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1 Introduction

A common question in football is whether a strong rushing or passing offense
is more important in determining the outcome of a game. On the surface, it is
easy to see both sides of the debate. A powerful running game tends to slowly
and deliberately advance the ball down the field, using large amounts of time,
while a strong passing game can produce large gains and high scores.

We look at the question from two perspectives that ultimately produce
conflicting results. In the first, we carry out tests comparing rushing yards and
passing yards as measures of team strength. In the second, we perform the
same tests using measures of rushing and passing efficiency, namely, average
yards per rush and average yards per pass. An analysis as to which is more
valuable will be given after the presentation of the results. A description of
these statistics is given in the next section.

Our first test is to predict National Football League (NFL) games using
four sports ranking systems: the Keener (1993) ranking model, the Massey
(1997) Least Squares model, the Govan et al. (2009) Offense-Defense model,
and the Generalized Markov model (Govan, 2008). The models make pre-
diction based on input statistics, specifically, we will use those mentioned
previously.

As a second test, we consider the correlation between differences in the
above mentioned statistics and differences in scores. After all, if any statistic is
a good measure of team strength, then outgaining an opponent in that statistic
should corresond to outscoring that opponent.

Finally, we examine the fractions of games won by teams that outgained
their opponents in the same statistics. These fractions are akin to the obser-
vational analogues of conditional probabilities.

2 Background

Two common terms associated with sports models are ranking and rating;
each will be used often throughout this paper. A ranking of N teams places
them in order of relative importance, with the best team receiving rank one.
A rating of the same teams describes the degree of relative importance of each
team.

It will also be useful to define rushing and passing yards. Total rushing
yards is simply the sum of the yards gained on each rushing play, remembering
that the number of yards gained on a particular play may be negative. Total
passing yards is the sum of the yards gained on each forward passing play



minus the number of yards lost through sacks of the quarterback. Again,
a passing play may result in negative yardage. We make the distinction of
forward passing play to distinguish from a pitch or pass in which the receiver
is further back on the field than the quarterback, both of which count towards
rushing yardage.

Additionally, we will use statisitcs related to the efficiency of rushing and
passing offenses. Specifically, we will use average yards per rushing play and
average yards per passing play. They are simply rushing yards divided by the
number of rushing plays and passing yards divided by the number of passing
plays.

Many of our results are based on “foresight prediction,” that is, predic-
tion of the outcome of the games in each week, using the data from the previous
weeks. For example, to predict the outcome of games in week five, we load
the data from the first four weeks of the season and use the rankings produced
by the models to predict game outcomes. The “foresight accuracy” for a week
is the percentage of games predicted correctly in that week. The foresight
accuracy for a season is the weighted average (weeks have different numbers
of games) of each of the foresight accuracies from the individual weeks.

3 Summary of the Models

3.1 Keener’s Ranking Method

The Keener (1993) ranking model makes two fundamental assumptions. His
first assumption is that the strength of a team is based upon its interactions
with opponents. He defines the strength of team i to be

si =
1

ni

N
∑

j=1

aijrj (1)

where aij is a non-negative value that depends upon the outcome of the game
between i and j, rj is the rating of team j, ni is the number of games played
by team i, and N is the total number of teams. Keener assigns the value of
aij as follows
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where Sij is the number of points i scored against j. To clarify, if teams i and
j play more than one game, Sij represents the total number of points scored



by i against j. The assignment of aij is complicated, but the underlying logic
is not. Essentially, we want to split the reward for competing between the
two teams. In close games, the split will be fairly even. (Note that in a tie,
the split is exactly half and half). The purpose of the non-linear h function is
to minimize the incentive of the winning team to “run up” the score. The h

function also has the effect of widening the reward gap in close games.
Keener’s second assumption is that the strength of a team should be

proportional to a team’s rating. In equation form

s = Ar = λr (4)

where A is an N×N matrix with aij as components, r is a column vector of N

ratings, and s is a column vector of N strengths. By the Perron-Frobenius The-
orem (Meyer, 2000), this eigenvalue-eigenvector equation will have a unique,
up to a scalar multiple, and positive solution, provided that the matrix A is
non-negative and irreducible. Due to the limited number of games played, it
is likely that the matrix will be reducible during the early weeks of the season.
To ensure irreducibility, we slightly perturb the matrix

Ap = A + εeeT . (5)

After calculating r, we use the ratings to create a ranking of teams that can
be used to predict game outcomes.

3.2 Massey Least Squares Model

The Massey (1997) model makes one fundamental assumption. Namely, the
difference in team’s ratings should be proportional to the difference in points
scored

ri − rj = yk (6)

where ri is the rating of the ith team and y is the difference in points scored
in the game between team i and team j. For simplicity, the constant of
proportionality is assumed to be one. A system of such equations easily admits
itself to matrix form as follows

Xr = y, (7)

where X is a K ×N matrix (K is the total number of games), and where the
kth row contains a one in the column corresponding to the winning team and
a negative one in the column corresponding to the losing team. Additionally,
r is a ratings vector with ri the rating of the ith team and y a vector of point



differences where yk is the point differential in the kth game. To be clear, r is
a column vector of N ratings and y is a column vector of K point differentials.

In most practical applications, the system of equations will be overde-
termined. For example in the NFL, there are 267 games in the season and
only 32 teams; thus, the system will become overdetermined after only a few
weeks of data is loaded. The strategy is to look for the least squares solution
to the system

XTXr = XTy. (8)

The question we must now answer is whether or not Massey’s rating vector
r is unique. Unfortunately, due to the fact that each row sum is zero, the
columns of X are not linearly independent and thus X does not have full
rank. Therefore, there is no unique solution to the least squares problem.

Provided, however, that the matrix is saturated (e =
[

1 1 · · · 1
]T

is the
only nontrivial vector in the nullspace), full rank can be obtained by adding
an additional condition to the system. The simplest solution is to require the
rating vector to sum to zero by appending a row of ones to X and a zero to y.

3.3 Offense-Defense Model

The Offense-Defense model (Govan, 2008) defines offensive rating oi and de-
fensive rating di of team i as follows

oj = m1j

1
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where mij is the number of points scored by j against i. The offensive formula
sums the points scored by a particular team’s offense on each team played,
dividing by the defensive ratings of the corresponding teams. Similarly, the
defensive rating sums the points allowed by a particular defense, dividing by
the offensive ratings of the corresponding teams. A large offensive and small
defensive rating are considered “good.” Thus, as the number of points scored
on a team is divided by the defensive rating of that team, scoring a large
number of points against a good defense will do more for a team’s offensive
rating than scoring the same number of points on a weak defense. Likewise,
holding a good offense to a few points is better for a team’s defensive rating
than holding a poor offense to a few points. We can aggregate the two ratings

with the ratio
oi

di

, which maintains our intuitive belief that a bigger rating is

better.



If we now let o be a column vector of offensive ratings, d be a column
vector of defensive ratings, and M be the N × N matrix with mij as entries,
then these formulae can be expressed recursively for k = 1, 2, . . . as

o(k) = MT 1

d(k−1)
(11)

d(k) = M
1

o(k)
(12)

where
1

d
and

1

o
are the elementwise inverses of d and o, and where we initialize

d(0) =
[

1 1 · · · 1
]T

.
These recursive formulae are equivalent to a row-column stochastic bal-

ancing of M. Thus, as a result of the Sinkhorn-Knopp Theorem (Sinkhorn
and Knopp, 1967), we know that these formulae will converge as k approaches
infinity. The Sinkhorn-Knopp Theorem requires, however, that the matrix
M have total support. A nonnegative N × N matrix B with elements bij

has total support if, for every positive element bij , there is some permutation
σ of the numbers 1, . . . , N such that σ(i) = j and every element of the set
{b1σ(1), . . . , bNσ(N)} is positive. To ensure total support, we slightly perturb
the matrix

Mp = M + εeeT . (13)

3.4 Generalized Markov Model

The Generalized Markov model (Govan, 2008) constructs an N ×N matrix S

where sij is the sum of the score differences in each game that i lost to j. We
then normalize S to make it row stochastic. We can imagine a directed graph,
with teams as nodes and directed edges that are the positive normalized point
spreads. The edges point from loser to winner. The weight of an edge will
be the total loss margin from all games that i lost to j, divided by the total
loss margin for all games that i lost. The interpretation of this graph and
corresponding matrix is that a team “votes for” the teams to which it lost.
Thus, a team with many losses will vote for many other teams and vote most
towards the teams that beat it by the largest margin, while a team with many
wins will have many teams voting for it.

The real strength of the Generalized Markov model is that it can input
several statistics at once, building several S matrices and summing them in a
convex combination, as in

G = α1S1 + α2S2 + · · ·+ αnSn (14)



where, for example, S1 could be the stochastic matrix of score differences, S2

could be the stochastic matrix of passing yard differences, and so on. Since G is
the convex combination of stochastic matrices, it will also be stochastic. Hence,
it will have a unique, up to a scalar multiple, and positive left eigenvector. This
left eigenvector is the limiting probability vector and also our ratings vector.

3.5 Model Validity

We assert the validity of these models, with scores as the input, by comparing
their game prediction accuracies in the 2008 NFL season with the accuracies
of two ESPN analysts, Chris Mortensen and Mike Golic (ESPN, 2009). This
comparison is displayed in Table 1.

Keener Massey Offense-Defense Gen. Markov Mortensen Golic
0.628 0.637 0.630 0.597 0.650 0.609

Table 1: Foresight Accuracies of Models and ESPN Analysts

4 Rushing and Passing Statistics as Indicators

of Team Strength

All of the models discussed above use scores as their primary input. Since our
purpose is to examine the relative importance of rushing and passing offenses,
we will load rushing and passing yards and then average yards per rush and
average yards per pass into the models. To be clear, our goal is to determine
whether rushing or passing is a better game predictor and thus, we believe, a
better indicator of team strength. We do not claim that any of the statistics
we use is a superior indicator when compared to scores.

4.1 Foresight Accuracy in the Models

4.1.1 Justification of Methods

Changing the statistic used in the models does not distort their original inten-
tions. For example, if we change the Offense-Defense model to accept rushing
yards, the offensive rating of a team becomes the sum, over all possible oppo-
nents, of the rushing yards the team gained against an opponent divided by
the opponent’s defensive rating. This is still a logical way of measuring the



team’s offensive strength. The Generalized Markov model is obviously config-
ured to accept any sort of statistic and the Keener model readily adapts as
well. There is only the rare case when a statistic turns out to be negative. We
identified four cases in our rushing and passing yard data, for example, when a
team actually concluded a game with negative total rushing or passing yards.
Since non-negativity of the matrix is required for several of our theorems to
apply, we merely set these negative values to zero. We do not believe that
this measurably affects any of our results, as the largest value changed in the
above example was only negative eighteen.

Adapting the Massey model is the most difficult because of the specific
interpretation that Massey attaches to his ratings. Subtracting the ratings
of two teams is supposed to predict the point spread of a game between the
two teams. If we load, for example, rushing yards into the y vector discussed
previously and assign the X matrix with ones to teams that outgained their
opponents in rushing yards and negative ones to teams that were outgained,
then the ratings will subtract to give the predicted difference in rushing yards.
This presents an interesting question, as outgaining an opponent in rushing
yards does not necessarily correspond to victory. Instead of this interpretation,
however, we consider the ratings to merely indicate the relative strength of the
teams based on the given statistics. While the application of this model may
be farther from the original intent of the author than our other adaptations,
we believe it to be a valid interpretation, and, as we will see in Figure 1, it
produces reasonable results.

In the same way, we may justify using average yards per rush and average
yards per pass as an input statistic in the models.

4.1.2 Results Obtained

Figure 1 shows plots of foresight accuracy for each of the four models over
seven seasons of NFL data, using rushing and passing yards as input. The
average foresight accuracy for the seven year period is displayed in the legend.

It is evident from the plots that rushing yards outperforms passing yards
as a game predictor in all four models. In terms of average foresight accuracy
for all seven years, rushing beats passing by 3.52% in the Keener model, 4.72%
in the Massey model, 3.41% in the Offense-Defense model, 0.86% in the Gen-
eralized Markov model.

Now, Figure 2 shows the same plots, using average yards per rush and
average yards per pass as input.

We can see that the average foresight accuracy of when using average
yards per pass is 4.61% higher in the Keener model, 6.57% higher in the
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Figure 1: Rushing and Passing Yards in the Models

Massey model, 6.22% higher in the Offense-Defense model, and 4.09% higher
in the Generalized Markov model, than the average foresight accuacy when
using average yards per rush. Clearly, our results using yards and our results
using efficiencies conflict one another. The yards data implies that implies
that rushing offense is more important while the efficiency data implies that
passing offense is more important.

Since the Generalized Markov model is designed to use more than one
statistic, we next run it on a convex combination of scores and, individually,
rushing yards, passing yards, average yards per rush and average yards per
pass, as follows

GR = αS + (1 − α)R (15)

GP = αS + (1 − α)P (16)

Gr = αS + (1 − α)r and (17)

Gp = αS + (1 − α)p. (18)
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Figure 2: Rushing and Passing Yards in the Models

For each of the four inputs, we vary α from 0 to 1 to ensure that our choice
of α does not arbitrarily affect the relative accuracies. We now compare the
accuracy of the the model when using yards data and the accuracy of the
model using efficiency data.

Figure 3 is a plot of average foresight accuracy versus α for each. We
denote the average foresight accuracy using GR as AR and the average foresight
accuracy using GP as AP .

Not surprisingly, AR and AP closely agree while α > 0.7 since this is
when a significant majority of the weight is on the score matrix. However,
when α < 0.5, AR > AP . The maximum for AR is 60.56% at α = 0.49 and the
maximum for AP is 59.76% at α = 0.61 so that the maximum for AR is 0.8%
greater than the maximum of AP . Clearly, rushing yards performs better than
passing yards in this application.

Again, we see mixed results, as the yards data tells us that rushing is
more important while the efficiency data tells us passing is more important.
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Figure 3: Scores with Rushing Yards and Passing Yards

Figure 4 plots average foresight accuracy versus α for each. Average
forsight accuracy for Gr is denoted as Ar and average foresight accuracy for
Gp is denoted as Ap.

For the majority of the graph, the Ap > Ar; however, the maximum
value for Ar is 61.11% at α = 0.83, while the maximum value for Ap is 60.83%
at α = 1 (all weight on the scores). So, this test gives mixed results. Overall,
when combined with scores, average yards per pass produces better results
than average yards per rush, but the maximum value is better for average
rush than average pass.

4.2 Correlation with Score Differences

In this section we examine the relative correlation of differences between one
of our statistics and differences in game scores. In the plots in Figure 5, each
point represents one game, where the x-coordinate is the difference in either
rushing or passing yards and the y-coordinate is the difference in game scores.
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Figure 4: Scores with Average Yards per Rush and Average Yards per Pass

If rushing or passing yards is truly important in determining the outcome
of a game, then we expect to see that the more a team outgains another in
yards, the more they will outscore them. Note that we do not need a strong
correlation to draw a conclusion. We simply need one correlation to be stronger
than the other.

It is visually obvious that the data for passing yards contain less of a
trend than the data for rushing yards. The coefficients of determination (often
denoted R2) are 0.0569 for the passing yards data and 0.3333 for the rushing
yards data. Thus, we can conclude that outgaining an opponent in terms of
rushing yards is more correlated to outscoring that opponent than is outgaining
them in terms of passing yards.

Once again, we will perform the same test using average yards per rush
and average yards per pass. The results are visible in Figure 6

Here, we see the same sharp contrast in degree of correlation, but this
time, gaining more yards per pass than an opponent has a stronger correlation
with outscoring that opponent than does gaining more yards per rush. The
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Figure 6: Least-Squares Plots with all Data Points

value of R2 is 0.4701 for average yards per pass and 0.0324 for average yards
per rush.

4.3 Conditional Analysis

In order to analyze the relationship between rushing and passing yards from
another viewpoint, we might consider certain conditional probabilities. For
example, we might compare the conditional probability that a team outscores
its opponent given that it gains more rushing yards than its opponent with
the conditional probability that a team outscores its opponent given that it
gains more passing yards than its opponent. Such a comparison would shed
new light on the correlation between outscoring and outgaining in rushing
yards as compared to that between outscoring and outgaining in passing yards.



However, these probabilities would be very difficult to determine from the
available data. Moreover, they would likely depend on many other factors,
such as the strengths of the respective quarterbacks and the weather.

We can work around these issues by using what are, effectively, observa-
tional analogues of conditional probabilities. In particular, we will consider,
for each season in the NFL, the fraction of games won by teams that did or did
not outgain their opponents in rushing yards, passing yards, or total yards.
These fractions are displayed in Figure 7.

It is apparent from Figure 7 that a team that outrushed its opponent is
more likely to have won than a team that outpassed its opponent by at least
10% in every year. This suggests that outscoring is more strongly correlated
with outgaining in rushing yards than with outgaining in passing yards.

Note that the games that occurred in each season constitute a mere sam-
ple of a diverse population. As such, the fractions of games won under the
given conditions are not necessarily the true probabilities. However, due to
the consistency from year to year, it is reasonable to assume that the observed
general pattern will continue to arise in subsequent years. In particular, ob-
serve that corresponding fractions are relatively constant over the last three
years (2006-2008) as compared to the first four years. It seems as if the be-
havior of game outcome with respect to rushing and passing yards has in some
sense stabilized in recent seasons.

We use the same idea in Figure 8 to examine the fraction of games won
by teams that outgained their opponents in average yards per rush, average
yards per pass, and combinations of the two.

In each of the years, the difference in average pass and average rush
is at least 15%, and the difference in average pass but not average rush and
average rush but not average pass is at least 25%. Thus, it is clear that teams
that outperform their opponent in average yards per pass win more often than
teams that outperform their opponents in average yards per rush. Once again,
the trends are relatively stable over our sample period and we believe that the
same general pattern will continue in subsequent seasons.

5 Conflicting Results

As is now clear, the two perspectives from which we examine our central
question produce conflicting results. When we perform the tests with rushing
and passing yards, rushing yards clearly seem more important to a team’s
strength, but when we use rushing and passing efficiencies, passing yards is
clearly a superior indicator of team strength. Fortunately, we can still draw a
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Figure 7: Fractions of games won by teams that outgained their opponents in
rushing yards, passing yards, or total yards.

srong conclusion if we examine the statistics that produce them in more detail.
Initially, we performed the analysis that follows using only rushing and

passing yards. It was suggested to us by the editor, however, that such an
approach could produce biased results. What we were trying to say was that
outgaining an opponent in, say, rushing yards should correlate with outscor-
ing an opponent. In the NFL, however, the causation is often in the other
direction; teams that are ahead tend to run the ball to slow the pace of the
game and burn time off of the clock. Teams that are behind tend to pass in
an effort to quickly score. So, our results were biased because winning causes
teams to run the ball late in the game while losing causes teams to pass the
ball late in the game. Thus, it is often the case that winning teams outgain in
rushing yards, while losing teams outgain in passing yards, but the difference
in yards gained did not always cause the outcome.

To eliminate this bias, we use measures of rushing and passing efficiency.
These statistics are not subject to the aforementioned problem. For example,
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Figure 8: Fractions of games won by teams that outperformed their opponents
in average yards per rush or average yards per pass.

a team behind for the whole game may pass the ball often and gain a dispro-
portionate number of passing yards. However, the mere act of doing something
a lot would not necessarily enhance their efficiency statistic, average yards per
pass, since we divide by the total number of passing plays. Thus, we gain a
much better sense of how good the passing offense is, rather than just how
many yards they gained. We hold that this is a better measure of the strength
of a team’s offense than yards gained.

In light of these arguments, we will use the results obtianed when using
the efficiencies to draw our conclusions. We have included all the information
in an attempt to more fully address the question and because the different
results and the reasons for them are interesting in and of themselves.



6 Interpretation of Results

At this point, it may be helpful to remind ourselves of the exact question we
have been attempting to answer. We have sought to determine whether the
rushing or passing offense is a better indicator of overall team strength. What
we have not attempted to answer is whether rushing or passing is a better
offensive strategy. This question has been proposed by Schatz (2005) and
explored by Alamar (2006) and Rockerbie (2008). The difference is subtle but
critical. For example, based on our results (from the efficiency perspective), a
team might work on creating a highly efficient passing offense. After all, we
found that when teams had a higher average gain per passing play, they won
more than 70% of the time. However, such a focus could change the conditions
on which our conclusions are based and make our results less valuable or
worthless.

Instead we take what one might call the “gambler’s perspective,” as
opposed to the “coach’s perspective.” We have been attempting to identify
statistical trends in the NFL that could allow us to better predict game out-
comes. An intelligent gambler could look at our results and decide to base part
of his betting decision on who he believes has a more efficient passing attack,
which is a valid application of our conclusions. We are not taking the coach’s
perspective and attempting to tell teams how to play the game. A concerted
effort to use our results as a coaching strategy would most likely change their
usefulness as game predictors. The idea of the best offensive strategy is an
interesting question, but we do not believe that our results answer it.

7 Conclusion

The central question of our paper has been whether the rushing or passing
offense is a better game predictor and thus superior indicator of team strength.
Based on the methods that we used to investigate the question, the answer
seems clear. When comparing the efficiencies, passing efficiency is a better
indicator of team strength than rushing efficiency in every manner in which
we compared them. In each of the four models we used, passing efficiency
clearly outperformed rushing efficiency. Additionally, gaining more yards per
passing play is more correlated with outscoring an opponent than is gaing more
yards per rushing play. Finally, examining the historical trends associated with
outgaining an opponent in a particular statistic clearly shows that in the past
seven NFL seasons, teams that outperformed their opponent in average yards
per pass won a higher percentage of games than teams that outperformed



their opponent in average yards per rush. The only evidence against our claim
is the mixed results from the second application of the Generalized Markov
model. Recall that though the accuracy using scores and passing efficiency was
generally higher, the maximum average foresight accuracy was higer using
scores and rushing efficiency than when using scores and passing efficiency.
Thus, if one wishes to predict the outcome of a particular NFL game and can
gauge the relative strengths of the two team’s rushing and passing games, one
is more likely to choose the winner if one picks the team with the stronger
passing game. For anyone serious about the business of game prediction, more
variables must be taken into account, but the relative strengths of the teams’
passing games are certainly important to consider.
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