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1. Introduction. Suppose that the stationary distribution vector

d)T = (¢1a¢2a-"7¢m)

for an m-state homogeneous irreducible Markov chain with transition probability ma-
trix Q,,, «m 1S known, but the chain requires updating by altering some of its transition
probabilities or by adding or deleting some states. Suppose that the updated transi-
tion probability matrix P,,«, is also irreducible. The updating problem is to compute
the updated stationary distribution 77 = (71,79, ..., m,) for P by somehow using the
components in (,bT to produce w7 with less effort than that required by starting from
scratch.

2. The Power Method. For the simple case in which the updating process calls

for perturbing transition probabilities in Q to produce the updated matrix P without
creating or destroying states, restarting the power method is a possible updating
technique. In other words, simply iterate with the new transition matrix but use the
old stationary distribution as the initial vector
(1) XJT+1 = ijP with xI = ¢”.
Will this produce an acceptably accurate approximation to w7 in fewer iterations
than are required when an arbitrary initial vector is used? To some degree this is
true, but intuition generally overestimates the extent, even when updating produces
a P that is close to Q. For example, if the entries of P — Q are small enough to ensure
that each component 7; agrees with ¢; in the first significant digit, and if the goal
is to compute the update 7’ to twelve significant places by using (1), then about
11/R iterations are required, whereas starting from scratch with an initial vector
containing no significant digits of accuracy requires about 12/R iterations, where
R = —log; |A2] is the asymptotic rate of convergence with Ay being the subdominant
eigenvalue of P. In other words, the effort is reduced by about 8% for each correct
significant digit that is built into x!' [22]. In general, the restarted power method is
not particularly effective as an updating technique, even when the updates represent
small perturbations.

3. Rank-One Updating. When no states are added or deleted, the updating
problem can be formulated in terms of updating Q one row at a time by adapting the
Sherman—Morrison rank-one updating formula [29] to the singular matrix A = I— Q.
The mechanism for doing this is by means of the group inverse A# for A, which is often
involved in questions concerning Markov chains [6, 9, 11, 14, 23, 25, 27, 28, 31, 32, 38].
A# is the unique matrix satisfying AA¥A = A, A# AA# = A# and AA# = A#A.

THEOREM 3.1. [31]. If the ith row 7 of Q is updated to produce pT = q7 — 87,
the ith row of P, and if ¢T and ' are the respective stationary probability distribu-
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tions of Q and P, then then w1 = o7 — €T, where

®i

2 el = | ——y
® 1+67A7,

] 6T AT (A% = the ith column of A#).

Multiple row updates to Q are accomplished by sequentially applying this formula one
row at a time, which means that the group inverse must be sequentially updated. The
formula for updating (I — Q)* to (I —P)* is as follows:

A7 €T T AT
(3) (I-P)#* = A% +ee’ [A# — 71] — —:Z;E ,  where = € P S *,

If more than just one or two rows are involved, then Theorem 3.1 is not compu-
tationally efficient. If every row needs to be touched, then using (2) together with (3)
requires O(n?) floating point operations, which is comparable to the cost of starting
from scratch. Other updating formulas exist [9, 12, 16, 19, 36], but all are variations
of a Sherman—Morrison type of formula, and all are O(n3) algorithms for a general
update. Moreover, rank-one updating techniques are not easily adapted to handle the
creation or destruction of states.

4. Aggregation. Consider an irreducible n-state Markov chain whose state
space has been partitioned into k disjoint groups § = G1UG>U- - UG}, with associated
transition probability matrix

G, Gy - Gy
Gi1 (P11 P -+ Py
G| Par Py oo Py .
(4) Poxn = . . o . (square diagonal blocks).
G \Pr1 Pra -+ Py

This parent chain induces k smaller Markov chains called censored chains. The cen-
sored chain associated with G; is defined to be the Markov process that records the
location of the parent chain only when the parent chain visits states in G;. Visits to
states outside of G; are ignored. The transition probability matrix for the ith censored
chain is the ith stochastic complement [26] defined by

(5) S, =P + P, I-P) Py,

in which P;, and P,; are, respectively, the ith row and the ith column of blocks with
P;; removed, and P} is the principal submatrix of P obtained by deleting the ith row
and 7th column of blocks. For example, if S = G1 UG>, then the respective transition
matrices for the two censored chains are the two stochastic complements

S; =Py + Pio(I—Pa) 'Py; and Sy =Py + Py (I—Pyy) 'Ppo.

In general, if the stationary distribution for P is #? = («] |wd | -+ |7} ) (par-
titioned conformably with P), then the ith censored distribution (the stationary dis-
tribution for S;) is

T
TT
(6) sl = 5 where e is an appropriately sized column of ones [26].
nle
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For aperiodic chains, the jth component of s is the limiting conditional probability
of being in the jth state of group G; given that the process is somewhere in G;.

Each group G; is compressed into a single state in a smaller k-state aggregated
chain by squeezing the original transition matrix P down to an aggregated transition
matrix

S{Pue slTPlke
(7) A = : : ;
sngle s{Pkke

which is stochastic and irreducible whenever P is [26]. For aperiodic chains, transitions
between states in the aggregated chain defined by A correspond to transitions between
groups G; in the parent chain when the parent chain is in equilibrium. The remarkable
feature of aggregation is that it allows the parent chain to be decomposed into k
small censored chains that can be independently solved, and the resulting censored
distributions s} can be combined with the stationary distribution of A to construct
the parent stationary distribution #w”. This is the aggregation theorem.

THEOREM 4.1. (the aggregation theorem [26]) If P is the block-partitioned tran-
sition probability matriz (4) for an irreducible n-state Markov chain whose stationary

probability distribution is
nl = (wl |7l |- |=wF) (partitioned conformably with P),

and if T = (a1, q9,...,q1) is the stationary distribution for the aggregated chain
defined by the matriz Agxy in (7), then o = w! e, and the stationary distribution for
P s

7l = (a1s] |aos] | -+ |axs])
where s! is the censored distribution for the stochastic complement S; in (5).

5. Approximate Updating by Aggregation. Aggregation as presented in
Theorem 4.1 is mathematically elegant but numerically inefficient because costly in-
versions are embedded in the stochastic complements (5) that are required to produce
the censored distributions siT. Consequently, the approach is to derive computation-
ally cheap estimates of the censored distributions as described below.

In many large-scale problems the effects of updating are localized. That is,
not all stationary probabilities are equally affected—some changes may be signifi-
cant while others are hardly perceptible—e.g., this is generally true in applications
such as Google’s PageRank Problem [21] in which the stationary probabilities obey a
power-law distribution (discussed in section 7.2).

Partition the state space of the updated chain as S = G U G, where G contains
the states that are most affected by updating along with any new states created by
updating—techniques for determining these states are discussed in section 7. Some
nearest neighbors of newly created states might also go into GG. Partition the updated
(and reordered) transition matrix P as

P o D1g P, -
G G
- p_ e (Pu Plz)
Pg1 Pag P,. G \ P21 Pa
P, | Pag | Pa
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where

pbir - DPig Pl*
Pu=| : - |, Pe=| 1 |, and Py =P, Py).

pgl pgg Pg*

Let (,bT and 77 be the respective stationary distributions of the pre- and post-updated

—T
chains, and let if ¢ and 7’ contain the respective stationary probabilities from ¢T
and 77 that correspond to the states in G. The stipulation that G contains the nearly
unaffected states translates to saying that

—T
T~ .

When viewed as a partitioned matrix with g + 1 diagonal blocks, the first g diagonal
blocks in P are 1 x 1, and the lower right-hand block is the (n — g) x (n — g) matrix
P2, that is associated with the states in G. The stochastic complements in P are

Sl == Sg = 1, and Sg+1 = P22 + P21 (I — P11)71P12.

Consequently, the aggregated transition matrix (7) becomes

P11 Dig Pie
(9) A=
Pg1 T DPgg Pg*e
s'Pa | o | 8TPy | sTPae i
( P Pize ) ( P Pise )
= = ,
STP21 STP22e STP21 1-— STP216
where s” is the censored distribution derived from the only significant stochastic

complement S = S, . If the stationary distribution for A is

aT = ((Xl, .. .,Oég,ag+1)7

then Theorem 4.1 says that the stationary distribution for P is

(10) 7rT:(7r1,...7rg\7rg+17...,77n): (771,...77rg\FT) = (al,...,ag|fT)

. . — —-T .
Since s] = 7! /nle, and since 7 ~ ¢, it follows that

(11) §' = =xs

is a good approximation to s” that is available from the pre-updated distribution.
Using this in (9) produces an approximate aggregated transition matrix

(12) A:( P Proe )

§TP21 1-— éTPgle
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Notice that

_ A — 0 0 _ (0 . T _ T T
A A—((sTP21 _5TP219>—<6T>P21(I| e), where & =s’ —8§".

Consequently, A — A and s” — 87 are of the same order of magnitude, so the station-

ary distribution a’ of A can provide a good approximation to o, the stationary
distribution of A. That is,

« :(dl,dQ,...,dg,ngrl)Qﬁ (al,...,ag,agH) :aT.
~ . . i1 — =T . . .
Use &; ~ a; for 1 <i < g in (10) along with T ~ ¢ to obtain the approximation
~T - o~ ~ T
(13) ml ~ 7 :(al,ag,...,agw) )

Thus an approximate updated distribution is obtained. The degree to which this

—T
approximation is accurate clearly depends on the degree to which & ~ ¢ . If (13)
does not provide the desired accuracy, it can be viewed as the first step in an iterative
aggregation scheme described below that performs remarkably well.

6. Updating by Iterative Aggregation. Iterative aggregation as described
in [38] is not a general-purpose technique, because it usually does not work for chains
that are not nearly uncoupled. However, iterative aggregation can be adapted to the
updating problem, and these variations work extremely well, even for chains that are
not nearly uncoupled. This is in part due to the fact that the approximate aggregation
matrix (12) differs from the exact aggregation matrix (9) in only one row. Our iterative
aggregation updating algorithm is described below.

Assume that the stationary distribution ¢’ = (¢1,¢2,...,dm) for some irre-
ducible Markov chain C is already known, perhaps from prior computations, and
suppose that C needs to be updated. As in earlier sections, let the transition prob-
ability matrix and stationary distribution for the updated chain be denoted by P
and 7l = (7, mo,...,m,), respectively. The updated matrix P is assumed to be
irreducible. It is important to note that m is not necessarily equal to n because
the updating process allows for the creation or destruction of states as well as the
alteration of transition probabilities.

THE ITERATIVE AGGREGATION UPDATING ALGORITHM
Initialization

i. Partition the states of the updated chain as S = G'U G and reorder P as
described in (8)

.. =T -
ii. ¢ +«— the components from d)T that correspond to the states in G

-1 , =T e . . .
iii. s «— ¢ /(¢ e) (an initial approximate censored distribution)
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Iterate until convergence

P Pioe
LA sP 1-s"Pye (g=1G])
2 5/ (g r1x(g+)
2. a® «— (a1, as,...,a4,ag+1)  (the stationary distribution of A)
3. xT — (al,ag, ce 0y ag+1sT)

4. YT — xTP  (see note following the algorithm)

5. If ||op" — xT|| < 7 for a given tolerance 7, then quit—else s” «—— ¥ /9T e
and go to step 1

Note concerning step 4. Step 4 is necessary because the vector x”? generated in step
3 is a fixed point in the sense that if Step 4 is omitted and the process is restarted
using x” instead of wT, then the same x” is simply reproduced at Step 3 on each
subsequent iteration. Step 4 has two purposes—it moves the iterate off the fixed
point while simultaneously contributing to the convergence process. That is, the
! resulting from step 4 can be used to restart the algorithm as well as produce a
better approximation because applying a power step makes small progress toward the
stationary solution. In the past, some authors [38] have used Gauss—Seidel in place
of the power method at Step 4.

While precise rates of convergence for general iterative aggregation algorithms
are difficult to articulate, the specialized nature of our iterative aggregation updating
algorithm allows us to easily establish its rate of convergence. The following theorem
shows that this rate is directly dependent on how fast the powers of the one significant
stochastic complement S = Pyy + Po; (I — P11) " !P15 converge. In other words, since
S is an irreducible stochastic matrix, the rate of convergence is completely dictated
by the magnitude and Jordan structure of the largest subdominant eigenvalue of S.

THEOREM 6.1. [22] The iterative aggregation updating algorithm defined above
converges to the stationary distribution ©° of P for all partitions S = GUG. The
rate at which the iterates converge to ™' is exactly the rate at which the powers
S™ converge, which is governed by the magnitude and Jordan structure of largest
subdominant eigenvalue A2(S) of S. If A2(S) is real and simple, then the asymptotic
rate of convergence is R = —logq |A2(S)].

7. Determining The Partition. The iterative aggregation updating algorithm
is globally convergent, and it never requires more iterations than the power method
to attain a given level of convergence [17]. However, iterative aggregation clearly
requires more work per iteration than the power method. One iteration of iterative
aggregation requires forming the aggregation matrix, solving for its stationary vector,
and executing one power iteration. The key to realizing an improvement in iterative
aggregation over the power method rests in properly choosing the partition S = GUG.
As Theorem 6.1 shows, good partitions are precisely those that yield a stochastic
complement S = Pggy + Po; (I — P11) " 1Pj2 whose subdominant eigenvalue \o(S) is
small in magnitude.

Experience indicates that as |G| = g (the size of P11) becomes larger, iterative
aggregation tends to converge in fewer iterations. But as g becomes larger, each
iteration requires more work, so the trick is to strike an acceptable balance. A small
g that significantly reduces |A2(S)| is the ideal situation.
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Even for moderately sized problems there is an extremely large number of possible
partitions, but there are some useful heuristics that can help guide the choice of G that
will produce reasonably good results. For example, a relatively simple approach is to
take G to be the set of all states “near” the updates, where “near” might be measured
in a graph theoretic sense or else by transient flow [7] (i.e., using the magnitude of
entries of x|, = x] P after j iterations, where j is small, say 5 or 10). In the absence
of any other information, this naive strategy is at least a good place to start. However,
there are usually additional options that lead to even better “G-sets,” and some of
these are described below.

7.1. Partitioning by differing time scales. In most aperiodic chains, evolu-
tion is not at a uniform rate, and consequently most iterative techniques, including
the power method, often spend the majority of the time in resolving a small number
of components—the slow evolving states. The slow states can be isolated either by
monitoring the process for a few iterations or by theoretical means [22]. If the slow
states are placed in G while the faster-converging states are lumped into G, then the
iterative aggregation algorithm concentrates its effort on resolving the smaller number
of slow-converging states.

In loose terms, the effect of steps 1-3 in the iterative aggregation algorithm is
essentially to make progress toward achieving a steady state for a smaller chain con-
sisting of just the slow states in G together with one additional lumped state that
accounts for all fast states in G. The power iteration in step 4 moves the entire process
ahead on a global basis, so if the slow states in G are substantially resolved by the
relatively cheaper steps 1—3, then not many of the more costly global power steps are
required to push the entire chain toward its global equilibrium. This is the essence
of the original Simon—Ando idea first proposed in 1961 and explained and analyzed
in [26, 37]. As g = |G| becomes smaller relative to n, steps 1-3 become significantly
cheaper to execute, and the process converges rapidly in both iteration count and
wall-clock time. Examples and reports on experiments are given in [22].

In some applications the slow states are particularly easy to identify because they
are the ones having the larger stationary probabilities. This is a particularly nice
state of affairs for the updating problem because we have the stationary probabilities
from the prior period at our disposal, and thus all we have to do to construct a good
G-set is to include the states with prior large stationary probabilities and throw in
the states that were added or updated along with a few of their nearest neighbors.
Clearly, this is an advantage only when there are just a few “large” states. However,
it turns out that this is a characteristic feature of scale-free networks with power-law
distributions [1, 2, 5, 10] discussed below.

7.2. Scale-free networks. A scale-free networks with a power-law distribution
is a network in which the number of nodes n(l) having I edges (possibly directed) is
proportional to I=* where k is a constant that does not change as the network expands
(hence the term “scale-free”). In other words, the distribution of nodal degrees obeys
a power-law distribution in the sense that

1
Pldeg(N) = d] x o for some k > 1 (ox means “proportional to”).
A Markov chain with a power-law distribution is a chain in which there are rel-
atively very few states that have a significant stationary probability while the over-
whelming majority of states have nearly negligible stationary probabilities. Google’s
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PageRank application [21, 22] is an important example. Consequently, when the sta-
tionary probabilities are plotted in order of decreasing magnitude, the resulting graph
has a pronounced “L-shape” with an extremely sharp bend. It is this characteristic
“L-shape” that reveals a near optimal partition S = G UG for the iterative aggrega-
tion updating algorithm presented in section 6. Experiments indicate that the size
of the G-set used in our iterative aggregation updating algorithm is nearly optimal
around a point that is just to the right-hand side of the pronounced bend in the
L-curve. In other words, an apparent method for constructing a reasonably good
partition S = G U G for the iterative aggregation updating algorithm is as follows.

1. First put all new states and states with newly created or destroyed connec-
tions (perhaps along with some of their nearest neighbors) into G.

2. Add other states that remain after the update in order of the magnitude of
their prior stationary probabilities up to the point where these stationary
probabilities level off.

Of course, there is some subjectiveness to this strategy. However, the leveling-off
point is relatively easy to discern in distributions having a sharply defined bend in the
L-curve, and only distributions that gradually die away or do not conform to a power
law are problematic. If, when ordered by magnitude, the stationary probabilities

for an irreducible chain conform to a power-law distribution so that there are constants
a > 0 and k > 0 such that 7(i) ~ ai~*, then the “leveling-off point” 4;c,e; can be
taken to be the smallest value for which |dn(7)/di| ~ € for some user-defined tolerance

€. That is, jepe; = (k:a/e)l/kH. This provides a rough estimate of gop:, the optimal
size of GG, but empirical evidence suggests that better estimates require a scaling factor
o(n) that accounts for the size of the chain; i.e.,

Jopt = (1) (k_a) v ~ o(n) (km—(l)) v .

€ €

More research and testing is needed to resolve some of these issues.
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