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Abstract

This paper deals with the various changes that can be made to the basic PageRank model. We
document the recent findings and add a few new contributions. These contributions concern (1) the
sensitivity of the PageRank vector, (2) another method of forcing the Markov chain to be irreducible,
and (3) a proof of the full spectrum of the PageRank matrix.
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1 Introduction

Many of today’s search engines use a two-step process to retrieve pages related to a user’s query. In
the first step, traditional text processing is done to find all documents using the query terms, or related
to the query terms by semantic meaning. This can be done by a lookup into an inverted file, with a vector
space method, or with a query expander that uses a thesaurus. With the massive size of the Web, this
first step can result in thousands of retrieved pages related to the query. To make this list manageable,
many search engines sort this list by some ranking criterion. One popular way to create this ranking is
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to exploit the additional information inherent in the Web due to its hyperlinking structure. Thus, link
analysis has become the means to ranking. One successful and well-publicized link-based ranking system
is PageRank, the ranking system used by the Google search engine. This paper begins with a review of the
most basic PageRank model for determining the importance of a webpage. This basic model, so simple
and so elegant, works well, but part of the model’s beauty and attraction lies in its seemingly endless
capacity for “tinkering”. Some such tinkerings have been proposed and tested. In this paper, we explore
these previously suggested tinkerings to the basic PageRank model and add a few more suggestions and
connections of our own. For example, why has the PageRank convex combination scaling parameter
traditionally been set to .85? One answer, presented in section 3.1, concerns convergence to the solution.
However, we provide another answer to this question in section 4.4 by presenting the condition number of
the problem. Another area of fiddling is the uniform matrix E added to the hyperlinking Markov matrix
P. What other alternatives to this uniform matrix exist? In section 4.5, we present the common answer,
followed by an analysis of our alternative answer. The numerous alterations to the basic PageRank model
presented in this paper give an appreciation of the model’s beauty and usefulness, and hopefully, will
inspire future and greater improvements.

2 The Basic PageRank model

The original Brin and Page model for PageRank uses the hyperlink structure of the Web to build
a stochastic irreducible Markov chain with transition probability matrix P. The irreducibility of the
chain guarantees that the long-run stationary vector πT , known as the PageRank vector, exists. It is
well-known that the power method applied to a stochastic irreducible matrix P will converge to this
stationary vector. Further, the convergence rate of the power method is determined by the magnitude of
the subdominant eigenvalue of P [12].

2.1 The Markov model of the Web

We begin by showing how Brin and Page, the founders of the PageRank model, force the transition
probability matrix P, which is built from the hyperlink structure of the Web, to be stochastic and
irreducible. Consider the hyperlink structure of the Web as a directed graph. The nodes of this digraph
represent webpages and the directed arcs represent hyperlinks. For example, consider the small document
collection consisting of 6 webpages linked as in Figure 1.

The Markov model represents this graph with a square transition probability matrix P whose element
pij is the probability of moving from state i (page i) to state j (page j) in one time step. For example,
assume that, starting from any node (webpage), it is equally likely to follow any of the outgoing links to
arrive at another node. Thus,

P =

⎛
⎜⎜⎜⎜⎜⎝

0 .5 .5 0 0 0
.5 0 .5 0 0 0
0 .5 0 .5 0 0
0 0 0 0 .5 .5
0 0 1/3 1/3 0 1/3
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Any suitable probability distribution may be used across the rows. For example, if web usage logs show
that a random surfer accessing page 2 is twice as likely to jump to page 1 as he or she is to jump to page
3, then the second row of P, denoted pT

2 , becomes

pT
2 = ( .6667 0 .3333 0 0 0 ) .
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Figure 1: Directed graph representing web of 6 pages

(Columns are similarly denoted. Column i of P is pi.) One problem with solely using the Web’s hyperlink
structure to build the Markov matrix is apparent. Some rows of the matrix, such as row 6 in our example
above, contain all zeros. Thus, P is not stochastic. This occurs whenever a node contains no outlinks;
many such nodes exist on the Web. The remedy is to replace all zero rows, 0T , with 1

neT , where eT is
the row vector of all ones and n is the order of P. The revised transition probability matrix is

P =

⎛
⎜⎜⎜⎜⎜⎝

0 .5 .5 0 0 0
.5 0 .5 0 0 0
0 .5 0 .5 0 0
0 0 0 0 .5 .5
0 0 1/3 1/3 0 1/3

1/6 1/6 1/6 1/6 1/6 1/6

⎞
⎟⎟⎟⎟⎟⎠ .

However, this adjustment alone is not enough to insure the existence of the stationary vector of the chain,
i.e. the PageRank vector. Were the chain irreducible, the PageRank vector is guaranteed to exist. By
its very nature, with probability 1, the Web unaltered creates a reducible Markov chain. Thus, one more
adjustment, to make P irreducible, is implemented. The revised stochastic and irreducible matrix P̄ is

P̄ = αP +
(1 − α)

n
E,

where 0 ≤ α ≤ 1 and E is the matrix of all 1s. This convex combination of the original matrix P and
a perturbation matrix E insures that P̄ is both stochastic and irreducible. Every node is now directly
connected to every other node, making the chain irreducible by definition. Although the probability of
transitioning may be small in some cases, it is always nonzero.

3 Solution Methods for Solving the PageRank Problem

Regardless of the method for filling in the entries of P̄, PageRank is determined by computing the
stationary solution πT of the Markov chain. The row vector πT can be found by solving either the
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eigenvector problem

πT P̄ = πT ,

or by solving the homogeneous linear system

πT (I − P̄) = 0T ,

where I is the identity matrix. Both formulations are subject to an additional equation, the normalization
equation πT e = 1, where e is the column vector of all 1’s. The normalization equation insures that πT

is a probability vector. The ith element of πT , πi, is the PageRank of page i.

3.1 The Power Method

Traditionally, computing the PageRank vector has been viewed as an eigenvector problem, πT P̄ = πT ,
and the notoriously slow power method has been the method of choice. There are several good reasons for
using the power method. First, consider iterates of the power method applied to P̄ (a completely dense
matrix, were it to be formed explicitly). Note that E = eeT . For any starting vector x(0)T (generally,
x(0)T = 1

neT ),

x(k)T = x(k−1)T P̄ = αx(k−1)T P +
1 − α

n
x(k−1)T eeT

= αx(k−1)T P +
1 − α

n
eT , (1)

since x(k−1)T is a probability vector, and thus, x(k−1)T e = 1. Written in this way, it becomes clear that
the power method applied to P̄ can be implemented with vector-matrix multiplications on the extremely
sparse P and P̄ is never formed or stored. On the other hand, direct methods on the linear system
πT (I − P̄) = 0T require the storage and manipulation of I − P̄, a practical impossibility for Web-sized
document collections, such as the 3.4 billion by 3.4 billion matrix used by Google. Thus, a matrix-
free method such as the power method, is required. Fortunately, since P is sparse, each vector-matrix
multiplication required by the power method can be computed in nnz(P) flops, where nnz(P) is the
number of nonzeros in P. Further, at each iteration, the power method only requires the storage of
one vector, the next iterate, whereas other accelerated matrix-free methods, such as restarted GMRES
or BiCGStab, require storage of at least several vectors, depending on the size of the subspace chosen.
Finally, the power method on Brin and Page’s P̄ matrix converges at the rate at which αk goes to zero.
See [7] (and the appendix for a shorter alternate proof) that λ2(P̄) = α for a reducible P, and hence the
rate of convergence for the power method applied to P̄ is governed by α. Brin and Page, the founders
of Google, use α = .85. Thus, a rough estimate of the number of iterations needed to converge to a
tolerance level τ (measured by the residual, x(k)T P̄ − x(k)T = x(k+1)T − x(k)T ) is log10τ

log10α . For τ = 10−6

and α = .85, one can expect roughly −6
log10.85 ≈ 85 iterations until convergence to the PageRank vector.

For τ = 10−8, about 114 iterations and for τ = 10−10, about 142 iterations. Brin and Page report success
using only 50 to 100 power iterations, implying that τ could range from 10−3 to 10−7.

We conclude this section with a brief discussion of more detailed storage issues for implementation.
The decomposition of P = D−1G into the product of the inverse of the diagonal matrix D holding outde-
grees of the nodes and the adjacency matrix G of 0s and 1s is useful in saving storage and reducing work
at each power iteration. P = D−1G can be used to reduce the number of multiplications required in each
xT P vector-matrix multiplication needed by the power method. Without the P = D−1G decomposition,
this requires nnz(P) multiplications and nnz(P) additions. Using the vector diag(D−1), xT P can be
accomplished as xT D−1G = (xT ). ∗ (diag(D−1))G, where .∗ represents componentwise multiplication of
the elements in the two vectors. The first part, (xT ). ∗ (diag(D−1)) requires n multiplications. Since G
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is an adjacency matrix, (xT ). ∗ (diag(D−1))G now requires an additional nnz(P) additions for a total
savings of nnz(P)−n multiplications. Also, it is likely that Web-sized implementations of the PageRank
model store the P or G matrix as an adjacency list of the transposed matrix.

3.2 The Linear System Formulation

In this section, we formulate the Google problem as a linear system. The eigenvalue problem πT (αP+
(1−α)

n eeT ) = πT can be rewritten, with some algebra as,

πT (I − αP) =
(1 − α)

n
eT . (2)

We note some interesting properties of the coefficient matrix in this equation.

Properties of (I − αP):

1. (I − αP) is nonsingular.

Proof: To prove nonsingularity we show that x �= 0 implies that (I − αP)x �= 0. Suppose x �= 0.
Then ‖(I− αP)x‖ = ‖x− αPx‖ ≥ ‖x‖ − α‖P‖‖x‖ ≥ (1− α‖P‖)‖x‖ = (1− α)‖x‖ > 0, since
1 − α > 0 and x �= 0 implies ‖x‖ > 0. Thus, x �= 0 implies ‖(I − αP)x‖ �= 0, which implies
that (I − αP)x �= 0. Hence, (I − αP) is nonsingular. �

2. (I − αP) is an M-matrix.

Proof: Straightforward from the definition of M-matrix given by Berman and Plemmons [1]. �

3. The row sums of (I − αP) are 1 − α.

Proof: (I − αP)e = (1 − α)e. �

4. ‖I − αP‖∞ = 1 + α.

Proof: The ∞-matrix norm is the maximum absolute row sum. If a page i has a positive
number of outlinks, then the corresponding diagonal element of I − αP is 1. All other
off-diagonal elements are negative, but sum to α in absolute value. �

5. Since (I − αP) is an M-matrix, (I − αP)−1 ≥ 0.

Proof: Again, see Berman and Plemmons [1]. �

6. The row sums of (I − αP)−1 are 1
1−α . Therefore, ‖(I − αP)−1‖∞ = 1

1−α .

Proof: Using the Neumann series, (I − αP)−1 = I + αP + α2P2 + · · ·. So,
(I − αP)−1e = e + αe + α2e + · · · = 1

1−αe. �

7. Thus, the condition number κ∞(I − αP) = 1+α
1−α .

Proof: By virtue of points 4 and 6 above, κ∞(I− αP) = ‖(I− αP)‖∞‖(I− αP)−1‖∞ = 1+α
1−α . �
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Of course, a direct method on the Web-sized sparse P requires much more calculation than the power
method, which recall, requires log10τ

log10α nnz(P) flops. However, for an Intranet, such as the 517-page
Mathworks site with nnz(P) = 13, 531, a direct method with α = .99 may require less flops than the
power method’s estimated 1833 · 13531 = 2.48 · 107 flops with α = .99 and τ = 10−8. Also, execution of
the Matlab or Netlib built-in linear system solver is faster than the execution of the coded power method
for small matrices.

Experiments with a direct method show that, although increasing α negatively affects the convergence,
and thus execution time, of the power method, it has no effect on the number of flops, and thus execution
time, required by a direct method. Nevertheless, the sensitivity issues discussed later in section 4.4
increase as α increases. In summary, the exclusive use of the power method, as opposed to direct
methods, on Web-sized PageRank problems seems justified for several reasons.

4 Tinkering with the basic PageRank model

Varying α, although perhaps the most obvious alteration, is just one way to fiddle with the basic
PageRank model presented above. In this paper, we explore many others, devoting a subsection to
each. Sections 4.2 and 4.5 discuss ideas for changing the “fudge factor” matrix E required to make P
irreducible. In section 4.3, the possibility of using different convergence criteria, aside from the residual,
are presented. In section 4.4, we compute the condition number for the PageRank problem, showing its
implications for sensitivity and stability issues.

4.1 Changing α

One of the most obvious places to begin fiddling with the basic PageRank model is α. Brin and
Page, the founders of Google, have reported using α = .85. One wonders why this choice for α? Might a
different choice produce a very different ranking of retrieved webpages?

As mentioned in section 3.1, there are good reasons for using α = .85, one being the speedy convergence
of the power method. With this value for α, we can expect the power method to converge to the PageRank
vector in about 114 iterations for a convergence tolerance level of τ = 10−8. Obviously, this choice of
α brings faster convergence than higher values of α. Compare with α = .99, whereby 1833 iterations
are required to achieve a residual less than 10−8. When working with a sparse 3.4 billion by 3.4 billion
matrix, each iteration counts; over a few hundred power iterations is more than Google is willing to
compute. However, in addition to the computational reasons for choosing α = .85, this choice for α also
carries some intuitive weight: α = .85 implies that roughly 5/6 of the time a Web surfer randomly clicks
on hyperlinks (i.e, following the structure of the Web, as captured by the αP part of the formula), while
1/6 of the time this Web surfer will go to the URL line and type the address of a random new page to
“teleport” to (as captured by the (1−α)

n eeT part of the formula). Perhaps this was the original motivation
behind Brin and Page’s choice of α = .85; it produces accurate model for Web surfing behavior. Whereas
α = .99, not only slows convergence of the power method, but also places much greater emphasis on the
hyperlink structure of the Web and much less on the teleportation tendencies of surfers.

Perhaps the PageRank vector derived from α = .99 is vastly different from that obtained using
α = .85. Perhaps it gives a “truer” PageRanking. Experiments with various α’s show significant variation
in rankings produced by different values of α. As expected, the top section of the ranking changes only
slightly, yet as we proceed down the ranked list we see more and more variation. Recall that the PageRank
algorithm pulls a subset of elements from this ranked list, namely those elements that use the query terms.
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This means that the greater variation witnessed toward the latter half of the PageRank vector could lead
to substantial variation in the ranking results returned to the user. Which ranking (i.e., which α) is
preferred? This is a hard question to answer without doing extensive user verification tests on various
datasets and queries. However, there are other ways to answer this question. In terms of convergence
time, we’ve already emphasized the fact that α = .85 is preferable, but later, in section 4.4, we present
another good reason, in addition to speedy convergence, for choosing α near .85.

4.2 The personalization vector vT

One of the first modifications to the basic PageRank model suggested by its founders was a change
to the teleportation matrix E. Rather than using 1−α

n eeT , they used evT , where vT > 0 is a probability
vector called the personalization vector. Since vT is a probability vector with positive elements, every
node is still directly connected to every other node, i.e., P̄ is irreducible. Using vT in place of 1

neT means
that the teleportation probabilities are no longer uniformly distributed. Instead, at each webpage, if a
surfer teleports, he follows the probability distribution given in vT to find the next page. Notice that
this slight modification retains the advantageous properties of the power method applied to P̄.

x(k)T = x(k−1)T P̄ = αx(k−1)T P + (1 − α)x(k−1)T evT

= αx(k−1)T P + (1 − α)vT , (3)

The simple formulas of equations (1) and (3) differ only by the constant vector added at each iteration.
Thus, the convergence properties of (3) are identical to those of (1).

Similarly, the linear system formulation of the PageRank problem changes only slightly when the
personalization vector is used.

πT (I − αP) = (1 − α)vT . (4)

We surmise that the name personalization vector comes from the fact that Google intended to have
many different vT vectors for the many different classes of surfers. Surfers in one class, if teleporting,
may be much more likely to jump to pages about sports, while surfers in another class may be much more
likely to jump to pages pertaining to news and current events. Such differing teleportation tendencies
can be captured in two different personalization vectors. This seems to have been Google’s original
intent in introducing the personalization vector [3]. However, it makes the once query-independent, user-
independent PageRankings user-dependent and more calculation-laden. Nevertheless, it appears this little
personalization vector has had more significant side effects. Google has recently used this personalization
vector to control spamming done by the so-called link farms.

Link farms are set up by spammers to fool information retrieval systems into increasing the rank of
its client’s pages. For example, suppose a business owner has decided to move a portion of his business
online. The owner creates a webpage. However, this page rarely gets hits or is returned on Web searches
on his product. The owner contacts a search engine optimization company whose sole efforts are aimed
at increasing the PageRank (and ranking among other search engines) of its clients’ pages. One way a
search engine optimizer attempts to do this is with link farms. Knowing that PageRank increases when
the number of important inlinks to a client’s page increases, optimizers add such links to a client’s page.
A link farm might have several interconnected nodes about important topics with reasonable PageRanks.
These interconnected nodes then link to a client’s page, thus, in essence, sharing some of their PageRank
with the client’s page. The paper by Bianchini et.al. [2] presents other scenarios for successfully boosting
one’s PageRank and provides helpful pictorial representations. Obviously, link farms are very troublesome
for search engines. It appears that Google has tinkered with elements of vT to annihilate the PageRank
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of link farms and their clients. Interestingly, this caused a court case between Google and the search
engine optimization company SearchKing. The case ended in Google’s favor [13].

Several researchers have taken the personalization idea beyond its spam prevention abilities, creating
personalized PageRanking systems. See the Stanford research papers [8, 9, 6] for the various efficient
implementations of PageRank that incorporate user preferences. This is clearly a hot area since some
predict personalized engines as the future of search.

4.3 Convergence Criteria

The power method applied to P̄ is the predominant method for finding the important PageRank
vector. Being an iterative method, the power method continues until some termination criterion is met.
In section 3.1, we mentioned the traditional termination criterion for the power method: stop when
the residual (as measured by the difference between successive iterates) is less than some predetermined
tolerance. However, Haveliwala has rightfully noted that the exact values of the PageRank vector are
not as important as the correct ordering of the values in this vector [5]. That is, iterate until the
ordering of the approximate PageRank vector obtained by the power method converges. Considering the
scope of this problem, saving just a handful of iterations is praiseworthy. Haveliwala’s experiments show
that the savings could be even more substantial on some datasets. As few as 10 iterations produced a
good approximate ordering, competitive with the exact ordering produced by the traditional convergence
measure.

4.4 Sensitivity, Stability and Condition Numbers

So far we have discussed ideas for changing some parameters in the PageRank model. A natural
question is how such changes affect the PageRank vector. Regarding the issues of sensitivity and stability,
one would like to know how changes in P affect πT . The two different formulations of the PageRank
problem, the linear system formulation and the eigenvector formulation, give some insight. The PageRank
problem in its most general linear system form is

πT (I − αP) = (1 − α)vT .

Section 3.2 listed a property pertaining to the condition number of the linear system, κ∞(I−αP) = 1+α
1−α .

As α → 1, the linear system becomes more ill-conditioned, meaning that a small change in the coefficient
matrix creates a large change in the solution vector. However, πT is actually an eigenvector for the
corresponding Markov chain. While elements in the solution vector may change greatly for small changes
in the coefficient matrix, the direction of the vector may change minutely. Once the solution is normalized
to create a probability vector, the effect is minimal. The ill-conditioning of the linear system does not
imply that the corresponding eigensystem is ill-conditioned, a fact documented by Wilkinson (with respect
to the inverse iteration method) [14].

To answer the questions about how changes in P affect πT what we need to examine is eigenvector
sensitivity, not linear system sensitivity. A crude statement about eigenvector sensitivity is that if a
simple eigenvalue is close to the other eigenvalues, then the corresponding eigenvector is very sensitive
to perturbations in P. Then for the PageRank problem, one would conclude that πT is insensitive for α
away from 1, since its eigenvalue λ1 = 1 is well-separated from λ2 = α. However, if a simple eigenvalue is
well-separated from the other eigenvalues, its corresponding eigenvector is not necessarily insensitive to
perturbations. A more rigorous measure of eigenvector sensitivity for Markov chains was developed by
Meyer and Stewart [11] and Meyer and Golub [4]. In those papers, the condition number with respect to
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the ∞-norm for the stationary vector is defined as

κ∞(πT ) = ‖(I − P)#‖∞,

where (I − P)# is the group inverse of the singular, rank n − 1 transition rate matrix (I − P). If the
elements in (I−P)# are large, then small changes in the coefficient matrix P can produce large changes
in the eigenvector πT .

In order to understand the sensitivity of the PageRank vector, we calculate the group inverse of
(I − P̄), the transition rate matrix for the PageRank problem.

(I − P̄)# = (I − αP − (1 − α)evT )#.

The rank-one update formula for group inversion developed by Meyer and Shoaf [10] gives the following
equation.

(I − P̄)# = [I + (1 − α)evT (I − αP)−1 + (2 − α)evT )](I − αP)−1. (5)

As α → 1, the bracketed factor in equation (5) approaches the matrix [I + evT ]. The remaining factor
(I − αP)−1 explodes as α → 1. Combining these two facts, we can conclude that the condition number
of the PageRank problem explodes as α → 1. That is, as α increases, the PageRank vector becomes
more and more sensitive to small changes in P. Thus, Google’s choice of α = .85, while staying further
from the true hyperlink structure of the Web, gives a much more stable PageRank than the “truer to the
Web” choice of α = .99.

Equation (5) also shows the minimal effect that the personalization probability vector vT has on the
sensitivity of the PageRank vector.

4.5 Forcing Irreducibility

In the presentation of the PageRank model, we described the problem of reducibility. Simply put, the
Markov chain produced from the hyperlink structure of the Web will undoubtedly be reducible and thus
a long-run stationary vector will not exist for the subsequent Markov chain. The original solution of Brin
and Page uses the method of maximal irreducibility, whereby every node is directly connected to every
other node, hence irreducibility is trivially enforced. However, maximal irreducibility does alter the true
nature of the Web, whereas other methods of forcing irreducibility seem less invasive and more inline
with the Web’s true nature. One such means, we label the method of minimal irreducibility, whereby a
dummy node is added to the Web, which connects to every other node and to which every other node is
connected, making the chain irreducible in a minimal sense. Our minimally irreducible (n + 1)× (n + 1)
Markov matrix ¯̄P is

¯̄P =

( n
n+1P

1
n+1e

1
n+1e

T 1
n+1

)
.

This is clearly irreducible and hence πT , the PageRank vector, exists. Our goal is to examine the
PageRank vector associated with this new ¯̄P (after the weight of πn+1, the PageRank of the dummy
node, has been removed) and the convergence properties of the power method applied to ¯̄P. We begin
by comparing the spectrum of ¯̄P to the spectrum of P.

Theorem 4.1 Given the stochastic matrix P with spectrum {1, λ2, λ3, . . . , λn}, the spectrum of ¯̄P =( n
n+1P

1
n+1e

1
n+1e

T 1
n+1

)
is {1, n

n+1λ2,
n

n+1λ3, . . . ,
n

n+1λn, 0}.
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NOTE: P may be reducible with 1 = λ1 = λ2, . . . , λk or irreducible with λ2 < 1.

Proof: The eigenvalues of ¯̄P are the scalars λ that satisfy the characteristic equation

det

(( n
n+1P

1
n+1e

1
n+1e

T 1
n+1

)
− λIn+1

)
= 0.

det

(( n
n+1P

1
n+1e

1
n+1e

T 1
n+1

)
− λIn+1

)
= det

( n
n+1P − λIn

1
n+1e

1
n+1e

T 1
n+1 − λ

)

= det

⎛
⎝ n

n+1P − λIn
1

n+1e

1
n+1e

T 1−nλ−λ
n+1

⎞
⎠

= det (
1 − nλ − λ

n + 1
) det

(
n

n + 1
P − λIn − 1

n + 1
e

(
1 − nλ − λ

n + 1

)−1 1
n + 1

eT

)

=
1 − nλ − λ

n + 1
det

(
n

n + 1
P − λIn − 1

(n + 1)(1 − nλ − λ)
eeT

)

=
1 − nλ − λ

n + 1
det

(
n

n + 1
P − λIn

) (
1 − 1

(n + 1)(1 − nλ − λ)( n
n+1 − λ)

eT e

)

=
1 − nλ − λ

n + 1

(
1 − n

(n + 1)(1 − nλ − λ)( n
n+1 − λ)

)
det

(
n

n + 1
P − λIn

)

=
λ2(n2 + 2n + 1) − λ(n2 + 2n + 1)

(n + 1)(n − nλ − λ)
det

(
n

n + 1
P − λIn

)

=
(n + 1)2λ(λ − 1)
(n + 1)2( n

n+1 − λ)

(
n

n + 1
λ1(P) − λ

) (
n

n + 1
λ2(P) − λ

)
· · ·

(
n

n + 1
λn(P) − λ

)

= λ(λ − 1)(
n

n + 1
λ2(P) − λ)

(
n

n + 1
λ3(P) − λ

)
· · ·

(
n

n + 1
λn(P) − λ

)
.

Thus, the eigenvalues of ¯̄P are {1, n
n+1λ2(P), n

n+1λ3(P), . . . , n
n+1λn(P), 0}. �

One implication of this theorem for the PageRank problem is that now the subdominant eigenvalue,
the measure affecting the convergence of the power method, is very close to 1. Recall that the Web is
reducible so that λ2(P) = 1 (and possibly many more eigenvalues are 1). Thus, λ2( ¯̄P) = n

n+1λ2(P) = n
n+1 .

For even small Intranets, such the Mathworks net, n = 517, giving λ2( ¯̄P) = .9981, and roughly 9533
power iterations are required before the residual is less than 10−8. The effect is even more pronounced
for Google’s Web collection with n = 3.4 billion, λ2( ¯̄P) = .99999999970588, requiring about 62.6 billion
power iterations. What a striking contrast to Google’s traditional method where λ2(P̄) = .85 and only
about 114 iterations are required to achieve the same precision.

Despite this bad news, we continue with our examination of the minimally irreducible method as it
has some interesting connections to the maximally irreducible method. Writing the power method on the
partitioned matrix ¯̄P gives

( πT | πn+1 )

( n
n+1P

1
n+1e

1
n+1e

T 1
n+1

)
( πT | πn+1 ) ,
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which gives the following system of equations.

πT =
n

n + 1
πT P +

πn+1

n + 1
eT , (6)

πn+1 =
1

n + 1
πT e +

1
n + 1

πn+1. (7)

Solving for πn+1 in equation (7) gives πn+1 = 1
n+1 . Backsubstituting this value for πn+1 into equation

(6) gives

πT =
n

n + 1
πT P +

1
(n + 1)2

eT . (8)

Equation (8) is familiar; it looks very much like the traditional PageRank power method with α = n
n+1 .

In fact, some more algebra shows that this is indeed the case. The PageRank power method with α = n
n+1

is

xT P̄ =
n

n + 1
xT P +

1
n(n + 1)

xT eeT .

In the minimally irreducible case, xT e = 1 − πn+1, giving

xT P̄ =
n

n + 1
xT P +

(
1

n(n + 1)

) (
n

n + 1

)
eT

=
n

n + 1
xT P +

1
(n + 1)2

eT

Clearly, our minimally irreducible method is a special case of PageRank’s maximally irreducible method.
This analysis shows the flexibility inherent in the PageRank method with the α parameter. The parameter
α allows Google to cover a range of forced irreducibility methods, from the minimally irreducible method
to the maximally irreducible method. We note that other researchers have suggested different means of
forcing irreducibility [2].

5 Conclusion

In this paper, we presented the basic PageRank model used by the popular search engine Google. We
listed the various adaptations that have been made to the model and discussed the implications of each.
Our new contributions consist of a discussion of the sensitivity of the PageRank vector, a presentation of
an alternate method for forcing irreducibility on the Markov chain, as well as proofs of the spectrums of
the PageRank and a related matrix.

Disclaimer We mention that PageRank is just one of many measures employed by Google to return
relevant results to users. Many other heuristics are part of this successful engine; we have focused on
only one.

Acknowledgements We thank Cleve Moler for sharing his Mathworks dataset, mathworks.dat, and
other web-crawling m-files.

11



A Spectrum of Google P̄ = αP + (1 − α)evT

Theorem A.1 Given the spectrum of the stochastic matrix P is {1, λ2, λ3, . . . , λn}, the spectrum of
P̄ = αP + (1 − α)evT is {1, αλ2, αλ3, . . . , αλn}, where vT is a probability vector.

NOTE: P may be reducible with 1 = λ1 = λ2, . . . , λk or irreducible with λ2 < 1.

Proof:

det (αP + (1 − α)evT − λI) = det(αP − λI + (1 − α)evT )

= det(αP − λI)(1 + vT (αP − λI)−1(1 − α)e)

= det(αP − λI)(1 + (1 − α)vT e(
1

α − λ
)),

since (αP − λI)−1e = e
α−λ . Also, since vT is a probability vector, vT e = 1. Thus,

det (αP + (1 − α)evT − λI) = det(αP − λI)(1 +
1 − α

α − λ
)

= det(αP − λI)(
1 − λ

α − λ
)

= (α − λ)(αλ2(P) − λ)(αλ3(P) − λ) · · · (αλn(P) − λ)
(1 − λ)
(α − λ)

.

Thus, the eigenvalues of P̄ = αP + (1 − α)evT are {1, αλ2(P), αλ3(P), . . . , αλn(P)}. �

For a reducible P with several unit eigenvalues, λ2(P̄) = α.
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