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Abstract

We discuss the basic foundation of search engines and various cluster-
ing algorithms. Additionally, we propose a new clustering algorithm as
an adaptation of an already well-known algorithm. From the results of
these algorithms, we form an aggregation matrix and perform clustering
on that. Finally, we compare the performance of many of these algorithms
on various data sets.
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1 Introduction

This paper details most of the proceedings of our group during the summer 2007
Research Experience for Undergraduates (REU) program. Over the course of
the summer, we did some investigation into the workings of search engines, but
ended up focusing our work on data clustering. After delving into previously
published algorithms, we tried some of our own adaptations in an attempt to
improve on existing algorithms. Finally, through the use of Matlab, we applied
all these algorithms to a variety of data sets in order to see how their performance
compared in terms of both clustering quality and computing time.

2 Search Engines

2.1 Challenges

Due to the unregulated nature of the World Wide Web, search engines face some
challenges, including:

• The structure of the World Wide Web has no set pattern.

• Data are not necessarily standardized.

• Data may be falsified, producing undesired results.

2.2 Vector Space Model

There are 3 types of search engines: Boolean, probabilistic model, and vector
space model. We chose to focus on the vector space model.

The vector space model is based on a term-by-document matrix A where Aij
is some function of the raw frequency, fij , which is the number of times term i
occurs in document j.

Doc 1 Doc j Doc n

Am×n =

Term 1

Term i

Term m


|
|
|

− − − Aij



Typically, Aij is a product of local weighting (lij), global weighting (gi), and
normalization (dj) factors. In general, local weighting is used to downplay
words used frequently within a certain document while global weighting is used
to downplay words used frequently across an entire document collection. Below
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are some examples of possible weighting functions.

Local Term Weighting

• lij = δ(fij) =
{

1 if fij > 0
0 if fij = 0 (binary weighting)

• lij = log (1 + fij) (logarithmic weighting)

• lij = 1
2 (δ(fij) + fij

max
k

fkj
) (augmented normalized term frequency)

Global Term Weighting

• gi = 1 (each term equal weight)

• gi = 1 + 1
log (n)

∑
j Pij log (Pij) where Pij = fij∑

j
fij

(entropy weighting)

• gi = log
(

n∑
j
δ(fij)

)
= log

(
# of docs

# of docs w/ term i

)
(inverse document

frequency)

• gi =
(∑

j f
2
ij

)− 1
2

(normal)

• gi =
∑

j
fij∑

j
δ(fij)

(GFIdf)

Normalization Factor (dj): dj =
(∑

(lijgi)2
)− 1

2

We use these factors to produce:

Aij = lijgidj

resulting in Am×n, where m is the number of terms and n is the number of
documents.

Once the term-by-document matrix has been prepared, a query can be pro-
cessed. A query is a column vector q where

qi =
{

1 if term i is in the query
0 if term i is not in the query

To calculate relevance between the query and each individual document, angular
distance is used. The angular distance between the query vector q and document
j is

cos(θj) =
qTAej

‖q‖2‖Aej‖2
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Documents are then sorted based on their θj values and returned in order of
relevance to the query (with the smallest θj as the most relevant).

But the calculation qTA ignores connections between words that have simi-
lar semantics (synonyms, e.g.). To deal with this issue, we reduce the rank of
A using the Singular Value Decomposition (SVD).

Initially, Am×n is factored such that A = USV T , where Um×m and Vn×n are or-
thogonal matrices (i.e. UUT = I and V V T = I) and Sm×n is a diagonal matrix
with the singular values (σi) along the diagonal in descending order, with the
largest at the upper left. If we view this decomposition as a linear combination
of outer products, it becomes clear that the SVD produces a fourier expansion
of A.

So
A = σ1U1V

T
1 + σ2U2V

T
2 + · · · = σ1Z1 + σ2Z2 + · · ·

where Zi = UiV
T
i . This sum can be truncated after the kth term, resulting in

Ak = σ1U1V
T
1 + · · ·+ σkUkV

T
k

which is called the rank k approximation of A.

Reducing the rank of A often causes documents with similar semantic mean-
ing to have closer vector representations, a result known as Latent Semantic
Indexing.

2.2.1 Choosing k

One challenge of rank reduction is choosing the optimal k in order to max-
imize the true signal from the data and minimize the noise. In the formula
A = σ1Z1 + σ2Z2 + · · ·, each σ value can be thought of as a coefficient in
the Z basis where the projection of A onto Zi is represented by σi. Since
σ1 ≥ σ2 ≥ σ3 ≥ · · ·, the projection of A onto Zi decreases as i increases. Thus,
σi is the amount of information in A that is directed along Zi. If we assume the
noise is distributed equally across each Zi, then it is clear that truncating this
sum will reduce noise at a greater rate than it will information, or “signal”.

To choose an optimal k, we define two terms:

• % signal remaining =

k∑
i=1

σi

r∑
i=1

σi

where r is the rank of A.

• % noise remaining = k
r
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These definitions imply that σi corresponds to the amount of signal in Zi and
that the amount of noise is evenly distributed across all Zi.

We sought to find the k that maximizes the value (% signal - % noise).

3 Data Clustering

Due to a close relation between the vector space model and data clustering, we
were able to transition away from search engines, a shift in focus motivated by
the large potential for exploration in data clustering. We implemented several
different clustering algorithms including our own naive method which we called
“tree sort”, the standard and well-known k-means algorithm, Nonnegative Ma-
trix Factorization, Principal Direction Divisive Partitioning (PDDP), and our
own adaptation of PDDP which we called Principle Direction Gap Partitioning
(PDGP). In order to process our data-sets and visualize our results, we used
two tools which eased the task of text parsing and cluster visualization called
Text to Matrix Generator, and Vismatrix.

3.1 Tools

3.1.1 Text to Matrix Generator (TMG)

The Text to Matrix Generator (TMG) is a MATLAB graphical user interface
(GUI) created by Dimitrios Zeimpekis and Efstratios Gallopoulos from the De-
parment of Computer Engineering and Informatics at the University of Patras,
Greece. The tool has been paramount to our investigation of textual search and
document clustering. It allows the user to input a set of documents which the
program then parses. The tool outputs a dictionary of terms found in the doc-
ument collection, a list of the document titles, and the term-document matrix,
employing either raw frequency or local and global term weighting as dictated
by the user.

TMG also includes other useful features for the purposes of clustering, clas-
sification, and information retrieval. TMG has a separate GUI for clustering,
which allows the user to input a dataset and cluster their document set with
k-means, spherical k-means, and PDDP. This feature made it easy to make
comparison among algorithms. Implicit in the clustering GUI is the capability
for dimension reduction of the data matrix via SVD [5].

3.1.2 Vismatrix

Vismatrix is a tool that was created by David Gleich at the Stanford Univer-
sity Institute for Computational and Mathematical Engineering. This program
allows the user to visualize the entries of a sparse matrix by representing each
entry in the matrix as a colored marker, where smaller values are represented by
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white and blue pixels and more significant values produce orange to red mark-
ers. Once a data matrix is clustered, the matrix with permuted columns and
rows can be entered into Vismatrix and the hope is that the clustering will be
apparent in the formation of large blocks of significant values. The program also
allows the user to use a cursor to move around the matrix to different values
and see the titles and terms associated with the coordinates of the cursor. Thus,
one can move around inside a clustered block to investigate the accuracy of the
clustering. As is apparent in the picture below, Vismatrix is an invaluable tool
for visualizing the clustering of large matrices. The following matrix has 17,770
rows and columns.

Figure 1: An example of a Vismatrix Visualization

3.2 Tree Sort

We wrote the tree sort algorithm with no prior clustering knowledge. It was
our uninformed attempt at writing our own clustering algorithm. Although it
performed respectably when the dimension of the data was greater than the
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number of items to be clustered, it broke down when the data had more items
than dimensions. Nevertheless, it proved to be useful in choosing initializations
for other algorithms.

The algorithm works as follows:

1. Start with entire document collection.

2. Find most “popular” word in collection based on maximum row sum.

3. Split collection into documents that include the “popular” word and those
that don’t.

4. For the documents that include the “popular” word, let that word be a
category for that collection.

5. For each collection from step 3, repeat back to step 1.

3.3 K-Means Clustering

K-means seeks to minimize the square distance between each data point and
the centroid of the cluster with which it is associated. That is, it minimizes
k∑
i=1

∑
xj∈Si

|xj − µi|2, where Si represents each cluster, µi is the centroid of the

cluster Si, and k represents the number of clusters.

We used Lloyd’s algorithm to implement k-means, which performs k-means for
k clusters as follows:

1. Randomly initialize k centroids.

2. Associate each data point with the closest centroid based on Euclidean
distance.

3. For each centroid, find the mean of all data points associated with it. This
becomes the new centroid.

4. Repeat steps 2 and 3 until the centroids converge.

In step 2, Euclidean distance is used to measure closeness. However, we also
used angular distance to measure closeness and found that it made little or no
difference in the results for our data set.

The outcome of k-means clustering is highly dependent on the location of the
initial centroids. Therefore, clustering results are frequently improved by mak-
ing more educated guesses for the initial centroids. We adapted our tree sort
algorithm so that its clustering results served as an initialization for k-means.
This made the results of the algorithm better and more consistent.
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3.4 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is an algorithm first proposed by
Daniel Lee and Sebastian Seung in [4] which seeks to find a parts-based rep-
resentation of multivariate data by factoring a matrix A into 2 non-negative
matrices W and H such that

Am×n ≈Wm×kHk×n

where the columns of W can be thought of as parts or features and the entries
in H represent the extent to which each feature is present in each data mea-
surement. The factorization provided by NMF is not unique or exact. NMF
algorithms attempt to minimize ‖A−WH‖, but convergence to a local or global
minimum is not guaranteed. The value of k is input by the user, and determines
the number of clusters or ”parts” desired from the data.

In the application of textual clustering, we can view such a factorization as
decomposing each column of A into a linear combination of k “topic-vectors”

Ai =
k∑
j=1

WjHji

The idea is that the columns of the matrix W will yield information about
how the terms in the dictionary contribute to each “topics” and the rows of the
matrix H will provide information about the extent to which each topic is rep-
resented in each document. Thus, we are able to obtain clustering information
about both terms and documents from the Nonnegative Matrix Factorization
of A. Although there are many ways in which to use this information, the sim-
plest way is to pick the largest value in each row of W and assign that term
to that cluster number. For example if the first term in our dictionary were
Apple and the largest entry in the first row of W appeared in column 5, then
the term Apple would be assigned to cluster 5. Similarly, we use the values in
the columns of H to designate each document to a cluster.

In [3], Patrik O. Hoyer developed a way to enforce sparsity on both matri-
ces W and H explicitly. In many applications, a sparse, nonnegative matrix
factorization is preferred because information can be pulled more readily from
the resulting factors, and storage is reduced. Although it is apparent that en-
forcing sparsity could ease the task of data clustering, we found that the sparsity
of the original term-document matrix usually permeated through the algorithm
and resulted in sparse factors W and H. Enforcing further sparsity seemed to
diminish the quality of the clustering.

3.5 Principal Direction Divisive Partitioning

Principal Direction Divisive Partitioning (PDDP), developed by Daniel Boley
of the University of Minnesota, is one of many clustering algorithms based upon
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the Singular Value Decomposition.

The first step is to center the data. That is, the mean of the document vectors
is set to zero. The mean µ of all the columns of Am×n is µ = Ae/n, where e is
a n × 1 vector of all ones. In order to center the matrix, µ is subtracted from
each column, resulting in

C = A− µeT = A
(

I− eeT

n

)

The centered term-by-document matrix C is factored into C = USVT . The
first column in U, or u1, is known as the principal direction because it is the
direction in which the data have the greatest variance. The data in C are then
projected onto u1. Conveniently, this projection ends up being proportional to
the values of v1, as shown below:

uTj C = uTj USVT = σjvTj

where σj (the jth singular value) is the proportionality constant [2].

Thus the projection of the data onto the principal direction is easily obtained
from the values of v1. Next, the data are split into 2 groups: those that have
v1i > 0 (positive projections onto the principal direction) and those that have
v1i ≤ 0. Boley arbitrarily chose to put those data with v1i = 0 into the group
with negative projections. This split effectively divides the term-by-document
matrix into 2 separate matrices, each corresponding to the sign of their respec-
tive projections.

After this initial split, a measure of scatter is used to determine which clus-
ter is to be split next. Since the term-by-document matrix was split in the
previous step, each newly-created matrix must be recentered in the same man-
ner as at the beginning. Then, the scatter for each cluster is computed as the
Frobenius norm of the centered term-by-document matrix corresponding to that
cluster. The cluster with the greatest scatter value is split and the process is
repeated until the desired number of clusters is attained [2].

In some cases, using uncentered data may be desirable due to computation
time or data storage needs, as centering the matrix destroys the sparse nature
of the data. In this case, the data is not centered before each iteration of PDDP.
Due to the fact that all entries of the v1 will have the same sign, the v2 vector
is now the vector where the split at 0 must occur. The difference between clus-
terings when using centered data or uncentered data, however, is not currently
known.
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3.6 Principal Direction Gap Partitioning

Principal Direction Gap Partitioning is our modification of Boley’s PDDP al-
gorithm.

3.6.1 Definitions

Recall that our centered term-by-document matrix C is factored into C =
USVT . For convenience, we simplify the notation v1, the first column in V, as
v. We define a gap and a gap interval of a vector vn×1 as follows:

• Sort the values in v in ascending order. Call this v′.

• Define dv′ such that dv′i = vi+1 − vi for i = 1, 2, . . . , n− 1.

• Say the maximum value of dv′ occurs at dv′k. Then the gap in v occurs
between vk and vk+1.

• The gap interval of v is the interval [vk vk+1].

3.6.2 Description

We felt that the PDDP split in v at 0 was fairly arbitrary so we looked into
different methods for determining the split. Therefore, we sorted v in order
to see where the proposed split was taking place. After plotting the values of
the sorted v vector, we noticed a significant gap in the values. When doing
the first division on our data set, 0 was included in the gap interval (Figure 2).
So splitting based on signs performed the same action as splitting at the gap.
However, when we did the second iteration and went to split the cluster with
greatest scatter, the gap interval did not include 0 (Figure 3). In fact, there is
not a noticeable break in the values of v at 0. The horizontal line representing
the split of PDDP crosses through the sorted v values at a point that is clearly
not a clean break in the values. On the other hand, the gap in the sorted v
values occurs around 0.1, and the gap interval is entirely above 0. We suggest
splitting at this gap instead of at 0.

However, these gaps sometimes occur very close to the ends of v′, which would
result in unbalanced clusters. Therefore, we chose to ignore a certain percentage
of the values in dv′ in order to avoid choosing gaps close to either end, which
might isolate too few data points.

3.6.3 Using Multiple Singular Vectors with PDGP

We have also tried to incorporate the information in singular vectors other than
v1. To do this, we looked at the gaps in both v1 and v2 and used the vector
that had the longer gap interval. For labeling purposes, we called this algorithm
PDGP2. Theoretically, this method should use whichever vector produces a
cleaner split in the data. However, we have yet to get this method to produce
better clusters than those formed by the normal PDGP algorithm.
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Figure 2: Sorted v values for first iteration

Figure 3: Sorted v values for second iteration

3.7 Cluster Aggregation

Cluster aggregation is the idea of using the results of multiple clustering algo-
rithms to form one overall clustering result. The motivation for cluster aggre-
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gation comes from the fact that different algorithms yield different clustering
results. When attempting to cluster data sets about which there is no prior
knowledge, it cannot be known which clustering algorithm will show the best
clustering results. The hope is that by aggregating the clusters from different
algorithms into one overall cluster a better quality clustering will occur.

3.7.1 How Cluster Aggregation Works

Cluster aggregation is a several step process that relies on other algorithms to
create adjacency matrices, which are square matrices that express the similarity
between documents. These adjacency matrices are added together to form an
overall aggregated adjacency matrix which can then be clustered one final time
to yield clusters. The process is as follows:

1. A set of algorithms is run on the term-by-document matrix representing
the data.

2. For each algorithm an adjacency matrix is formed by assigning 1 to Mij if
document i and document j are in the same cluster. It can be easily seen
that these matrices will be symmetric.

3. The adjacency matrix for each algorithm is added to all of the other ad-
jacency matrices.

4. A clustering algorithm is run on the aggregated matrix.

3.7.2 Our Claims For Cluster Aggregation

We claim the following about cluster aggregation, and will test this method to
investigate the extent to which our claims are valid,

• Cluster aggregation can yield better clustering than using a single algo-
rithm.

• While slow, cluster aggregation can theoretically be made faster by use of
parallel computing.

• Cluster aggregation can act as a filter so that poor clusters are filtered
out.

3.7.3 Cluster Aggregation Example

For this example we shall imagine that we have four clusters of documents: 1-5,
6-10, 11-15, and 16-20. In this example we will assume that there have been
three clustering algorithms run: A, B, and C. However, as the clustering algo-
rithms are not perfect algorithm A has clustered document 1 with documents
2, 3, 6, and 11; algorithm B has clustered document 1 with documents 3, 4, 5,
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Figure 4: Flowchart of the Cluster Aggregation Process

and 19; and algorithm C has clustered document 1 with documents 2, 5, 8, 12,
and 20. Each of these clusters can be seen to be less than optimal, however
with cluster aggregation the fact that document 1 was clustered with 2, 3, and
5 twice, while with 4, 6, 11, 19, 8, 12, and 20 once, shows that 1 is more relevant
to documents 2, 3, and 5 than the others. In this case 4 was not included, but
when more algorithms are run there is a larger chance the the better clusters
will fall out.

The reason behind the good clustering is that in the previous example there are
four good connections that document 1 can make (2, 3, 4, and 5), while there
are fifteen poor connections that document 1 can make. If we assume that poor
connections are made with almost random distribution, and that each clustering
algorithm will get some good connection and some poor connections, we can see
that the error will spread over a large area and make less of an impact on the
final clustering.
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4 Data Sets

To test these various algorithms, we made our own textual data set and down-
loaded other benchmark sets from the Internet.

4.1 Our Own Data Set

Our data set consists of 86 documents from the World Wide Web, containing
2413 terms. We used the Term Matrix Generator tool to parse our data and
produce the term-by-document matrix. This tool has options for local weight-
ing, global weighting, normalization, and stemming, but we eventually used
augmented normalized term frequency for local weighting, no global weighting,
no normalization, and no stemming. The general topics of the documents in our
data set are chess (grandmasters, tactics, openings), global warming, computer
learning (chess, poker, backgammon), Blackstone (IPO, buyout), backgammon,
UNC sports, non-negative matrix factorization, and poker.

4.2 Benchmarks

We also worked with the following data sets commonly used as benchmarks in
data mining:

• Reuters-10 [1]: A subset of Reuters-21578, a collection of documents pub-
lished by Reuters in 1987.

• Cranfield: A collection of articles on aerodynamics

• Medline: Medical documents

• CISI

4.3 Other Data Sets

• Boley’s Data Set: For comparison purposes, we obtained the J1 document
collection used by Daniel Boley in his PDDP paper.

• Grocery Store Data: SAS provided us with some grocery store sales data
with 48 stores and 10982 items

• Netflix: Derived from user ratings for various movies, we obtained a movie-
by-movie matrix (17770 × 17770) that gives associations between movies

5 Results

5.1 Metrics

To compare the clusterings of different data sets, we used two different met-
rics. The density metric requires no prior knowledge of the data but does not
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provide a single value for comparison. On the other hand, the entropy metric
requires labels on each document yet it returns a single value, allowing for easy
comparison among the algorithms.

5.1.1 Density Metric

The density metric inputs the term-by-document matrix, row clusters, and col-
umn clusters. Then, it creates a grid of blocks by crossing the row clusters with
the column clusters. For each blocks, it calculates the block density, where

Block Density =
# of non-zero points in the block
# of lattice points in the block

If the block density is greater than an inputted tolerance, then that block is
deemed an “acceptable” cluster and all the nonzero entries are considered rel-
evant. After this procedure is done on all the blocks, the overall density is
calculated as

Overall Density =
# of relevant points

total # of nonzero entries

Finally, so that lower numbers imply higher quality clusters, the metric returns
1− (Overall Density).

Unfortunately, this metric is dependent on the density tolerance chosen so the
results of various algorithms must be compared over a range of tolerances. This
requirement produces a graph that shows the relative performance of algorithms
yet does not produce an easy comparison between them.

5.1.2 Entropy

A common metric to measure the quality of clusterings is the entropy method.
Its formula is as follows:

etotal = − 1
m

∑
j

nj ·
∑
i

(
c(i, j)∑
i c(i, j)

)
log
(

c(i, j)∑
i c(i, j)

)

where nj is the number of documents in cluster j and c(i,j) is the number of
occurrences of label i in cluster j.

This formula comes from a popular measure in information theory called “self in-
formation” or “surprisal”. The surprisal of a variable x is defined as log2

(
1

p(x)

)
where p(x) denotes the probability that x occurs. The value of the surprisal
indicates the extent to which one is surprised by the occurence of event x. If
the probabilty that x occurs is 0, then one is infinitely surprised that the event
occured. On the other end, if the probability that x occurs is 1, then it would
be no surprise to the observer that the event occured. Entropy is essentially the
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expected value of the self-information or surprisal of an event.

The difficult part about applying this metric is that it requires prior knowl-
edge of clusters in order to give labels. Additionally, for very large data sets, it
may not be practical to label every document. Essentially, if labels are provided
or easily obtained, entropy is a good standard for measuring cluster quality.
However, these labels frequently require significant time and effort to obtain.

5.2 86 Mini-Document Set

The following figures display the effect of row and column permutations on the
term-by-document matrix. Though there seems to be very little white space in
the unclustered matrix, the clustered matrix reveals significant block structure
and the ability to concentrate the white space. Each dot represents a point
where the term corresponding to that row occurs at least once in the document
corresponding to the column.

Figure 5: Unclustered (top) and clustered (bottom) term-by-document matrix
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The results of various algorithms run on the 86 mini-document set are shown
in the charts and table below.

Figure 6: Entropy and Density Rankings for 86-mini document set

Figure 7: Time Rankings (in seconds) for 86-mini document set
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Table 1:

Methods Density Ranking Entropy Ranking Time Ranking (in seconds)
PDGP Centered 0.4707 0.389 0.4846

PDGP Uncentered 0.4675 0.4578 0.6865
PDDP Centered 0.5177 0.4146 0.4342

PDDP Uncentered 0.4183 0.4713 0.4006
PDGP2 Centered 0.5132 0.5194 0.4814

PDGP2 Uncentered 0.5938 0.4798 0.7313
Lee and Seung 0.3424 0.3611 3.1115
Agg w/ pddp 0.5194 0.6303 3.5607
Agg w/ pdgp 0.4491 0.3905 3.5649

Spherical K-Means 0.7054

5.3 Daniel Boley’s Document Set (J1) Results

We normalized the columns in the term-by-document matrix so that the eu-
clidean norm for each column was one, so that we could corroborate our data
with the results that Daniel Boley was able to obtain in his paper. The results
from various algorithms run on the PDDP paper document set are shown in the
charts and table below.

Figure 8: Entropy and Density Rankings for PDDP paper document set
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Figure 9: Time Ranking (in seconds) for PDDP paper document set

Table 2:

Methods Density Ranking Entropy Ranking Time Ranking (in seconds)
PDGP Centered 0.505 0.7405 2.3876

PDGP Uncentered 0.6496 0.6946 2.5744
PDDP Centered 0.4854 0.6886 2.0479

PDDP Uncentered 0.8488 0.7742 1.762
PDGP2 Centered 0.5249 0.8485 2.8313

PDGP2 Uncentered 0.6411 1.0049 3.4367
Lee and Seung 0.7924 0.4661 44.1468
Agg w/ pddp 0.6012 15.5568
Agg w/ pdgp 0.4655 15.5855

Spherical K-Means 0.4675

5.4 Discussion of Document Set Results

It is important to note, before any detailed observations are made, that for
PDGP, 10% of dv′ is being disregarded, and that for PDGP 2, 20% of dv′ is be-
ing disregarded. Changing the percent of dv′ that is disregarded can drastically
change the values for entropy and density rankings for both of these algorithms
and further tests with varying percents should be run for a full understanding
of its effect on the results and capabilities of each algorithm.

In both the 86 mini-document set and the PDDP paper document set, Lee and
Seung’s NMF algorithm clusters well according to the entropy metric. However
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the downside to this algorithm is that it is very time expensive, nor does it
converge to the same value each time the algorithm is run, as other test runs
of the Lee and Seung NMF have shown higher values in the entropy metric. A
detailed examination of the performance of Lee and Seung, then, would only
prove useful in the case of multiple data sets each clustered many times. As of
now we have not looked into this as there are more efficient non-negative matrix
factorization algorithms available. However, the inclusion of Lee and Seung is
important to give at least a general idea of how well different algorithms are
clustering. It should be noted that this NMF algorithm is one of the slowest
available. As shown in [1], there are more efficient and consistent ways of using
NMF for data-clustering.

5.4.1 Centering

We can see that from Table 1 that the centered algorithms of PDGP and PDDP
yield results closer to the known clusters than do the uncentered PDGP and
PDDP algorithms. However, the uncentered PDGP 2 outperforms the centered
PDGP 2. A similar trend follows in Table 2, where the centered PDDP and
PDGP 2 algorithms perform better than the uncentered ones, while the uncen-
tered PDGP does a better job of clustering than the centered PDGP. In each
case two of the three algorithms examined, in terms of centering vs. noncenter-
ing, yields more desireable results when centered.

Due to the code used for each of the algorithms using centered data takes less
time than using uncentered data in the case of PDGP and PDGP 2. This
contrasts the case of PDDP where uncentered data allows for slightly faster
computation time. However, as previously mentioned, PDDP used with center-
ing performs better in either document set than used with noncentering.

5.4.2 PDDP, PDGP, and PDGP 2

With the two data sets tested PDGP 2 does not cluster as well as either PDDP
or PDGP. However, between PDDP and PDGP there is not consistency to which
provides better clustering. In the 86 mini-document set PDGP with centering
performs better than PDDP with centering and noncentering. In the PDDP
paper document set PDDP with centering performs better than PDGP with
centering and noncentering.

From Tables 1 and 2 PDDP is seen to be faster than PDGP, which itself is seen
to be faster than PDGP 2 in the case where centering is only compared with
centering speeds and noncentering is only compared to noncentering speeds.
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5.4.3 Cluster Aggregation

Cluster aggregation as used for these document sets used only SVD based algo-
rithms in the aggregation. That is, only PDGP, PDDP, and PDGP 2, with and
without centering, were incorporated into the aggregation matrix. In both cases
of cluster aggregation, cluster aggregation using pdgp to cluster the aggregated
adjacency matrix provides better results than using pddp. The times between
the two indicate that clustering the aggregated matrix with pdgp is slightly
slower, but not to any significant amount.

In the test cases cluster aggregation performs just as well, if not better, than the
other algorithms examined, excepting the cases of Lee and Seung, and the slight
difference between pdgp and the cluster aggregation, both seen in Table 1. For
the PDDP paper document set, cluster aggregation with pdgp clustering yields
an entropy that is in the neighborhood of 66% of the entropies of the other SVD
based clustering algorithms. For the 86 mini-document set the entropy yielded
is about 95% of the other entropies, excluded the entropy in the case of PDGP
with centering.

5.5 Grocery Store Data

In clustering the SAS Grocery Store Data, we performed cluster aggregation on
both the 48 stores and the 10982 items.

5.5.1 Store by Store

The store-by-store aggregation matrix depicts the strength of the association
between each pair of stores. In the figures, reds and yellows signify that those 2
stores have been clustered together by most of the algorithms, blues and greens
signify that those 2 stores have been clustered together by a couple algorithms,
and black signifies that the 2 stores have never been clustered together. The
second figure is produced by a permutation of the rows and columns of the first
figure in order to display the desired block diagonal structure.
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Figure 10: Unpermuted (left) and permuted (right) store-by-store aggregation
matrix

5.5.2 Item by Item

Due to the size of the item-by-item aggregation matrix (10982×10982), the
matrix shows only a binary representation, where red represents a strong cor-
relation between items and black represents weak or no correlation. Again, the
row and column permutations on the original matrix results in a block diagonal
structure that was not initially apparent.

Figure 11: Unpermuted (left) and permuted (right) item-by-item aggregation
matrix

5.6 Netflix

We ran both PDDP and PDGP on the movie-by-movie matrix of the Netflix
data in order to establish categories among the movies. The larger number of

24



blocks on the diagonal in the PDGP picture signifies that PDGP found more
categories in the data than PDDP found.

Figure 12: Netflix Matrix Clustered Using PDDP (left) and PDGP (right)
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6 Conclusions

From our results we can make some general conclusions in response to various
questions that we have investigated throughout our research. Specifically we can
make statements regarding our adaptation of PDDP, PDGP, cluster aggregation,
and the issue of centering and noncentering data.

6.1 PDGP

As discussed in our results section and seen in Tables 1 and 2 therein we know
that PDGP provides promise as a clustering algorithm in terms of clustering
effectiveness, as well as computation time. While we have only experimented
with the most basic form of PDGP we have thought of future questions that
can be investigated using PDGP which we address in our future work section.

6.2 Cluster Aggregation

Our results show empirical evidence to validate our claim that cluster aggre-
gation acts as a filter so that poor clustering that occurs in the component
algorithms gets filtered.

We know from our results that cluster aggregation doesn’t always outperform
all of it’s component algorithms. However, as only one of the component algo-
rithms outperformed cluster aggregation by a very minute difference, we still
feel that cluster aggregation may outperform all of its component algorithms a
very high percentage of the time.

We have been unable to show either way if parallel computing will work to
increase the speed of cluster aggregation.

6.3 Centering and Noncentering

We have found techniques that allow for fast computing of the singular value
decomposition while centering the data. This means that using centered data
does not take significantly longer for computation time than using uncentered
data.

We have been unable to determine the effect that centering the data has on
the quality of the clusters. However, we feel that there is no loss in quality of
data when the data is centered.

6.4 SAS Grocery Store Data

After using cluster aggregation on the SAS grocery store data we can conclude
that there are some very definitive store clusters as well as item clusters. This
would imply that certain stores sell similar items in similar quantities, and also

26



that certain items are often sold at the same stores. However, these implications
cannot be checked leaving us only with the knowledge that there are clusters
among the stores and items sold.

7 Further Work

We have many ideas left untested and/or unproven. The following is a brief
description of them and possible directions of research.

7.1 More Work With PDGP

• A major issue we encountered when working with PDGP is that the gaps
frequently occur very close to the beginning or end of v′.

• When working with large data sets, the extreme location of the gaps is an
issue because a very small portion of the data set is split off each time.

• Initially, we tried ignoring a certain percentage of the differences from
each end. Although it was an improvement over looking at all of dv′, the
results were not entirely satisfactory.

• We plan on working on a weighting scheme that gives more weight to gaps
closer to the middle of v′ and diminishes the weight of gaps near the end
of v′.

7.2 Centering vs. Uncentering

• For computation time, uncentered data sets are preferred because it pre-
serves the sparse structure of the data set. Centering the data destroys
all sparsity in the term-by-document matrix.

• However, with procedures such as the Lanczos method that can quickly
compute the first few columns of V, centering the data does not increase
the time by nearly as much as first anticipated.

• We have yet to determine whether or not the decreased computing time
involved with uncentered data is enough to make up for the decreased
quality of the clustering.

7.3 Multiple Singular Vectors

• We would still like to improve our use of columns of V in addition to v1.

• We believe other singular vectors contain pertinent information but have
been unable to get algorithms using more than one singular vector to
perform better than those that use just v1.
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7.4 Cluster Aggregation

• We have tried to combine the results from many of the algorithms men-
tioned above into an adjacency matrix that shows how many times a pair
of documents has been clustered together.

• We are still working on clustering this adjacency matrix, though it has
produced clusters for some data sets that are better than any of the indi-
vidual clustering methods.
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