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Abstract

The purpose of this paper is to review and compare the existing perturbation bounds for the
stationary distribution of a finite, irreducible, homogeneous Markov chain. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

Let P be the transition probability matrix of an n state finite, irreducible, homo-
geneous Markov chain. The stationary distribution vector of P is the unique positive
vector πT satisfying

πTP = πT,

n∑
j=1

πj = 1.
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Suppose P is perturbed to a matrix P̃ , that is the transition probability matrix of an n
state finite, irreducible, homogeneous Markov chain as well. Denoting the stationary
distribution vector of P̃ by π̃ , the goal is to describe the change π − π̃ in the sta-
tionary distribution in terms of the change E ≡ P − P̃ in the transition probability
matrix. For suitable norms,

‖π − π̃‖ � κ‖E‖
for various different condition numbers κ . We review eight existing condition num-
bers κ1, . . . , κ8. Most of the condition numbers we consider are expressed in terms
of either the fundamental matrix of the underlying Markov chain or the group inverse
of I − P . The condition number κ8 is expressed in terms of mean first passage times,
providing a qualitative interpretation of error bound. In Section 4, we compare the
condition numbers.

2. Notation

Throughout the article the matrix P denotes the transition probability matrix of an
n state finite, irreducible, homogeneous Markov chain C and π denotes the stationary
distribution vector. Then

πTP = πT, π > 0, πTe = 1,

where e is the column vector of all ones. The perturbed matrix P̃ = P − E is the
transition probability matrix of another n state finite, irreducible, homogeneous
Markov chain C̃ with the stationary distribution vector π̃ :

π̃TP̃ = π̃T, π̃ > 0, π̃Te = 1.

The identity matrix of size n is denoted by I. For a matrix B, the (i, j) component of
B is denoted by bij .

The 1-norm ‖v‖1 of a vector v is the absolute entry sum, and the ∞-norm ‖B‖∞
of a matrix B is its maximum absolute row sum.

3. Condition numbers of a Markov chain

The norm-wise perturbation bounds we review in this section are of the following
form:

‖π − π̃‖p � κl‖E‖q,
where (p, q) = (∞,∞) or (1,∞), depending on l.
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Most of the perturbation bounds we will consider are in terms of one the two
matrices related to the chain C: the fundamental matrix and the group inverse of
A ≡ I − P . The fundamental matrix of the chain C is defined by

Z ≡ (A + eπT)−1.

The group inverse of A is the unique square matrix A# satisfying

AA#A = A, A#AA# = A#, AA# = A#A.

The lists of the condition numbers κl and the references are as follows:

κ1 = ‖Z‖∞ Schweitzer [17]

κ2 = ‖A#‖∞ Meyer [12]

κ3 = maxj (a#
jj − mini a#

ij )

2
Haviv and van Heyden [5]

Kirkland et al. [9]
κ4 = maxi,j |a#

ij | Funderlic and Meyer [4]

κ5 = 1

1 − τ1(P )
Seneta [21]

κ6 = τ1(A
#) = τ1(Z) Seneta [22]

κ7 = minj ‖A−1
(j)‖∞

2
Ipsen and Meyer [6]

Kirkland et al. [9]

κ8 = 1
2 maxj

[
maxi /=j mij

mjj

]
Cho and Meyer [1]

where mij , i /= j, is the mean first passage time from state i to state j, and mjj is
the the mean return time state j.

3.1. Schweitzer [17]

Kemeny and Snell [8] call Z the fundamental matrix of the chain because most of
the questions concerning the chain can be answered in terms of Z. For instance, the
stationary distribution vector of the perturbed matrix P̃ can be expressed in terms of
π and Z:

π̃T = πT(I + EZ)−1 and πT − π̃T = π̃TEZ. (3.1)

Eq. (3.1), by Schweitzer [17], gives the first perturbation bound:

‖π − π̃‖1 �‖Z‖∞‖E‖∞.
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We define

κ1 ≡ ‖Z‖∞.

3.2. Meyer [12]

The second matrix related to C is the group inverse of A. In his papers [11,12],
Meyer showed that the group inverse A# can be used in a similar way Z is used, and,
since

Z = A# + eπT,

‘all relevant information is contained in A#, and the term eπT is redundant ’ [14]. In
fact, in the place of (3.1), we have

π̃T = πT(I + EA#)−1 and πT − π̃T = π̃TEA#, (3.2)

and the resulting perturbation bound is [12]

‖π − π̃‖1 � ‖A#‖∞ ‖E‖∞.

We define the second condition number

κ2 ≡ ‖A#‖∞.

3.3. Haviv and van Heyden [5] and Kirkland et al. [9]

The perturbation bound in this section is derived from (3.2) with a use of the
following lemma:

Lemma 3.1. For any vector d and for any vector c such that cTe = 0,

|cTd| � ‖c‖1
maxi,j |di − dj |

2
.

The resulting perturbation bound is

‖π − π̃‖∞ �
maxj (a#

jj − mini a#
ij )

2
‖E‖∞.

(cf. Refs. [5,9].) We define

κ3 ≡ maxj (a#
jj − mini a#

ij )

2
.
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3.4. Funderlic and Meyer [4]

Eq. (3.2) provides a component-wise bound for the stationary distribution vector:

|πj − π̃j | � max
i

|a#
ij | ‖E‖∞,

which leads us to

‖π − π̃‖∞ � max
i,j

|a#
ij | ‖E‖∞.

Funderlic and Meyer [4] called the number

κ4 ≡ max
i,j

|a#
ij |

the chain condition number.
The behaviour of κ4 is provided by Meyer [13,14]. He showed that the size of

κ4 is primarily governed by how close the subdominant eigenvalues of the chain are
to 1. (This is not true for arbitrary matrices. For an example, see [14, p.716].) To
be precise, denoting the eigenvalues of P by 1, λ2, . . . , λn, the lower bound and the
upper bound of κ4 are given by

1

n mini |1 − λi | � max
i,j

|a#
ij | <

2(n − 1)∏
i (1 − λi)

. (3.3)

Hence, if the chain is well-conditioned, then all subdominant eigenvalues must be
well separated from 1, and if all subdominant eigenvalues are well separated from 1,
then the chain must be well-conditioned.

In [13,14], it is indicated that the upper bound 2(n − 1)/
∏

i (1 − λi) in (3.3) is a
rather conservative estimate of κ4. If no single eigenvalue of P is extremely close to
1, but enough eigenvalues are within range of 1, then 2(n − 1)/

∏
i (1 − λi) is large,

even if the chain is not too badly condition. Seneta [23] provides a condition number
and its bounds to overcome this problem. (See Section 3.6.)

3.5. Seneta [21]

The condition numbers κ1, κ2, and κ4 are in terms of matrix norms. Seneta [21],
however, proposed the ergodicity coefficient instead of the matrix norm. The ergod-
icity coefficient τ1(B) of a matrix B with equal row sums b is defined by

τ1(B) ≡ sup
‖v‖1=1
vTe=0

‖vTB‖1.
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Note that τ1(B) is an ordinary norm of B on the hyperspace Hn ≡ {v : v ∈ Rn, vTe =
0} of Rn. eigenvalues are to b. For more discussion and study, we refer readers to
[2,3,7,10,15,16,18–23,25,26].

For the stochastic matrix P, the ergodicity coefficient satisfies 0 � τ1(P ) � 1. In
case of τ1(P ) < 1, we have a perturbation bound in terms of the ergodicity coeffi-
cient of P [21]:

‖π − π̃‖1 � 1

1 − τ1(P )
‖E‖∞. (3.4)

(For the case τ1(P ) = 1, see [22].) We denote

κ5 ≡ 1

1 − τ1(P )
.

3.6. Seneta [22]

In the previous parts we noted that the group inverseA# ofA = I − P can be used
in place of Kemeny and Snell’s fundamental matrix Z. In fact, if we use ergodicity
coefficients as a measure of sensitivity of the stationary distribution, then Z and A#

give exactly the same information:

κ6 ≡ τ1(A
#) = τ1(Z),

which is the condition number in the perturbation bound given by Seneta [22]:

‖π − π̃‖1 � τ1(A
#) ‖E‖∞ (= τ1(Z) ‖E‖∞).

In Section 3.4, we observed that the size of the condition number κ4 = maxi,j |a#
ij |

is governed by the closeness of the subdominant eigenvalues of P to 1, giving the
lower and upper bound for κ4. However, the problem of overestimating the upper
bound for κ4 occurs if enough eigenvalues of P are within the range of 1, even if no
single eigenvalue λi of P is close to 1. The following bounds for κ5 overcome this
problem:

1

mini |1 − λi | �τ1(A
#)�

∑
i

1

1 − λi
� n

mini |1 − λi | .

Unlike the upper bound (3.3) for κ4, the far left upper bound for κ6 takes only the
closest eigenvalue to 1 into account. Hence, it shows that as long as the closest ei-
genvalue of P is not close to 1, the chain is well-conditioned.
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3.7. Ipsen and Meyer [6], and Kirkland et al. [9]

Ipsen and Meyer [6] derived a set of perturbation bounds and showed that all sta-
tionary probabilities react in a uniform manner to perturbations in the transition prob-
abilities. The main result of their paper is based on the following component-wise
perturbation bounds:∣∣∣∣πj − π̃j

πj

∣∣∣∣�‖A−1
(j)‖∞ ‖E‖∞, for allj = 1, 2, . . . , n,

(3.5)
|πk − π̃k|�min

j
‖A−1

(j)‖∞ ‖E‖∞, for all k = 1, 2, . . . , n,

where A(j) is the principal submatrix of A obtained by deleting the jth row and
column from A.

Kirkland et al. [9] improved the perturbation bound in (3.5) by a factor of 2:

‖π − π̃‖∞<
minj ‖A−1

(j)‖
2

‖E‖∞,

giving the condition number

κ7 ≡ minj ‖A−1
(j)‖∞

2
.

3.8. Cho and Meyer [1]

In the previous sections, we saw a number of perturbation bounds for the station-
ary distribution vector of an irreducible Markov chain. Unfortunately, they provide
little qualitative information about the sensitivity of the underlying Markov chain.
Moreover, the actual computation of the corresponding condition number is usually
expensive relative to computation of the stationary distribution vector itself.

In this section a perturbation bound is presented in terms of the structure of the
underlying Markov chain. To be more precise, the condition number κ is in terms of
mean first passage times.

For an n-state irreducible Markov chain C, the mean first passage time mij from
state i to state j (j /= i) is defined to be the expected number of steps to enter in
state j for the first time, starting in state i. The mean return time mjj of state j is the
expected number of steps to return to state j for the first time, starting in state j.

Using the relationship

mjj = 1

πj
and a#

ij = a#
jj − πjmij , i /= j,

we obtain the perturbation bound
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‖π − π̃‖∞ � 1

2
max
j

[
maxi /=j mij

mjj

]
‖E‖∞

(cf. [1]). We define

κ8 ≡ 1

2
max
j

[
maxi /=j mij

mjj

]
.

Viewing sensitivity in terms of mean first passage times can sometimes help prac-
titioners decide whether or not to expect sensitivity in their Markov chain models
merely by observing the structure of the chain without computing or estimating con-
dition numbers. For example, consider chains consisting of a dominant central state
with strong connections to and from all other states. Physical systems of this type
have historically been called mammillary systems (see [24,27]). The simplest exam-
ple of a mammillary Markov chain is one whose transition probability matrix has the
form

P =




1 − p1 0 · · · 0 p1
0 1 − p2 · · · 0 p2
...

...
. . .

...
...

0 0 · · · 1 − pk pk
q1 q2 · · · qk 1 − ∑

j qj


 (3.6)

in which the pi’s and qi’s are not unduly small (say, pi > .5 and qi ≈ 1/k). Mean
first passage times mij , i �= j, in mammillary structures are never very large. For
example, in the simple mammillary chain defined by (3.6) it can be demonstrated
that

mij =




1
pi

when j = k + 1,

1+σ
qj

− 1
pj

when i = k + 1,

1+σ
qj

+ 1
pi

− 1
pj

when i, j �= k + 1,

where σ =
k∑

h=1

qh

ph
.

Since eachmjj � 1, it is clear that κ8 cannot be large, and consequently no stationary
probability can be unduly sensitive to perturbations in P. It is apparent that similar
remarks hold for more general mammillary structures as well.

4. Comparison of condition numbers

In this section, we compare the condition numbers κl . The norm-wise perturbation
bounds in Section 3 are of the following form:

‖π − π̃‖p � κl‖E‖q,
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where (p, q) = (∞,∞), or (1,∞), depending on l. (For κ4, a strict inequality holds.)
The purpose of this section is simply to compare the condition numbers appearing in
those norm-wise bounds. Therefore we use the form

‖π − π̃‖∞
‖E‖∞

�κl

for all condition numbers although some of the bounds are tighter in this form. (See
Remark 4.1.)

Lemma 4.1.

(a) maxj maxi,k |a#
ij − a#

kj | = maxj (a#
jj − mini a#

ij ),

(b)
maxj (a#

jj − mini a#
ij )

2
� max

i,j
|a#
ij | < max

j
(a#

jj − min
i

a#
ij ),

(c) maxi,j |a#
ij | � ‖A#‖∞,

(d) maxj (a#
jj − mini a#

ij ) � τ1(A
#),

(e) τ1(A
#) � n

max
j

(a#
jj − max

i
a#
ij )

2 ,

(f) τ1(A
#) � ‖A#‖∞,

τ1(A
#) � ‖Z‖∞,

τ1(A
#) � 1

1 − τ1(P )
,

(g) ‖A#‖∞ − 1 � ‖Z‖∞ � ‖A#‖∞ + 1.

Proof. (a) Using a symmetric permutation, we may assume that a particular proba-
bility occurs in the last position of π . Partition A and π as follows:

A =
(
A(n) c

dT ann

)
, π =

(
π(n)
πn

)
,

where A(n) is the principal matrix of A obtained by deleting the nth row and column
from A. Since rank A = n − 1, the relationship ann = dTA−1

(n)c holds, so that

A# =

(I − eπT

(n))A
−1
(n)(I − eπT

(n)) −πn(I − eπT
(n))A

−1
(n)e

−πT
(n)A

−1
(n)(I − eπT

(n)) πnπ
T
(n)A

−1
(n)e


 .

Hence

a#
in =




−πne
T
i A

−1
(n)e + πnπ

T
(n)A

−1
(n)e, i /= n,

πnπ
T
(n)A

−1
(n)e, i = n,

(4.1)
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where ei is the ith column of I. By M-matrix properties, it follows that A−1
(n) > 0 so

that πneT
i A

−1
(n)e, πnπT

(n)A
−1
(n)e > 0. Thus

max
i

a#
in = a#

nn,

and the result follows.
(b) For each j, a#

jj > 0, by (4.1). Since πTA# = 0T, it follows that there exists k0

such that a#
k0j

< 0. Furthermore, let i0 be such that maxi |a#
ij | = |a#

i0j
|.

Then

|a#
i0j

| <



|a#
i0j

− a#
k0j

| if a#
i0j

� 0,

|a#
i0j

− a#
jj | otherwise.

Thus, for all j,

max
i

|a#
ij |<max

i,k
|a#
ij − a#

kj |

so that

max
i,j

|a#
ij |<max

j
max
i,k

|a#
ij − a#

kj |.

On the other hand,

maxj maxi,k |a#
ij − a#

kj |
2

�
maxi,j |a#

ij | + maxk,j |a#
kj |

2
= max

i,j
|a#
ij |.

Now the assertion follows from (a).
(c) It follows directly from the definitions of 1−, and ∞− norm, and their rela-

tionship,
(d) For a real number a, define a+ ≡ max {a, 0}. Then

max
j

max
i,k

|a#
ij − a#

kj |=max
i,k

max
j

|a#
ij − a#

kj |

�max
i,k

∑
j

(a#
ij − a#

kj )
+

=τ1(A
#) (by Seneta [19, p.139]),

and the assertion follows by (a).
(e) For any vector x ∈ Rn,

‖x‖1 � n‖x‖∞,

and the result follows, since
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τ1(A
#)= 1

2
max
i,k

‖A#
i∗ − A#

k∗‖1,

and

maxj maxi,k |a#
ij − a#

kj |
2

= 1

2
max
i,k

‖A#
i∗ − A#

k∗‖∞,

where Bi∗ denotes the ith row of a matrix B.
(f) Since for any matrix B with equal row sums,

τ1(B)= sup
‖v‖1=1
vTe=0

‖vTB‖1,

and

‖yTB‖1 �‖y‖1 ‖B‖∞,

for any vector y ∈ Rn, we have

τ1(B)�‖B‖∞.

The inequalities follow by this relationship together with the following facts, proven
in [22]:

τ1(A
#) = τ1(Z),

and if τ1(P ) < 1, then

τ1(A
#) � 1

1 − τ1(P )
.

(g) It follows by applying the triangle inequality to

Z = A# + eπT and A# = Z − eπT. �

The following list summarizes the relationship between the condition numbers:

Relation between condition numbers

κ8 = κ3 � κ4 < 2κ3 � κ6 � κl for l = 1, 2, 5,

κ6 � nκ3,

κ2 − 1 � κ1 � κ2 + 1.
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Remark 4.1. As remarked at the beginning of this section, some of the condition
numbers provide tighter bounds than the form used in this section. To be more pre-
cise, for l = 1, 2, 5, 6,

‖π − π̃‖∞
‖E‖∞

� ‖π − π̃‖1

‖E‖∞
� κl.

To give a ‘fairer’ comparison to these condition numbers, note that (π − π̃)Te = 0
implies ‖π − π̃‖∞ � (1/2)‖π − π̃‖1 so that

‖π − π̃‖∞
‖E‖∞

�κ ′
l ,

where κ ′
l = (1/2)κl , for l = 1, 2, 5, 6. 2 The comparison of these ‘new’ condtion

numbers κ ′
l with κ3 is as given above:

κ3 � κ ′
l ,

for l = 1, 2, 5, 6.

5. Concluding remarks

We reviewed eight existing perturbation bounds, and the condition numbers are
compared. The list at the end of the last section clarifies the relationships between
seven condition numbers. Among these seven condition numbers, the smallest con-
dition number is κ3

maxj (a#
jj − mini a#

ij )

2

by Haviv and van Heyde [5] and Kirkland et al. [9] or equivalently, κ8

1

2
max
j

[
maxi /=j mij

mjj

]

by Cho and Meyer [1].
The only condition number not included in the comparison is

κ7 = minj ‖A−1
(j)‖∞

2
.

Is κ3 a smaller condition number than κ7? Since by (4.1),

a#
jj − min

i
a#
ij = πj‖A−1

(j)‖∞,

2 The authors thank the referee for bringing this point to our attention.
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for each j, the question is whether

max
j

πj‖A−1
(j)‖∞ � min

j
‖A−1

(j)‖∞ (5.1)

holds. In other words, is πj always small enough so that maxj πj‖A−1
(j)‖∞ is nev-

er larger than minj ‖A−1
(j)‖∞? This question leads us to the relationship between a

stationary probability πj and the corresponding A−1
(j).

In a special case, the relationship is clear.

Lemma 5.1. If P is of rank 1, then

‖A−1
(j)‖∞ = 1

πj
, for all j = 1, 2, . . . , n.

The proof appears in [9, Observation 3.3].
This relationship for an arbitrary irreducible Markov chain does not hold. In gen-

eral, however, ‖A−1
(j)‖∞ tends to increase as πj decreases, and vice versa.

Notice that κ8 is equal to κ3. However, viewing sensitivity in terms of mean first
passage times can sometimes help practitioner decide whether or not to expect sen-
sitivity in their Markov chain models merely by observing the structure of the chain,
thus obviating the need for computing or estimating condition numbers.
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