k}=P(\mathbf{A})=\sigma_{1} \mathbf{Z}_{1}+\sigma_{2} \mathbf{Z}_{2}+\cdots+\sigma_{k} \mathbf{Z}_{k}$
LSI: Query matching with A_{k} in place of A

- $D o c_{2}$ forced closer to $D o c_{1} \Longrightarrow$ better chance of finding $D o c_{2}$
"Best" mathematical solution
- SVD: A = UDV ${ }^{T}=\sum \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad \mathbf{Z}_{i}=\mathbf{u}_{i} \mathbf{v}_{i}^{T}$

Strengths \& Weaknesses

Pros

- Finds hidden connections

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters
- Text mining applications

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters - Text mining applications
- Performs well on document collections that are
\triangleright Small + Homogeneous + Static

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters - Text mining applications
- Performs well on document collections that are
\triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters - Text mining applications
- Performs well on document collections that are \triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query
- Only semantic content used
- Can be spammed + Link structure ignored

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters - Text mining applications
- Performs well on document collections that are \triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query
- Only semantic content used
- Can be spammed + Link structure ignored
- Difficult to add \& delete documents

Strengths \& Weaknesses

Pros

- Finds hidden connections
- Can be adapted to identify document clusters - Text mining applications
- Performs well on document collections that are \triangleright Small + Homogeneous + Static
Cons
- Rankings are query dependent
- Rank of each doc is recomputed for each query
- Only semantic content used
- Can be spammed + Link structure ignored
- Difficult to add \& delete documents
- Finding optimal compression requires empirical tuning

Web Stats

Different from other document collections

- It's huge
- Over 10 billion pages, where average page size $\approx 500 \mathrm{~KB}$
- 20 times size of Library of Congress print collection
- Deep Web ≈ 550 billion pages

Web Stats

Different from other document collections

- It's huge
- Over 10 billion pages, where average page size $\approx 500 \mathrm{~KB}$
- 20 times size of Library of Congress print collection
- Deep Web ≈ 550 billion pages
- It's dynamic
- 40% of all pages change in a week
- 23% of .com pages change daily
- Billions of pages added each year

Web Stats

Different from other document collections

- It's huge
- Over 10 billion pages, where average page size $\approx 500 \mathrm{~KB}$
- 20 times size of Library of Congress print collection
- Deep Web ≈ 550 billion pages
- It's dynamic
- 40\% of all pages change in a week
- 23\% of .com pages change daily
- Billions of pages added each year
- It's self-organized
- No standards, review process, formats
- Errors, falsehoods, link rot, and spammers!

Web Stats

Different from other document collections

- It's huge
- Over 10 billion pages, where average page size $\approx 500 \mathrm{~KB}$
- 20 times size of Library of Congress print collection
- Deep Web ≈ 550 billion pages
- It's dynamic
- 40% of all pages change in a week
- 23% of .com pages change daily
- Billions of pages added each year
- It's self-organized
- No standards, review process, formats
- Errors, falsehoods, link rot, and spammers!
- It has many users
- Google alone processes more than 200 million queries per day
- Approximately 0.25 sec per query involving thousands of computers

Web Search Components

Web Crawlers

Software robots gather web pages

Web Search Components

Web Crawlers

Software robots gather web pages

Doc Server

Stores docs
and snippits

Web Search Components

Web Crawlers

Software robots gather web pages

Index Server

Scans pages and does temmmuexng Terms \longrightarrow Pages (similar to book index)

The Ranking Module

- Measure the importance of each page

The Ranking Module

- The measure should be Independent of any query
- Primarily determined by the link structure of the Web
- Tempered by some content considerations

The Ranking Module

- The measure should be Independent of any query
- Primarily determined by the link structure of the Web
- Tempered by some content considerations
- Compute these measures off-line long before any queries are processed

The Ranking Module

- The measure should be Independent of any query
- Primarily determined by the link structure of the Web
- Tempered by some content considerations
- Compute these measures off-line long before any queries are processed
- Google's PageRank ${ }^{\text {© }}$ technology distinguishes it from all competitors

The Ranking Module

- The measure should be Independent of any query
- Primarily determined by the link structure of the Web
- Tempered by some content considerations
- Compute these measures off-line long before any queries are processed
- Google's PageRank ${ }^{\text {© }}$ technology distinguishes it from all competitors

Google's PageRank = Google's \$\$\$\$

The Process

Web Server

The Process

The Process

The Process

Web Results $1-10$ of about $122,000,000$ for business intelligence, (0.10 seconds)

SAS Business Intelligence

Sponsored Link
www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages

Business Intelligence .com:: The Resource for Business Intelligence

The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages
Business Intelligence and Performance Management Software ...
Business intelligence and business performance management software. Reporting, analytics software, budgeting software, balanced scorecard software, ...
\pm Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business_intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ -18k - Cached - Similar pages
Intelliaent Enternrise: Better Insiaht for Business Decisions

Sponsored Links

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{\text {Th }}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive
www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How.
www.Sybase.com

Take Your Pick

Amount of Internet search results that Web surfers typically scan before selecting one

A few search
results*
$\mathbf{2 3 \%}$

First page of
search results
39\%

First two
pages
$\mathbf{1 9 \%}$

Web

Results 1-10 of about $122,000,000$ for business intelligence. (0.10 seconds)

SAS Business Intelligence

www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages

Business Intelligence .com:: The Resource for Business Intelligence

The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages

Business Intelligence and Performance Management Software ...

Business intelligence and business performance management software. Reporting,
analytics software, budgeting software, balanced scorecard software, ...
\oplus Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business_intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ - 18 k - Cached - Similar pages

Sponsored Links

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{m e}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive
www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How.
www.Sybase.com

Web

Results 1 - 10 of about $122,000,000$ for business intelligence. (0.10 seconds)

SAS Business Intelligence

www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages
Business Intelligence .com :: The Resource for Business Intelligence
The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/ - 74k - Apr 15, 2007 - Cached - Similar pages
Business Intelligence and Performance Management Software ...
Business intelligence and business performance management software. Reporting, analytics software, budgeting software, balanced scorecard software, ...
\oplus Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business_intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ - 18k - Cached - Similar pages
Intellident Enternrise: Better Insiaht for Business Decisions

Sponsored Links

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{\text {me }}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive
www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How.
wunv. Svbase.com

Web

Results 1-10 of about $122,000,000$ for business intelligence. (0.10 seconds)

SAS Business Intelligence

Sponsored Link
www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages

Business Intelligence .com:: The Resource for Business Intelligence

The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages

Business Intelligence and Performance Management Software ...

Business intelligence and business performance management software. Reporting,
analytics software, budgeting software, balanced scorecard software, ...
\pm Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business_intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ 18 k - Cached - Similar pages
Intelliaent Enternrise: Better Insiaht for Business Decisions

Sponsored Links

SQL Database Management
Enterprise Data Mgmt Solutions From Dell ${ }^{m e}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How.
www.Sybase.com

Web

Results 1-10 of about $122,000,000$ for business intelligence. (0.10 seconds)

SAS Business Intelligence

www.SAS.com Get Better Answers Faster w/ SAS' Award-winning BI Software. Get Info

Business intelligence - Wikipedia, the free encyclopedia

Business intelligence (BI) is a business management term which refers to applications and technologies which are used to gather, provide access to, ...
en.wikipedia.org/wiki/Business_intelligence - 43k - Cached - Similar pages

Business Intelligence .com:: The Resource for Business Intelligence

The Business Intelligence resource for business and technical professionals covering a wide range of topics including Performance Management, Data Warehouse ...
www.businessintelligence.com/-74k - Apr 15, 2007 - Cached - Similar pages

Business Intelligence and Performance Management Software ...

Business intelligence and business performance management software. Reporting,
analytics software, budgeting software, balanced scorecard software, ...
\oplus Stock quote for COGN
www.cognos.com/-32k - Cached - Similar pages

Oracle Business Intelligence Solutions

The First Comprehensive, Cost-Effective BI Solution Only Oracle delivers a complete, preintegrated technology foundation to reduce the cost and complexity ...
www.oracle.com/solutions/ business_intelligence/index.html - 55k - Cached - Similar pages

Business Intelligence - Management Best Practice Reports

Business Intelligence: Providers of independent reports containing best practice advice, proprietary research findings and case studies for senior managers ...
www.business-intelligence.co.uk/ - 18 k - Cached - Similar pages

Sponsored Links

SQL Database Management

Enterprise Data Mgmt Solutions From Dell ${ }^{m e}$. Find Out More Here www.dell.com

Business Intelligence

See what business intelligence can do for you (free interactive demo). www.InformationBuilders.com

MCITP: BI Cert Boot Camp

9-Day MCITP Certification Boot Camp Business Intelligence All Inclusive
www.mcseclasses.com

Business Intelligence

Improve information integrity with real-time data integration software www.DataMirror.com

Love Data?

Empower yourself with MS BI Tools via SetFocus' Master's Program www.SetFocus.com

Business Intelligence

Conquer DW/BI Slowdown. Get Faster Queries \& Performance - Learn How.
www.Sybase.com

Yahoo Ad System Fails to Lift Net

Revenue Growth Declines; Project Benefits Are Seen Ramping Up in 2nd Period

By Kevin J. Delaney
Yahoo Inc, recently overhauled its online advertising system, giving some investors hope for a positive earnings surprise. So far, that hope hasn't materialized.

The Sunnyvale, Calif., company reported an 11% drop tn flrst-quarter profit as its revenue growth rate continued a steady decline. Yahoo's shares fell about 8% in af-ter-hours trading.

Some investors had raised hopes for the company's first-quarter results following a major overhaul of Yahoo's online advertising system dubbed Project Panama that was rolled out in recent months, But Yahoo's revenue was in line with its earlier projection, and it stuck to its outlook for the year. The company reiterated earlier predictions that financial benefits from Panama, which includes big changes to its search-ad system decigned to boost Yahoo revenue, will start kicking in during the second quarter.

Analysts said the first quarter had been expected to be at tough one when compared with earlier quarters, with benefits from Panama not yet arriving and increased competition for the graphical display advertis-
nepresents about one- \qquad third of Yahoo's reveyear included revenue from ad brokering for Microsoft Corp., which has since been discontinued, making for tougher compari.
When commissions
paid to marketing partners were factored out, Yahoo reported revenue of $\$ 1.18$ billion for the first quarter, in line with its projection of $\$ 1.12$ billion to $\$ 1.23$ billion. Yahod stuck to its prediction of 2007 revenue on that basis of $\$ 4.95$ billion to $\$ 5.45$ billion.

Yahoo reported its results after regular trading hours. In 4 pm. Nasdaq Stock Market composite trading, shares were up 48 cents to $\$ 32.09$. That is about 25% higher than their level at the beginning of the year and 4% above 12 months earlier. In afterhours trading, Yahoo shares fell about 8% to \$29.51.
-People were expecting a possibility of upward guidance and we didn't get that so the stock is giving back some of its recent gains," said Rob Sanderson, an analyst at American Teclnology Research. "This should be the toughest quarter; that was the expectation' going in."
Revenue growth continued to decline at Yahoo, Revenue rose 7% in the first quarter,
ads such amid cor panies. I ama will will see o thecomi company tionship nWe
progress Officer S with ana revenue gunimpt ter. She moderat moderati ing fores company overall w ing start to the se

How To Measure "Importance"

Landmark Result Paper

Survey Paper-Big Bib

How To Measure "Importance"

Landmark Result Paper

Authorities

Survey Paper—Big Bib

Hubs

How To Measure "Importance"

Landmark Result Paper

Authorities

Survey Paper—Big Bib

Hubs

- Good hubs point to good authorities
- Good authorities are pointed to by good hubs

HITS

Hypertext Induced Topic Search (1998)

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i}
- $h_{i}=$ hub score for P_{i}

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i}
- $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}=1$ for all pages $P_{i} \Rightarrow \mathbf{h}_{0}=$

$$
\Rightarrow \quad h_{0}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i}
- $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}=1$ for all pages $P_{i} \Rightarrow \mathbf{h}_{0}=$
- Define Authority Scores (on the first pass)

Jon Kleinberg

$$
a_{i}=\sum_{j: P_{j} \rightarrow P_{i}} h_{j}
$$

Determine Authority \& Hub Scores

- $a_{i}=$ authority score for P_{i}
- $h_{i}=$ hub score for P_{i}

Successive Refinement

- Start with $h_{i}=1$ for all pages $P_{i} \Rightarrow \mathbf{h}_{0}=$
- Define Authority Scores (on the first pass)

Jon Kleinberg

HITS Algorithm

Refine Hub Scores

- $h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a}_{1}$

$$
L_{i j}= \begin{cases}\mathbf{1} & P_{i} \rightarrow P_{j} \\ \mathbf{0} & P_{i} \nrightarrow P_{j}\end{cases}
$$

HITS Algorithm

Refine Hub Scores

- $h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a} \mathbf{a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$
- $\mathbf{h}_{1}=L \mathbf{a}_{1}$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L} \mathbf{a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$

$$
\text { - } \mathbf{h}_{1}=L \mathbf{a}_{1}
$$

- $\mathbf{a}_{\mathbf{2}}=\mathbf{L}^{T} \mathbf{h}_{1}$

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L} \mathbf{a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$

$$
\begin{aligned}
& \bullet \mathrm{h}_{1}=\mathrm{La} \mathrm{a}_{1} \\
& \qquad \mathrm{a}_{2}=\mathrm{L}^{T} \mathrm{~h}_{1} \\
& \bullet \mathbf{h}_{2}=\mathbf{L \mathbf { a } _ { \mathbf { 2 } }}
\end{aligned}
$$

HITS Algorithm

Refine Hub Scores

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$
- $\mathbf{h}_{1}=L \mathbf{a}_{1}$
- $\mathbf{a}_{2}=\mathbf{L}^{T} \mathbf{h}_{1}$
- $h_{2}=L a_{2}$

Combined Iterations

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L}$ (authority matrix)

HITS Algorithm

Refine Hub Scores

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$
- $\mathbf{h}_{1}=L \mathbf{a}_{1}$
- $\mathbf{a}_{2}=\mathbf{L}^{T} \mathbf{h}_{1}$
- $h_{2}=L a_{2}$

Combined Iterations

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L}$ (authority matrix) $\mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-1} \rightarrow \mathbf{e}$-vector (direction)

HITS Algorithm

Refine Hub Scores

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$
- $\mathbf{h}_{1}=L \mathbf{a}_{1}$
- $\mathbf{a}_{2}=\mathbf{L}^{T} \mathbf{h}_{1}$
- $h_{2}=L a_{2}$

Combined Iterations

- $\mathbf{A}=\mathbf{L}^{T} \mathbf{L}$ (authority matrix) $\quad \mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-\mathbf{1}} \rightarrow \mathbf{e}$-vector (direction)
- $\mathbf{H}=\mathbf{L L}^{T}$ (hub matrix) $\quad \mathbf{h}_{k}=\mathbf{H h}_{k-\mathbf{1}} \rightarrow \mathbf{e}$-vector (direction)

HITS Algorithm

Refine Hub Scores

$$
\text { - } h_{i}=\sum_{j: P_{i} \rightarrow P_{j}} a_{j} \Rightarrow \mathbf{h}_{1}=\mathbf{L a} \mathbf{a}_{1} \quad L_{i j}= \begin{cases}1 & P_{i} \rightarrow P_{j} \\ 0 & P_{i} \nrightarrow P_{j}\end{cases}
$$

Successively Re-refine Authority \& Hub Scores

- $\mathbf{a}_{1}=\mathbf{L}^{T} \mathbf{h}_{0}$

$$
\text { - } \begin{aligned}
\mathbf{h}_{1}= & \mathbf{L a}_{1} \\
& \bullet \mathbf{a}_{2}=L^{T} \mathbf{h}_{1}
\end{aligned}
$$

$$
\text { - } \mathrm{h}_{2}=\mathrm{La} \mathrm{a}_{2}
$$

Combined Iterations

$$
\begin{array}{ll}
\text { - } \mathbf{A}=\mathbf{L}^{T} \mathbf{L} \text { (authority matrix) } & \mathbf{a}_{k}=\mathbf{A} \mathbf{a}_{k-1} \rightarrow \text { e-vector }
\end{array} \text { (direction) }
$$

!! May not be uniquely defined if A or H is reducible !!

Compromise

1. Do direct query matching

Compromise

1. Do direct query matching

2. Build neighborhood graph

Compromise

1. Do direct query matching

2. Build neigh'bor'hood graph

3. Compute authority \& hub scores for just the neighborhood

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores
- Some flexibility for making refinements

Pros \& Cons

Advantages

- Returns satisfactory results - Client gets both authority \& hub scores
- Some flexibility for making refinements

Disadvantages

- Too much has to happen while client is waiting

Pros \& Cons

Advantages

- Returns satisfactory results
- Client gets both authority \& hub scores
- Some flexibility for making refinements

Disadvantages

- Too much has to happen while client is waiting
- Custom built neighborhood graph needed for each query

Pros \& Cons

Advantages

- Returns satisfactory results - Client gets both authority \& hub scores
- Some flexibility for making refinements

Disadvantages

- Too much has to happen while client is waiting
- Custom built neighborhood graph needed for each query
- Two eigenvector computations needed for each query

Pros \& Cons

Advantages

- Returns satisfactory results - Client gets both authority \& hub scores
- Some flexibility for making refinements

Disadvantages

- Too much has to happen while client is waiting
- Custom built neighborhood graph needed for each query
- Two eigenvector computations needed for each query
- Scores can be manipulated by creating artificial hubs

HITS Applied

Google's PageRank

(Lawrence Page \& Sergey Brin 1998)
The Google Goals

- Create a PageRank $r(P)$ that is not query dependent
\triangleright Off-line calculations - No query time computation
- Let the Web vote with in-links
\triangleright But not by simple link counts
- One link to P from Yahoo! is important
- Many links to P from me is not
- Share The Vote

- value of vote from Yahoo! is diluted
\triangleright If Yahoo! "votes" for n pages
- Then P receives only $r(Y) / n$ credit from Y

Google's PageRank

(Lawrence Page \& Sergey Brin 1998)
The Google Goals

- Create a PageRank $r(P)$ that is not query dependent \triangleright Off-line calculations - No query time computation
- Let the Web vote with in-links
> But not by simple link counts
- One link to P from Yahoo! is important - Many links to P from me is not
- Share The Vote
\triangleright Yahoo! casts many "votes" - value of vote from Yahoo! is diluted
\triangleright If Yahoo! "votes" for n pages
- Then P receives only $r(Y) / n$ credit from Y

Google's PageRank

(Lawrence Page \& Sergey Brin 1998)

The Google Goals

- Create a PageRank $r(P)$ that is not query dependent
\square
- Let the Web vote with in-links
\triangleright But not by simple link counts
- One link to P from Yahoo! is important
- Many links to P from me is not
- Share The Vote

- Then P receives only $r(Y) / n$ credit from Y

Google's PageRank

(Lawrence Page \& Sergey Brin 1998)

The Google Goals

- Create a PageRank $r(P)$ that is not query dependent
\square
- Let the Web vote with in-links

But not by simple link counts - One link to P from Yahoo! is important - Many links to P from me is not

- Share The Vote
\triangleright Yahoo! casts many "votes"
- value of vote from Yahoo! is diluted
\triangleright If Yahoo! "votes" for n pages
- Then P receives only $r(Y) / n$ credit from Y

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=1 / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=\mathbf{1} / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$ Iteratively refine rankings for each page

$$
r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|}
$$

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=\mathbf{1} / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$ Iteratively refine rankings for each page

$$
\begin{aligned}
& r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
& \quad r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|}
\end{aligned}
$$

PageRank

The Definition

$$
r(P)=\sum_{P \in \mathcal{B}_{P}} \frac{r(P)}{|P|}
$$

$\mathcal{B}_{P}=\{$ all pages pointing to $P\}$
$|P|=$ number of out links from P

Successive Refinement

Start with $r_{0}\left(P_{i}\right)=\mathbf{1} / n \quad$ for all pages $P_{1}, P_{2}, \ldots, P_{n}$ Iteratively refine rankings for each page

$$
\begin{gathered}
r_{1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{0}(P)}{|P|} \\
r_{2}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{1}(P)}{|P|} \\
\bullet \\
r_{j+1}\left(P_{i}\right)=\sum_{P \in \mathcal{B}_{P_{i}}} \frac{r_{j}(P)}{|P|}
\end{gathered}
$$

In Matrix Notation

After Step k

$$
-\boldsymbol{\pi}_{k}^{T}=\left[r_{k}\left(P_{1}\right), r_{k}\left(P_{2}\right), \cdots, r_{k}\left(P_{n}\right)\right]
$$

In Matrix Notation

After Step k

$$
\begin{aligned}
& -\pi_{k}^{T}=\left[r_{k}\left(P_{1}\right), r_{k}\left(P_{2}\right), \cdots, r_{k}\left(P_{n}\right)\right] \\
& -\boldsymbol{\pi}_{k+\mathbf{1}}^{T}=\boldsymbol{\pi}_{k}^{T} \mathbf{H} \quad \text { where } \quad h_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\
\mathbf{0} & \text { otherwise }\end{cases}
\end{aligned}
$$

In Matrix Notation

After Step k

$-\boldsymbol{\pi}_{k}^{T}=\left[r_{k}\left(P_{1}\right), r_{k}\left(P_{2}\right), \cdots, r_{k}\left(P_{n}\right)\right]$
$-\boldsymbol{\pi}_{k+1}^{T}=\boldsymbol{\pi}_{k}^{T} \mathbf{H} \quad$ where $\quad h_{i j}= \begin{cases}\mathbf{1} /\left|P_{i}\right| & \text { if } i \rightarrow j \\ \mathbf{0} & \text { otherwise }\end{cases}$
— PageRank vector $=\boldsymbol{\pi}^{T}=\lim _{k \rightarrow \infty} \boldsymbol{\pi}_{k}^{T}=$ eigenvector for \mathbf{H}
Provided that the limit exists

Tiny Web

Tiny Web

$\rightarrow 2$		P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
		(0	1/2	1/2	0	0	0
	P_{2}	0	0	0	0	0	0
3	P_{3}	$1 / 3$	1/3	0	0	1/3	0
		0	0	0	0	1/2	1/2
		0	0	0	1/2	0	1/2
$\sqrt{6} \longleftarrow$		0	0	0	1	0	

\triangleright A random walk on the Web Graph

Tiny Web

		P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
		0	1/2	1/2	0	0	0
		0	0	0	0	0	0
		1/3	1/3	0	0	1/3	0
		0	0	0	0	1/2	1/2
		0	0	0	1/2	0	1/2
5		0	0	0	1	0	

\triangleright A random walk on the Web Graph
\triangleright PageRank $=\pi_{i}=$ amount of time spent at P_{i}

Tiny Web

\triangleright Dead end page (nothing to click on) — a "dangling node"

Tiny Web

$\triangleright \boldsymbol{\pi}^{T}=(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0})=$ e-vector \Longrightarrow Page $P_{\mathbf{2}}$ is a "rank sink"

The Fix

Allow Web Surfers To Make Random Jumps

The Fix

Allow Web Surfers To Make Random Jumps

- Replace zero rows with $\frac{\mathbf{e}^{T}}{n}=\left(\frac{\mathbf{1}}{n}, \frac{\mathbf{1}}{n}, \ldots, \frac{\mathbf{1}}{n}\right)$

$$
\mathbf{S}=\begin{gathered}
\\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{gathered}\left(\begin{array}{cccccc}
P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} \\
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

The Fix

Allow Web Surfers To Make Random Jumps

 - Replace zero rows with $\frac{\mathbf{e}^{T}}{n}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$$$
\mathbf{S}=\begin{gathered}
\\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{gathered}\left(\begin{array}{cccccc}
P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} \\
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

$-\mathbf{S}=\mathbf{H}+\frac{\mathbf{a} \mathbf{e}^{T}}{6}$ is now row stochastic $\Longrightarrow \rho(\mathbf{S})=1$

The Fix

Allow Web Surfers To Make Random Jumps

- Replace zero rows with $\frac{\mathbf{e}^{T}}{n}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$

- $\mathbf{S}=\mathbf{H}+\frac{\mathbf{a e}^{T}}{6}$ is now row stochastic $\Longrightarrow \rho(\mathbf{S})=\mathbf{1}$
- Perron says $\exists \boldsymbol{\pi}^{T} \geq \mathbf{0}$ s.t. $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{S}$ with $\sum_{i} \pi_{i}=1$

Nasty Problem

The Web Is Not Strongly Connected

Nasty Problem

The Web Is Not Strongly Connected

$\therefore S$ is reducible

$$
\mathrm{S}=\begin{gathered}
\\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{gathered}\left(\begin{array}{ccc|ccc}
P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} \\
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Nasty Problem

The Web Is Not Strongly Connected

S is reducible

- Reducible \Longrightarrow PageRank vector is not well defined
- Frobenius says \mathbf{S} needs to be irreducible to ensure a unique $\boldsymbol{\pi}^{T}>\mathbf{0}$ s.t. $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \mathbf{S}$ with $\sum_{i} \pi_{i}=\mathbf{1}$

Irreducibility Is Not Enough

Could Get Trapped Into A Cycle $\quad\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$

Irreducibility Is Not Enough

Could Get Trapped Into A Cycle $\quad\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$

- The powers \mathbf{S}^{k} fail to converge

Irreducibility Is Not Enough

Could Get Trapped Into A Cycle $\quad\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$

- The powers S^{k} fail to converge
- $\boldsymbol{\pi}_{k+1}^{T}=\boldsymbol{\pi}_{k}^{T} \mathbf{S}$ fails to convergence

Irreducibility Is Not Enough

$$
\begin{aligned}
& \text { Could Get Trapped Into A Cycle } \quad\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right) \\
& \text { - The powers } \mathbf{S}^{k} \text { fail to converge } \\
& \text { - } \boldsymbol{\pi}_{k+1}^{T}=\boldsymbol{\pi}_{k}^{T} \mathbf{S} \text { fails to convergence }
\end{aligned}
$$

Convergence Requirement

- Perron-Frobenius requires \mathbf{S} to be primitive

Irreducibility Is Not Enough

$$
\begin{aligned}
& \text { Could Get Trapped Into A Cycle } \quad\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right) \\
& \text { - The powers } \mathbf{S}^{k} \text { fail to converge } \\
& \text { - } \boldsymbol{\pi}_{k+1}^{T}=\boldsymbol{\pi}_{k}^{T} \mathbf{S} \text { fails to convergence }
\end{aligned}
$$

Convergence Requirement

- Perron-Frobenius requires S to be primitive
- No eigenvalues other than $\lambda=1$ on unit circle

Irreducibility Is Not Enough

Could Get Trapped Into A Cycle $\quad\left(P_{i} \rightarrow P_{j} \rightarrow P_{i}\right)$

- The powers \mathbf{S}^{k} fail to converge
- $\pi_{k+1}^{T}=\pi_{k}^{T} \mathrm{~S}$ fails to convergence

Convergence Requirement

- Perron-Frobenius requires S to be primitive
- No eigenvalues other than $\lambda=1$ on unit circle
- Frobenius proved \mathbf{S} is primitive $\Longleftrightarrow \mathbf{S}^{k}>\mathbf{0}$ for some k

The Google Fix

Allow A Random Jump From Any Page

$$
-\mathbf{G}=\alpha \mathbf{S}+(\mathbf{1}-\alpha) \mathbf{E}>\mathbf{0}, \quad \mathbf{E}=\mathbf{e e}^{T} / n, \quad \mathbf{0}<\alpha<\mathbf{1}
$$

The Google Fix

Allow A Random Jump From Any Page

$$
\begin{array}{ll}
-\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>0, & \mathbf{E}=\mathrm{ee}^{T} / n, \quad 0<\alpha<1 \\
-\mathbf{G}=\alpha \mathbf{H}+\mathbf{u} \mathbf{v}^{T}>\mathbf{0} & \mathbf{u}=\alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{e}, \quad \mathbf{v}^{T}=\mathbf{e}^{T} / n
\end{array}
$$

The Google Fix

Allow A Random Jump From Any Page

$$
\begin{array}{ll}
-\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>0, & \mathrm{E}=\mathrm{ee}^{T} / n, \quad 0<\alpha<1 \\
-\mathbf{G}=\alpha \mathbf{H}+\mathbf{u} \mathbf{v}^{T}>\mathbf{0} & \mathbf{u}=\alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{e}, \quad \mathbf{v}^{T}=\mathbf{e}^{T} / n \\
-\quad \text { PageRank vector } & \boldsymbol{\pi}^{T}=\text { left-hand Perron vector of } \mathbf{G}
\end{array}
$$

The Google Fix

Allow A Random Jump From Any Page

- $\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>\mathbf{0}$, $\mathbf{E}=\mathbf{e e}^{T} / n$, $0<\alpha<1$
$-\mathbf{G}=\alpha \mathbf{H}+\mathbf{u} \mathbf{v}^{T}>\mathbf{0}$
$\mathbf{u}=\alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{e}, \quad \mathbf{v}^{T}=\mathbf{e}^{T} / n$
- PageRank vector
$\pi^{T}=$ left-hand Perron vector of G

Some Happy Accidents

- $\mathbf{x}^{T} \mathbf{G}=\alpha \mathbf{x}^{T} \mathbf{H}+\beta \mathbf{v}^{T} \quad$ Sparse computations with the original link structure

The Google Fix

Allow A Random Jump From Any Page

- $\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>0, \quad \mathbf{E}=\mathbf{e e}^{T} / n, \quad 0<\alpha<\mathbf{1}$
$-\quad \mathbf{G}=\alpha \mathbf{H}+\mathbf{u} \mathbf{v}^{T}>0$
$\mathbf{u}=\alpha \mathbf{a}+(1-\alpha) \mathbf{e}, \quad \mathbf{v}^{T}=\mathbf{e}^{T} / n$
- PageRank vector
$\pi^{T}=$ left-hand Perron vector of \mathbf{G}
Some Happy Accidents
- $\mathbf{X}^{T} \mathbf{G}=\alpha \mathbf{X}^{T} \mathbf{H}+\beta \mathbf{v}^{T} \quad$ Sparse computations with the original link structure
$-\quad \lambda_{2}(\mathbf{G})=\alpha$
Convergence rate controllable by Google engineers

The Google Fix

Allow A Random Jump From Any Page

- $\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>0, \quad \mathbf{E}=\mathbf{e e}^{T} / n, \quad 0<\alpha<1$
$-\mathbf{G}=\alpha \mathbf{H}+\mathbf{u} \mathbf{v}^{T}>\mathbf{0} \quad \mathbf{u}=\alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{e}, \quad \mathbf{v}^{T}=\mathbf{e}^{T} / n$
- PageRank vector
$\pi^{T}=$ left-hand Perron vector of G
Some Happy Accidents
- $\quad \mathbf{X}^{T} \mathbf{G}=\alpha \mathbf{X}^{T} \mathbf{H}+\beta \mathbf{v}^{T} \quad$ Sparse computations with the original link structure
$-\lambda_{2}(G)=\alpha \quad$ Convergence rate controllable by Google engineers
- \mathbf{v}^{T} can be any positive probability vector in $\mathbf{G}=\alpha \mathbf{H}+\mathbf{u} \mathbf{v}^{T}$

The Google Fix

Allow A Random Jump From Any Page

$$
\begin{equation*}
-\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \mathbf{E}>0, \quad \mathbf{E}=\mathbf{e e}^{T} / n, \quad 0<\alpha<\mathbf{1} \tag{T}
\end{equation*}
$$

$\mathbf{u}=\alpha \mathbf{a}+(\mathbf{1}-\alpha) \mathbf{e}, \quad \mathbf{v}^{T}=\mathbf{e}^{T} / n$

- PageRank vector
$\pi^{T}=$ left-hand Perron vector of G
Some Happy Accidents
- $\mathbf{X}^{T} \mathbf{G}=\alpha \mathbf{X}^{T} \mathbf{H}+\beta \mathbf{v}^{T} \quad$ Sparse computations with the original link structure
- $\lambda_{2}(G)=\alpha \quad$ Convergence rate controllable by Google engineers
- \mathbf{v}^{T} can be any positive probability vector in $\mathbf{G}=\alpha \mathbf{H}+\mathbf{u} \mathbf{v}^{T}$
- The choice of \mathbf{v}^{T} allows for personalization

THE WALL STREET JOURNAL.
 © 2003 Dow Jones of Company. All Rights Reserved

What's News-

Business and Finance

NEWS CORP. and Liberty are no longer working together on a joint offer to take control of Hughes, with News Corp. proceeding on its own and Liberty considering an independent bid. The move threatens to cloud the process of finding a new owner for the GM unit.
(Article on Page A3)

- The SEC signaled it may file civil charges against Morgan Stanley, alleging it doled out IPO shares based partly on investors commitments to buy more stock.
(Article on Page C1)
- Ahold's problems deepened as U.S. authorities opened inquiries into accounting at the Dutch company's U.S. Foodservice unit. - Fleming said the SEC upgraded to a formal investigation an inquiry into the food wholesaler's trade practices with suppliers.
(Articles on Page A2)
- Consumer confidence fell to its lowest level since 1993, hurt by energy costs, the terrorism threat and a stagnant job market. (Article on Page A3)
- The industrials rebounded on

World-Wide

- BUSH IS PREPARING to present Congress a huge bill for Iraq costs. The total could run to $\$ 95$ billion depending on the length of the possible war and occupation. As horsetrading began at the U.N. to win suptrading began at the U.N. to win sup-
port for a war resolution, the presiport for a war resolution, the presi-
dent again made clear he intends to dent again made clear he intends to
act with or without the world body's imprimatur. Arms inspectors said Baghdad provided new data, including a report of a possible biological bomb. Gen. Franks assumed command of the war-operations center in Qatar. Allied warplanes are aggresQatar. Allied warplanes are aggres-
sively taking out missile sites that could threaten the allied troop build up. (Column 4 and Pages A4 and A6) Turkey's parliament debated legislation to let the U.S. deploy 6,,000 to open a northern front. Kurdish soldiers lined roads in a show of force as U.S. officials traveled into Iraq's north for an opposition conference.
- Powell said North Korea hasn't restarted a reactor and plutonium-processing facility at Yongbyon, hinting such forbearance might constitute an overture. But saber rattling continued a day after a missile test timed for the inauguration in Seoul. Pyong yang accused U.S. spy planes of violating its airspace and told its army to prepare for U.S. attack. (Page A14)
- The FBI came under withering bipartisan criticism in a Senate Judi-

Web Master

As the Web spreads...
Total Internet users, by household, in millions

Google's U.S. presence expands

Top search engines, in millions Top shopping-referral sites, of unique visitors ${ }^{1}$
in millions of referrals ${ }^{2}$

Google

Sources: Fornester Reseanct; Nielsen Neffating:

Bush to Seek up to $\$ 95$ Billion To Cover Costs of War on Iraq

By Greg Jaffe

 And John D. McKinnonWASHINGTON-The Bush administration is preparing supplemental spending requests totaling as much as $\$ 95$ billion for a war with Iraq, its aftermath and new expenses to fight terrorism, officials said.
The total could be as low as $\$ 60$ billion because Pentagon budget planners don't know how long a military conflict will last, whether U.S. allies will contribute more than token sums to the effort and what damage Saddam Hussein might do
to his own country to retaliate against conquering forces.

Budget planners also are awaiting the outcome of an intense internal debate over whether to include $\$ 13$ billion in the requests to Congress that the Pentagon says it needs to fund the broader war on terrorism, as well as for stepped up homeland security. The White House Office of Management and Budget argues that the money might not be necessary. President Bush, Defense Secretary Donald Rumsfeld and budget director Mitchell Daniels Jr. met yesterday to discuss the matter but didn't reach a final agreement. Mr.

Cat and Mouse

As Google Becomes Web's Gatekeeper, Sites Fight to Get In

Search Engine Punishes Firms That Try to Game System; Outlawing the 'Link Farms' Exoticleatherwear Gets Cut Off

By Michael Totty

and Mylene Mangalindan
Joy Holman sells provocative leather clothing on the Web. She wants what nearly everyone doing business online wants: more exposure on Google.

So from the time she launched exoticleatherwear.com last May, she tried all sorts of tricks to get her site to show up among the first listings when a user of Google Inc.'s popular search engine typed in "women's leatherwear" or "leather apparel." She buried hidden words in her Web pages intended to fool Google's computers. She signed up with a service that promised to have hundreds of sites link to her online store-thereby boosting a crucial measure in Google's system of gle's system
ranking sites.
The techniques

Web Sites Fight for Prime Real Estate on Google

Continued From First Page advertising that tried to capitalize on Google's formula for ranking sites. In effect, SearchKing was offering its clients a chance to boost their own Google rankings by buying ads on more-popular sites. SearchKing filed suit against the search company in federal court in Oklahoma, claiming that Google "purposefully devalued" SearchKing and its customers, damaging its reputation and hurting its advertising sales.

Google won't comment on the case. In court filings, the company said SearchK ing "engaged in behavior that would lower the quality of Google search results" and alter the company's ranking system.

Google, a closely held company founded by Stanford University graduate students Sergey Brin and Larry Page says Web companies that want to rank high should concentrate on improving their Web pages rather than gaming its system. "When people try to take scoring into their own hands, that turns into a worse experience for users," says Matt Cutts, a Google software engineer.

Coding Trickery

Efforts to outfox the search engines have been around since search engines first became popular in the early 1990s. Early tricks included stuffing thousands of widely used search terms in hidden coding, called "metatags." The coding fools a search engine into identifying a site with popular words and phrases that may not actually appear on the site.

Another gimmick was hiding words or terms against a same-color background. The hidden coding deceived search engines that relied heavily on the number of times a word or phrase appeared in ranking a site. But Google's system, based on links, wasn't fooled.

Mr. Brin, 29, one of Google's two founders and now its president of technology, boasted to a San Francisco searchengine conference in 2000 that Google wasn't worried about having its results clogged with irrelevant results because its search methods couldn't be manipulated.

That didn't stop search optimizers from finding other ways to outfox the system. Attempts to manipulate Google's results even became a sport, called Goo-
creating Web sites that were nothing more than collections of links to the clients' site, called "link farms." Since Google ranks a site largely by how many links or "votes" it gets, the link farms could boost a site's popularity.

In a similar technique, called a link exchange, a group of unrelated sites would agree to all link to each other, thereby fooling Google into thinking the sites have a multitude of votes, Many sites also found they could buy links to themselves to boost their rankings.

Ms. Holman, the leatherwear retailer, discovered the consequences of trying to fool Google. The 42 -year-old hospital laboratory technician, who learned computer skills by troubleshooting her hospital's

'The big search
engines determine the laws of how commerce runs,' says Mr. Massa.

equipment, operates her online apparel store as a side business that she hopes can someday replace her day job.
When she launched her Exotic Leather Wear store from her home in Mesa, Ariz., she quickly learned the importance of appearing near the top of search-engine results, especially on Google. She boned up on search techniques, visiting online discussion groups dedicated to search engines and reading what material she could find on the Web. At first, Ms. Holman limited herself to modest changes, such as loading her page with hidden metatag coding that would help steer a search toward her site when a user entered words such as "haltertops" or "leather miniskirts." Since Google doesn't give much weight to metatags in determining its rankings, the efforts had little effect on her search results.

She then received an e-mail adver tisement from AutomatedLinks.com, a Wirral, England, company that prom ised to send traffic "through the roof by linking more than 2,000 Web sites to hers. Aside from attracting customers, the links were designed to improve her

In theory, when Google encounters the Automatediinks code, it treats it as a legitimate referral to the other sites and counts them in toting up the sites' popularity.

Shortly after Ms. Holman signed up with AutomatedLinks in July, she read on an online discussion group that Google objected to such link arrangements. She says she immediately stripped the code from her Web pages. For a while her site gradually worked its way up in Google search results, and business steadily improved because links to her site still re. proved because links to her site sutir
mained on the sites of other Automatmained on the sites of other Automat-
edLinks customers. Then, sometime in edLinks customers. Then, sometime in
November, her site was suddenly no longer appearing among the top results. Her orders plunged as much as 80%.

Ms. Holman, who e-mailed Google and AutomatedLinks, says she has been unable to get answers. But in the last few unable to get answers. But in the last few
months, other AutomatedLinks customers say they have seen their sites apparently penalized by Google. Graham McLeay, who runs a small chauffeur service north of London, saw revenue cut in half during the two months he believes his site was penalized by Google.

The high-stakes fight between Google and the optimizers can leave some Website owners confused. "I don't know how people are supposed to judge what is right and wrong," says Mr. McLeay.

AutomatedLinks didn't respond to requests for comment. Google declined to comment on the case. But Mr. Cutts, the Google engineer, warns that the rules are clear and that it's better to follow them rather than try to get a problem fixed after a site has been penalized. "We want to return the most relevant pages we can," Mr. Cutts says. "The best way for a site owner to do that is follow our guidelines."

Crackdown

Google has been stepping up its enforcement since 2001. It warned Webmasters that using trickery could get their sites kicked out of the Google index and it provided a list of forbidden activities, including hiding text and "link schemes," such as the link farms. Google also warned against "cloaking"-showing a search engine a page that's designed to score well while giving visitors a different, more attractive page-or creating multiple Web addresses that take visitors to a single site.
homa City-based SearchKing, an online directory for hundreds of small, specialty Web sites. SearchKing also sells adyertising links designed both to deliver traffic to an advertiser and boost its rankings in Google and other search results.
Bob Massa, SearchKing's chief execu-
Bob Massa, SearchKing's chief execu-
ive, last August launched the PR Ad Nettive, last August launched the PR Ad Net-
work as a way to capitallze on Google's page-ranking system, known as PageRank. PageRank rates Web sites on a scale of one to 10 based on their popularity, and the rankings can be viewed by Web users if they install special Google software. PR Ad Network sells ads that are priced according to a site's PageRank, with higher-ranked sites commanding higher prices. When a site buys an advertising link on a highly ranked site, the ad buyer could see its ratings improve because of the greater weight improve because of the
Google gives to that link.

Shortly after publicizing the ad network, Mr. Massa discovered that his site suddenly dropped in Google's rankings. What's more, sites that participated in the separate SearchKing directory also had their Google rankings lowered. He filed a lawsuit in Oklahoma City federal court, claiming Google was punishing him for trying to profit from the company's page-ranking system.

A Google spokesman won't comment on the case. In its court filings, Google said it demoted pages on the SearchKing site because of SearchKing's attempts to manipulate search results. The company has asked for the suit to be dismissed, arguing that the PageRank represents its opinion of the value of a Web site and as such is protected by the First Amendment.

The big search engines determine the laws of how commerce runs," says Mr. Massa, who is persisting with the lawsuit even though the sites have had their page rankings partly restored. "Someone needs to demand accountability."

Google is taking steps that many say could satisfy businesses trying to boost their rankings. Google has long sold sponsored links that show up on the top of many search-results pages, separate from the main listings. Last year, the company expanded its paid-listings program, so that there are now more slots where sites can pay for a prominent place in the results. Many sites now are turning to advertising instead of tactics

Amid First

By Chad Terhun
ATLANTA-Home Depot In fiscal fourth-quarter earning 3.4% on disappointing sales.

Speaking to investors ar analysts, the company's chs chief executive, Bob Nar Home Depot is prepared tc dissatisfied customers and competitive challenge from competitive challenge from ventory and improved custon

The nation's largest hor ment retailer said net income ter ended Feb. 2 decreased to: or 30 cents a share, from $\$ 711$ 30 cents a share, a year earlis 2% to $\$ 13.21$ billion from $\$ 13.4 \$$ first quarterly sales decline ir ny's 24-year history. Home 1 the latest quarter was a week: a year earlier. Using compari periods, the company said qua increased 5% and net income

Same-store sales, or sale open at least a year, decline quarter. Home Depot said st last month offset a disastrou and helped the retailer avoi estimate that same-store sale as much as 10%. In 4 p.m Stock Exchange composite tri Depot shares rose 66 cents t

Fiat Patria
 Is Set to Bec

By Alessandra Gai
ROME-Umberto Agnelli named Fiat SpA chairman on ping into the driver's seat as th glomerate works on an 11th-hs ing of its unprofitable car uni

Mr . Agnelli, the 68-year-0 Fiat patriarch Gianni Agnel last month, was widely expe over from current chair Fresco, later this year. But

Personalization is Coming

The Wall Street Journal

Search Engine Canobs ohemsentrotomb Users' Online Habits to Tailor Results to Personal Interests

By Jessica E. Vascellaro

And Kevin J. Delaney

SI Earch engines have long generated the same results for queries whether the person searching was a mom, mathematician or movie star. Now, who you are and what you're interested in is starting to affect the outcome of your search.

Google Inc. and a wide range of start-ups are trying to translate factors like where you live, the ads you click on and the types of restaurants you search for into more-relevant search results. A chef who searched for "beef," for example, might be more likely to find recipes than encyclopedia

entries about livestock. And a film buff who searched for a new movie might see detailed articles about the making of the film, rather than ticket-buying sites.

Google has been enhancing and more widely deploying its search-personalization technology. Within coming weeks, Google users who are logged in will beginhaving their search results reordered based oninformation they have provided to Google. For instance, they may have entered a city to receive weather forecasts on a personalized Google home page. As a result, a user in New York who types in "Giants" might see higher search results for the football team than a user in San Francisco, who might be more interested in the Giants baseball team.

Consumers who use its Web-history service totrack previous search queries currently get results that are influenced by those queries and the sites they have clicked on. The company plans eventually to offer personalization based ona user's Web-browsing history-including sites people visited without going through Google-when users agree to let Google track it.

Also, within three to five years, Google will Please turn to page D8

Conclusion

Google Augments PR With Content Scores For Final Rankings

Content "Metrics" Are Proprietary - But Known Examples

- Whether query terms appear in the title or the body
- Number of times query terms appear in a page
- Proximity of multiple query words to one another
- Appearance of query terms in a page (e.g., headings in bold font score higher)
- Content of neighboring web pages

Elegant and Exciting Application of Linear Algebra

That Is Changing The World

