HISTORY OF GAUSSIAN ELIMINATION

Can you think of a mathematical concept which is so simple on the surface that it is taught to
junior high school students, which is so practical in nature that it is used thousands or perhaps hun-
dreds of thousands of times each and every day, which is so old that it dates back to at least 200
BC, which has been the source of continued study and research for more than 2000 years, but
which is still not completely understood? Itis not clear how many concepts satisfy these conditions,
but there is at least one:

The numerical determination of the solution to a system of n linear
:]gebrm: equatiu:ms inn unknnwns by means of what we u:.t::dr'm'm:l1;1';,r
refer to as Gaussian elimination,

With the proliferation of small inexpensive personal computers and hand-held calculators, there
currently is an increased awareness concerning numerical procedures, Among all numerical tech-
niques, those devised to solve linear systems have an extremely rich history. Much of this is due to
some of the seeming paradoxes encountered. It is indeed a shock the first time you sit down at a
small personal computer (or even a large non-personal one) and enter your own program to solve a
system of equations only to find that either the solution is so far from being correct that it is non-
sensical or that no solution at allis produced when it is known that one exists. You check your pro-
gram for logical errors but you find none. You go back to your text book that discussed linear
systems! to see if you made a theoretical error. Again you find none. You may even go so far as
to question the electronic circuitry, but to no avail. So why did the numbers come out all wrong?
You have just realized that what had seemed so simple in thcur}r is in fact not simple after all. Itis
precisely this scenario that has captured so much interest for such a long period of time.

Let’s start at the beginning, or at least as far back as recorded history will take us. The earliest
recorded analysis of linear systems of equations is found in the ancient Chinese book Chiu-chang
Suan-shu (Nine Chapters on Arithmetic) estimated to have been compiled some time around 200

B.C. In the beginning of Chapter VIII of the Nine Chapters on Arithmetic there appears a problem
of the following form,

'I‘hme she:afs of a Eﬂﬂd crop, two sheafs of a mediocre Crop, ﬂ{ld one. shea.f
“ofa bad crop are sold for 39 dou. Two sheafs of good, three mediocre, ami
one bad : are sold fur 34 dou; and one good, two mediocre, and three bad are
snlr.i for 26 dou.  What is the price received for each sheaf of a good cmp, f.'.ach 5
Eheaf of a'mediocre crop, am:l each sheaf of a bad crop? =

Today we would formulate this problem as three equations in three unknowns by writing

Sx+2y+ z=39

2x + 3}; + z=34

x+2y+3z2=26
where x, y, and z represent the price for one sheaf of a good, mediocre, and bad crop, respectively.
There are many techniques that can be employed to extract a solution, however, the ancient

Chinese saw right to the heart of the prnblem and realized that the most efficient tcchnique is l:r_:,r
using a rectangular array of colored bamboo rods placed in columns on a “counting board” as

shown above,
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The digits 1,2,3,4,5,6,7,8,9 were represented by the rod patterns I J L
] ] ] T] | | as well as the rod patterns
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numbers were denoted with black rods while positive numbers were denoted with red rods.# For
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example, _LT]T — II represents 6822, An empty position represents zero so that ambi-
guities can arise unless one physically puts something down to represent 0. By mampulatmg the
columns of this array of rods according to prescribed “rules of thumb” successive steps in the com-
putation were performed.
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Translate the rods to numerals and you will see that the end result is the equivalent system

Ix+2y+ 2z=39
Sy + z=24
36z =99

which is easily solved by a backward substitution process.

This ancient concept is the essence of what is now generally known as the method of Gaussian

elimination,3

Gaussian elimination as practiced today differs from the Chinese only in the sense that we now

write our equations in rows rather than columns. The Chinese recognized the elimination method
as a systematic way of transforming one system into a simpler but aquivn]ent4 system by success-
ively eliminating unknowns to arrive at a system which is easily solvable. The elimination process
relies on three simple operations by which to transform a system to an equivalent system:

(1) Interchange any two equations. (This says that it should make no difference in what order
the equations are listed. Theoretically this is true but in numerical computations this can
be grossly false. We will return to this point later.)

(2) Replace any equation by a nonzero multiple of itself.

(3) Replace any equation by a combination of itself plus a multiple of any other equation.

In the sequel, the discussion will be limited to the most common case of a square nonsingular

system:

ay1%q + a19%, 3 R 4y X, = b
321:{1"'322}[2 +ﬂ.2nx = ]j

nn"n

At each step of the basic algorithm, the strategy is to focus on one position along the diagonal
of the coefficients on the left hand side (this position is called the pivotal position), and then to
eliminate all terms below the pivotal position using the three elementary operations, The coeffi-
cient in the pivotal position is called the pivot. Only nonzero numbers are allowed to be pivots
but since interchanges are possible, there can be many choices for pivots on each step. The abject
is to create a triangular system

1:1111 + t12x2+ T tlnxn = €q

... X =0

nn"n_n
which can be easily solved by the back substitution process:
g ok
Xn = tan Cn

followed by

n

X, = tﬁ‘lfci - E ; t-lkxk] fori=n-1,n-2,...,1
=1=

We follow the ancient Chinese in that we don’t explicitly write the symbols “x”, “y”, “z*, and
“=" since the only manipulations performed are on the numbers themselves. For examplﬂ-, the

Chinese example might be solved in a contemporary elementary text as follows. (The pivotal ele-
ment is always circled.)

@21 | 9] [D23 | 26

231 | 34|—|231 | 34

L1239 |26] L3z |3
t 2.8 | 268 1 2 3 | 26]
— (R,-2Ry) | o@D -5 | 18 * |0 -1 -5 | -18
" (Rg-3R1) | 0 4 8 | 39 ) (Ry-4r,) |0 0@) | 33

Back substitution yields: , = 33/12 = 11/4, y = (-1)(-18 + 52) =17/4, x = 26 - 2y - 32— 37/4.

In their use of array manipulation the ancient Chinese possessed the seed which might have
germinated into a genuine theory of matrices. Unfortunately, in the year 213 B.C., emperor
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Shih Hoang-ti ordered that “all books be burned and all scholars be buried.” It is presumed that
the emperor wanted all knowledge and written records to begin with him and his regime. The
edict was carried out and it will never be known how much knowledge may have been lost. The
Nine Chapters was compiled on the basis of fragments which survived.

More than a millennium had to pass before further progress was documented. The Chinese
counting board and its use in solving linear systems eventually found its way to Japan. Seki Kowa
(1642-1708), whom the Japanese consider the greatest mathematician that their country has pro-
duced, carried forward the Chinese principles involving “rule of thumb” elimination methods on
arrays of numbers, His understanding of the elementary operations used in the Chinese elimination
process led him to formulate the concept of what we now call the determinant3 sometime before
the year 1683, In addition to inventing the determinant, Seki Kowa also anticipated the funda-

mental concepts and array operations which today form the basis of the algebra of matrices.

About the same time, (somewhere between 1678 and 1693) Gottfried W. Leibniz (1646-1716)
from Germany was independently developing his own notion of the determinant and applications
of array manipulation to solve linear systems of equations. It appears that Leibniz’s early work
dealt with only three equations in three unknowns whereas Seki Kowa gave a general treatment for
n equations in n unknowns. It seems that Seki Kowa and Gottfried Leibniz (although not in the
same form or notations) both developed what later became known as “Cramer’s Rule”. These
men also had something else in common. Their ideas concerning solving linear systems were never
adopted by the mathematical community of the time and their discoveries quickly faded into ob-
livion.

In 1750 Gabriel Cramer (1704-1752) from Geneva, Switzerland rediscovered and published the
rule that now bears his name. Cramer’s work was responsible for a revived interest in determinants
and systems of equations, Cramer’s rule met with instant success and quickly found its way into
the textbooks and classrooms of Europe. Sir Thomas Muir reports that one passed or failed the
exams in the schools of public service in France according to one’s knowledge and understanding
of Cramer’s rule.

The determinant went on to be the subject of great study and much was written on the sub-
jtt-.':t..'El There is some irony here. The basic elimination method for solving a linear system helped
to foster the once heralded and much studied concept of the determinant. The determinant was
considered to be an important concept and quite applicable in dealing with linear systems. Cramer’s
rule was once considered not only a standard method but in fact a reasonable way of solving a non-
singular syst:m.? Two hundred years ago, very few people attempted to solve systems of magni-
tude much greater than (5 x 5). Moreover, the electronic computer that you can purchase in your
local shopping center today is beyond anything that mathematicians of even the early part of our
century could have dreamed of in their wildest fantasies. Things have indeed changed. Except for
a few simple theoretical properties, the role of the determinant in contemporary mathematics is
very minor whereas the original concept of Gaussian elimination (with some modern modifications)
is now considered to be one of the most important algorithms of applied mathematics,

No one seems to know who first introduced Gaussian elimination in Europe, but it probably
was not Carl F. Gauss (1777-1855). It has been reported that Gauss himself referred to the general
elimination method as being *commonly known™. Gauss was known for performing incredible
computational feats and the elimination method which bears his name was certainly contained in
his bag of tricks and he made extensive use of it. Gauss modified the basic elimination method to
suit his specialized purposes and developed a practical algorithm for the positive definite systems that
arise from the “normal equations” associated with the linear least squares problem. Herman Gold-
stine in A History of Numerical Anaf_gsfs From the 16th Through the 19th Century claims that in
his work on reducing quadratic forms,® Gauss, in effect, was the first to use elimination techniques
in order to produce the factorization of a positive definite matrix into LDLT where L is lower
triangular with 1's on the diagonal and D is a diagonal matrix with positive diagonal entries.? This
is now known as the Cholesky decomposition. The importance of matrix factorizations in solving
linear systems will be discussed later in this article.

Only minor modifications occurred during the 19th century. One of these modifications carries
the name “Gauss-Jordan method”. 1In this method, the coefficients above the pivot, as well as
those below, are eliminated at each step, thereby circumventing the need for the back substitution
process. As was the case with determinants, the Gauss-Jordan process proved to be a step back-
wards. That is, it is much less efficient than basic Gaussian elimination with back substitution. It
is easy to show that the Gauss-Jordan method requires approximately ina;‘z;} operations1Q whereas
Gaussian elimination with back substitution requires only around (n?/3) operations. This means

that the Gauss-Jordan method requires about 50% more effort than Gaussian elimination with back
substitution. For small order systems, these results may not be significant.




Curiously, it seems that the Gauss-Jordan method is also inappropriately named, just as the basic
Gaussian elimination method may be a misnomer, Camille Jordan (1838-1922), from France, was a
great mathematician and contributed much to linear algebra, but it appears that he had lictle to do
with the Gauss-Jordan method because the process was only first described in the third edition (but
not the first or second) of one of his texts which was prepared after his death. A. S. Householder
in The Theory of Matrices in Numerical Analysis credits this algorithm to B. J. Clasen in 1888. I

By the middle of the nineteenth century, German mathematicians stood head and shoulders
above other nationalities in analysis and geometry. Algebra, on the other hand, was not a Ger-
man monopoly. British mathematicians such as Arthur Cayley (1821-1895), Augustus DeMorgan
(1806-1871), James J. Sylvester (1814-1897), George Boole (1815-1864), together with some
others had a profound impact.

Although array manipulation in the form of determinants had long been in practice, matrix!!
theory did not evolve along with the theory of determinants. Because of this, Morris Kline in
Mathematical Thought From Ancient to Modem Times says that . . . the subject of matrices was
well developed before it was created”. It was Cayley’s work with linear transformations that meti-
vated him to single out the matrix as a separate entity (distinct from the notion of a determinant)
and to define algebraic operations between matrices. In an 1855 paper, Cayley introduced some
basic ideas which were presented mainly to simplify notations involved with linear transformations.
In 1857 (Phil. Trans. London, vol. 148, pp. 17-37, Coll. Works, vol. 2, pp. 475-496) Cayley ex-
panded on his original ideas and wrote A Memoir On the Theory of Matrices which laid the founda-
tions for modern matrix algebra. This is generally credited for being the birth of the subject.

Cayley used the composition of two transformations, each defined by a linear system of equa-
tions, to formulate the notion of the matrix product as follows. Let T; and T, be transformations
carrying (x,y) into (u,v) and (u,v) into (x'y’}, respectively, which are defined by

ax +by =u Au + Bv = x’
Ty: and Tg:
cx+dy=v Cu+Dv=y"
The composition of Ty followed by T, maps (x,y) into (x"y’) as

(Aa+ Be)x + (Ab + Bd)y = x’
TZT i
1
(Ca+Dc)x +(Cb+Dd)y =y’

Cayley observed that if T, and T, are represented by retaining only the array of coefficients, that
is as matrices

a b A B
[T4] = and [T,] =
c d C D

then the effect of the composition T,T; could be represented by the matrix
Aa + Bc I Ab + Bd

K,

[T2T1] o I
Ca + Dc Cb + Dd
and that this matrix can be composed from a simple combination of matrices [T;] and [T,].

All of the elementary properties such as noncommutativity for matrix multiplication, matrix
addition, scalar multiplication, singularity (the inability to reverse the effect of a transformation),
the natural connection with determinants, along with many other basic concepts were realized by
Cayley in his original works.12 The fact that matrices provided a simple and concrete example of
anoncommutative algebra led to a greater interest in algebra and has been credited by Bourbaki for
being one of the chief factors in the development of an abstract view of algebra,

Matrix algebra provided a convenient notation for the solution of a nonsingular system of equa-
tions. The system can be represented in the notation Ax = b and the solution by x = A-lb, In
Cayley’s 1857 paper, Cramer’s rule was translated into the familiar determinantal formula

Al = adj(A)/det(A).
Once again, the newer developments were a step in the wrong direction as far as determining solu-
tions for linear systems are concerned. In some older texts authors became carried away with the
advantages of matrix notation and it was not uncommon to find the suggestion that in order to solve
the linear system Ax = b, one should compute A-! and then form the product A-1b.13 This was

not always explicitly advocated but it sometimes was implicit. In the text Computational Methods
For Linear Algebra by D, K. Faddeev and V. N. Faddeeva it is reported that in structural mechanics
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there is a method developed to solve a linear system which is based on the computation of so-called
“influence numbers”. This method is nothing more than a means for constructing the inverse of
the coefficient matrix and the “influence numbers® are nothing more than the entries of the inverse
matrix. This, of course, is absurd as far as practical computation is concerned. For an (n x n)
matrix A, it takes about n3 operations just to compute Al using efficient elimination methods and
then another n2 operations to form the product A-1b whereas Gaussian elimination with back sub-
stitution requires only n3/3 operations. Thus Gaussian elimination with back substitution is at
least three times more efficient than computing the inverse of A.

Although the matrix notation offered no advantage in solving a linear system when usedin the
manner described above, it was eventually put to good use in providing a concise formulation for
Gaussian elimination in terms of matrix products. Consider the system Ax =b and triangularize A
by Gaussian elimination. Each elementary operation has an associated “elementary matrix” and
these elementary matrices are each nonsingular and triangular, The process of reducing A to an
upper triangular form can be accomplished by a sequence of matrix multiplications using the se-
quence of elementary matrices associated with each of the steps of Gaussian elimination. If there
are no zero pivots so that no row interchanges are necessary, then each elementary matrix in this
sequence will be lower triangular. Consider a 3 x 3 example,

(a) a3y 3] [21 22 43 EREE
‘_E] 1:2 C_l R.3 - {CIIHIJR]—‘ 0 1|-"1 1:"-.2_. Rj - {\’1IU1_}R2LI:' 0 “"i.

Denote the multip]iers of this ::]jminat'mrprﬂcess b}r
Using elementary matrices, this can be concisely written as
E3pE31EyA=U

where U is the upper triangular matrix with which back substitution will be performed. The dia-
gl:ma]. elements of U are the pivots. The pmduﬂt of these three Eiﬂmﬂntary matrices is

————
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Let L= p-l and notice that
1 0 0
L= My 1 0
My Mgy 1

Matrix L has 1’s on the diagonal and contains, in exactly the right positions, the multipliers of the
elimination process. That is, it isn’t really necessary to do any matrix multiplications or inversions
in order to obtain L. It is directly obtained, entry by entry, as the elimination process evolves.

What one now hasis a factorization of A (provided A has no zero pivﬂts}14 into A = LU where L
is lower triangular with 1’s on the diagonal and below the diagonal are the multipliers (m..) of row j
which is subtracted from row i while Gaussian elimination is being applied to A. Matrix Uis upper
triangular, containing the pivots on its diagonal, and is the end result of Gaussian elimination applied
to A. The LU factorization as just described is unique. _

One can go one step further and factor U as U = DU where D is the diagonal matrix whose dia-
gonal entries are those of U (i.e., the pivots) and U is upper triangular with 1's on its diagonal. This
is commonly referred to as the LDU factorization. (The tilde notation is dropped.) The LU or LDU
factorization provides a compact matrix formulation for the solution of Ax = b using Gaussian
elimination with back substitution,

-+ For Ax=b, first factor Aas A= LU
 Nowsalve Ly = b for y and then solve Ux = y for x..

This process is the exact equivalent (in terms of arithmetic operations) of applying Gaussian elimin-
ation with back substitution to the augmented matrix [A lh]
One of the advantages which the LU (or LDU) decomposition affords is compactness. By start-




ing with the augmented matrix
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it is easy to systematically perform the LDU decomposition in such a way s as to sequentially
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thereby circumventing the necessity to write down or to keep track of each of the successive arrays
associated with the implementation of Gaussian elimination.

Another big advantage afforded by the LU approach to Gaussian elimination is that the reduc-
tion of the coefficient matrix A and the solution of any system Ax =b can be completely separated
This means that once the LU factors for A have been obtained, they can be used to solve Ax = b
for any number of different b, |

Although it is not clear who first formulated the LU or LDU factorization, it was probably
known from the early stages.]® Charles Hermite (1822-1901) from France introduced in 1851
what is now known as the Hermite Normal Form which embodied all of the basic aspects of an
LU type of factorization, including the utilization of elementary matrices, but in a much more ab-
stract setting. P. S, Dwyer in his text Linear Computations credits the Polish mathematician T,
Banachiewicz (during the 1930’s) as being perhaps the first to realize that “the basic problem (in
extracting a numerical solution using Gaussian elimination) is really one of matrix factorization,”

In the era of the slide rule and then of the desk machine (mechanical) calculator, the advantages
of the compact LU factorization methods were realized and several efficient variants along with de-
tailed tabular schemes were devised. Three important methods emerged and each can be described
in terms of an LDU factorization (although they were not all originally formulated in this way).

The first important decomposition is the basic LU factorization described in some detail earlier
in this article. It is the result of Gaussian elimination applied to matrix A where the diagonal mat-
rix is subsumed in the upper triangular factor as A = L{(DU). This method was first systematically
organized (but not as matrix factorization) for practical use in geodetic and least squares calcy-
lations16 by the American M. H. Doolittle in 1878 and is sometimes called the “Gauss-Doolittle
method” or simply the “Doolittle method”, Doolittle designed his method to apply only to sym-
metric systems. It was later extended to nonsymmetric systems and became known as the “‘ex-
tended Doolittle method”.

The second and extremely important variant that is very common in practice today concerns
the problem in which the matrix A is positive definite.17 In this case, U= LT and the diagonal en-
tries of D are positive so that part of D can be subsumed by L while part can be subsumed by LT
to yield.

A = (LD1/2y(p1/2LT),

Although the basic idea may have been implicit in some work of Gauss, it is now known as the

square root method or the Cholesky decomposition named for Andre-Louis Cholesky (1875-1918)

from France. Cholesky was a young major in the French military attached to the Geodesic Section

of the Geographic Service. Around 1905 Cholesky became involved with the problem of adjusting
the triangularization grid of France, The numerical procedures for dealing with the resulting least
squares computations were not yet entirely agreed on. For the solution of the normal equations,
he invented the scheme which now bears his name. However, Cholesky apparently never published
|  his methods so that his techniques were carried forward by word of mouth until an obscure note

by another French officer appeared in 1924. Shortly after 1913, France became involved in war

and the promising career of Major Cholesky ended abruptly in battle on August 31, 1918.

 The Cholesky decomposition has also been traced to Issai Schur in 1917 and was published by
T. Banachiewicz in Poland in 1937, Paul S. Dwyer developed and promoted the Cholesky method
(he called it the “square root method”) in America in the mid-1940’s. It is somewhat ironic that
the Cholesky decomposition has found so much popularity in recent times. Dwyer has speculated
that due to the natural structure of the method, it is a logical algorithm to derive and that it pro-
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bably was discovered, and discarded, several times prior to Cholesky or Schur. The necessity to ex-
tract square roots would have rendered it almost useless for practical work in the days preceeding
calculating machines and other computing aids. It no doubt would have been labeled by utilitarians
of earlier times as another futile attempt by a “theorist” who lacked an appreciation of “practical
numerical techniques”, This is a vivid illustration, among countless other examples, of how the
pure and seemingly impractical mathematics of one era becomes the practical and highly applicable
mathematics of a future era.

The third important variation is a factorization in which the diagonal matrix D becomes sub-
sumed in the lower factor as A = (LD)U. This algorithm was also published by T. Banachiewicz of
Poland (mentioned earlier) in 1938. It was independently developed and published in America by
P. D. Crout in 1941 and is now known as the “Crout method”. Doolittle designed his original
method to apply only to symmetric systems whereas Crout’s method could be used for nonsym-
metric problems. Crout was associated with the Marchant Calculating Machine Company and his
methods were designed specifically for use on the old “Marchant mechanical monsters” and some
other similar antiques. Court’s versions of Gaussian elimination is an efficient organization of data
and ordering of computations which results in reduced storage requirements, 18

Even with the compact and efficient elimination schemes just discussed, the problem of solving
say a (30 x 30) system using the manual mechanical calculators of the 1930’s and 40’s was still an
enormous task which existed only at the outer limits of practicality., During the late 1930°s a phy-
sicist named John V. Atanasoff at Towa State College became interested in electronic computing
machines and he recognized the high speeds which might be attained by electronic methods. He
also realized that the correct mode of computation was by digital means as opposed to analog
methods. Atanasoff and a colleague, Clifford Berry, designed and built an electronic machine spe-
cifically to execute ordinary Gaussian elimination to solve a linear system. The coefficients were
stored in capacitors located on a rotating cylinder which made one revolution per second. Inter-
mediate results of the elimination process were punched and stored on cards. The machine was de-
signed to solve systems up to (30 x 30). Herman Goldstine in The Computer From Pascal To von
Neumann says that the Atanasoff and Berry linear equation solver was probably the first use of
vacuum tubes in conjunction with digital computation. A prototype was apparently working early
in 1940, Because it was prematurel” in its engineering conception, the machine never became a
serious computational tool. However, Goldstine credits the linear equation solver and the ideas
embodied therein as having influenced the entire subsequent development of electronic computers.
One could say that Gaussian elimination was present in the delivery rodm and assisted in giving
birth to the electronic computer.

The onset of World War II accelerated the interest and development of electronic digital com-
puters, Inthe early days, the computations of artillery-trajectory tables was a laborious process ac-
complished by many women using manual mechanical calculators. In 1938, the United States
established the Ballistics Research Laboratory and John von Neumann (1903-1957) was brought
together with Herman Goldstine (1913- ) and a few others, Together with their colleagues, wvon

Neumann and Goldstine developed the first digital electronic computer in which both the program
and the data resided in the computer’s memory.

In 1949 the first new stored-program digital computer went into operation and von Neumann
and Goldstine (along with other mathematicians) directed their attention toward understanding the
cumulative effect of rounding in computations carried out on their new machines. Attention fo-

cused on solving a square system of linear equations using Gaussian elimination. Herman Goldstine
later said

“Indeed, von Neumann and 1 chose this topic for the first modetn paper
il e Dot et Sy Bl ol et e v
as being absolutely basic to numerical mathematics”
Goldstine was referring to the paper by J. von Neumann and H. H. Goldstine, Numerical invert-
ing of matrices of high order, Bull. Amer. Math, Soc., 53(1947), pp. 1021-1099) which became
a cornerstone on which modern numerical analysis was built. Because of its practical significance,
von Neumann and Goldstine focused on the problem of factoring a positive definite matrix A into
A = LDLT (ie., the Cholesky decomposition discussed earlier) by using elimination methods.
Earlier, in 1943, H. Hotelling examined the same problem and showed that if A is (n x n) and if
L and D are computed and used to produce a computed inverse matrix, X, then [L,A}{ -1 ! |2 was
bounded above by a factor which contained the term 4™, This result helped to reinforce the preve-
lant pessimistic attitude concerning the use of Gaussian elimination. It was believed that in the eli-

mination process, an error at any stage would affect all succeeding results and become greatly magni-
fied. Thus Gaussian elimination should be expected to be an unstable algorithm. It was felt that




certain iterative methods should be preferred. In fact, von Neumann himself seemed to be of this
opinion before he considered the problem in depth.

However, the 1947 paper of von Neumann and Goldstine immediately generated some confi-
dence in Gaussian elimination (and the Cholesky decomposition). They proved that if A is not too
near to a singular matrix, then Gaussian elimination and the Cholesky factors will produce a com-
puted inverse, X which satisfies

|| AX -1 ||, < 14.24(M{m)n2bt

when M and m are the largest and smallest eigenvalues of A, respectively, and the computer works
with t digits in the base b. This result was a tremendous improvement since the bound contains
only a quadratic factor of n as opposed to the expenential factor of Hotelling,

Although the work of von Neumann and Goldstine was a milestone, there were some short-
comings. The hardware for floating-point arithmetic was not available in the first generation of
computers so that fixed-point20 arithmetic had to be used and thus the error analysis was based on
fixed-point arithmetic. In truth, floating-point analysis is simpler and provides more satisfactory
results, However, it was many years later before this became fully realized. Furthermore, the em-
phasis was on what is now referred to as forward analysis in which bounds for the difference between
a computed solution and the exactsolution are determined. In the early error analysis of elimina-
tion methods, the effects of rounding were not completely separated from the effects of ill-condi-
tioning nor was the use of different pivoting strategies fully understood. More will be said about
some of these ideas later in this article.

While American mathematicians were grappling with these problems, a parallel development was
occurring at about the same time in England. Alan M. Turing, a noted English logician and mathe-
matician, formulated the now famous concept of an abstract computer (the Turing machine) and
was instrumental in developing the English computer called the ACE.2! Like his American counter-
parts, Turing became interested in producing numerical solutions for linear systems using Gaussian
elimination,

One of Turing’s contributions was to help clarify the notion of ill-conditioning. Although this
concept (along with the term “ill-condition™) had been in common use, it was often used rather
nebulously, In 1948, Turing introduced the term condition number for a nonsingular matrix,
This is defined to be the number

c(a)=||a]l,]|at ]l
and is used to gauge the inherent sensitivity of the problem itself to small perturbations.2? For
example, consider the system

835x +.667y =.168
.333x +.266y =.067

in which the exact solution is
x=1and y=-1,

The condition number of the coefficient matrix is about 1.3 x106. Thisrelatively large condition
number signals that there exist small perturbations to which the system will be quite sensitive. In-
deed, if by = .067 is only slightly perturbed to by = .066, then the exact solution changes drama-

x =-666 and y = 834,

This is an example of an ill-conditioned system. The sensitivity exhibited is intrinsic to the sys-
tem itself and is not due to any sort of unstable computational scheme, If the exact solution is sen-
sitive to small changes in the coefficients, then any computed solution cannot be less so. Thus
there does not exist an algorithm or any kind of “numerical trick” which will produce a solution
that is not sensitive to roundoff (or any other source of error). If one attempts to solve this sys-
tem using Gaussian elimination with 5-digit arithmetic (i.e., round each calculation to 5 significant
digits), then the algorithm completely breaks down and fails to produce a solution due to the
emergence of a zero pivot., However, this is not an indictment of Gaussian elimination. It seems
that this point was not universally appreciated in the early days of implementing Gaussian elimina-

tion on electronic computers

Another such point is the effect of ill-conditioning on the residual. That is, suppose that x_is a
computed solution for a system Ax = b and it is demonstrated that the residual r = Ax_ -bis small
in some sense (i.e., Ax_ is very close to b). Does this guarantee that x_is close to the exact solu-
tion? Surprisingly, the answer is a resounding “NO!” when A is ill-conditioned. For example, in
the ill-conditioned system given above, suppose that somehow you compute a solution and obtain




x =-666 and y = 834,

If you attempt to “check the error” in your computed solution by substituting back into the ori-
ginal system and you form the residuals, then you find (even using exact arithmetic) that

.835x +.667y -.168=0
333y +.266y - .067 = -.001.

That is, the computed solution {i,;} = (-666, 334} satisfies exactly the first equation and comes
very close to satisfying the second. On the surface, this might seem to suggest that your com-
puted solution should be very close to the exact solution. (In fact, you may be seduced into be-

lieving that you are within .001 of the true solution.) Obviously, this is nowhere close to being
true since the exact solution is

x=13nd}"= 1,23

During the 1950’s, it seems that some of these points were not always put in proper focus and this

may have accounted for some of the undue pessimism which once surrounded the use of Gaussian
elimination.

In theory, the order in which the equations of a linear system are listed is irrelevant. In practice,
the order can *““make all the difference in the world”. An extremely accurate or a very inaccurate
result can be produced by Gaussian elimination depending on how the equations are ordered,24
For example, consider solving the following system using 3-digit arithmetic.

A0t +y =1
x+y=i
Applying Gaussian elimination to the equations in this order yields
0 1 |1 20t 1 | 2
1 1|2 ] @y+10%Ry)] o 10%| 10f

because 1+ 104 =10,001 and 2 + 104 = 10,002 both get rounded to 104, Back substitution now
produces

x=0andy=1,

Now interchange the two equations and apply Gaussian elimination to obtain

[2¢ 1 | 3] [ i | 3 1.3 [ &
— ra
1 1| 2] "jo*t 1 | 1] ®my+107R,) il 7 1

because 1+ 10°% = 1.0001 and 1 + 2x10"4 = 1,0002 both get rounded to 1. This time, back substi-
tution produces

x=landy=1,
The exact solution of the system is

x = 1/1.0001 and v = 1.0002/1.0001
which when rounded to 3 significant digits yields

x=1land y=1,

Thus leaving the equations in original order produces a very inaccurate computed solution whereas
the result of an interchange gives a very accurate computed solution. This is due in part to the
size of the pivotal element used in the elimination process.

This discovery led to a modification which today is so standard that it is almost always assumed
to be part of the meaning of the phrase “Gaussian elimination” asitis currently used. This modi-
fication is simply to search each coefficient on and below the pivotal position for thenumber of
maximal magnitude and then (if necessary) perform the appropriate row interchange to bring this
coefficient of maximal magnitude into the pivotal position.

This strategy of “pivoting for size” was evidently known to von Neumann and Goldstine in
1947 (as well as to Turing in 1948) but their use of it in factoring a positive definite matrix was
needed only because their analysis was for fixed-point arithmetic. For floating-point computations,
the use of pivoting is not necessary when dealing with a positive definite matrix. This was notre-
alized until some years later and led to confusion with regard to the use of pivoting strategies in
Gaussian elimination,

In 1961, James H. Wilkinson22 from England introduced the now familiar term parfial pivoting
for the pivoting strategy described above and his work demonstrated that its use in the elimination
process is of fundamental importance for problems of a general nature and that floating-point
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arithmetic doesn’t remove the need for it. In the same paper, Wilkinson also introduced the now
well known term complete pivoting. In this pivoting strategy, one searches at each step the entries
below and/or to the right of the pivotal position for the number of maximum magnitude, If neces-
sary, the appropriate row as well as column interchange is performed in order to bring the coefficient
of maximum magnitude into the pivotal position.
I Before 1961, there was some uncertainty concerning the use of partial pivoting versus complete
pivoting in Gaussian elimination. Complete pivoting can be proven mathematically to be “safe”
in the sense that errors are never unreasonably magnified in comparison with the size of the matrix.
Experience seemed to indicate the same to hold for partial pivoting as well. However, no mathe-
matical proof could be found. It wasimportantto resolve this point because the cost of partial pi-
I voting is very small while the cost of complete pivoting is relatively large. Inhis 1961 paper, Wil-

kinson presented a pathological example of a well-conditioned matrix to show that partial pivoting
is not always ‘“‘safe’ and that it can fail where complete pivoting succeeds. In spite of this fact,
Gaussian elimination with partial pivoting has become the preferred algorithm of today for solving
l a general linear system which will fit entirely into the computer’s memory. John R. Rice in his text
Matrix Computations and Mathematical Software sums up the feeling of today’s practitioner with
the following statement: _ == - _ T _
'-“.thjhhulﬁ*} Pay :_T.’:ﬁﬁé _Elié‘_::nsf jt.ist t-:u protect m‘j@ﬁ:]f from a
situation so rare that it took numerical analysts years to find an

I .::'-.:._..:%-}:,\_-:5'. =

example of it2" 11 1 0
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The work of Wilkinson during the 1960’s had a profound impact not only concerning Gaussian
elimination but on all analysis of matrix computations and much of numerical analysis in general.
Wilkinson provided a complete new level of understanding of Gaussian elimination and put its us-
age on a firm foundation. Perhaps one of Wilkinson’s most important contributions was his develop-
ment and promotion of the idea of backward error analysis as opposed to forward error analysis
which was in vogue during the 1940’s and 50's.

Recall that the object of a forward analysis is to produce error bounds for the differences be-
tween the exact solution and a computed solution, That is, one tries to answer the question “How
close can we expect a computed solution to be to the exact solution?” With backward analysis,
one tries to answer the question “What system did I really solve (i.e., obtain the exact solution of)
and how close is this sytem to the one I originally tried to solve?' If Ax = b is the original system
and x_is a computed solution, then x_ will be the exact solution for another system (A + E)x = b.
The u%jct:t of a backward analysis is to produce bounds on the size of the.entries of E. To com-
plete the analysis, one then must perform a perturbation analysis in order to determine the effects
on the solution of Ax =b when A undergoes a perturbation from A to (A + E). Backward analysis *
has the advantage of being able to separate the effects of rounding in usinga particular algorithm
from the effects of ill-conditioning which are inherent in the problem itself. Furthermore, because
rounding errors are reflected back into the original matrix, they are placed on the same footing as
errors that may be present in the original data, which usually must also be taken into account. To
illustrate the idea of backward analysis in a simple example, consider the system,

104x+y =1
x+y=32
discussed earlier. With 3-digit arithmetic and no pivoting, Gaussian elimination produces the com-
puted solution x = 0 and y = 1 which is the exact solution of another system
10 +y=1

u =0

which is quite different from the original system and hence shouldn’t be expected to produce an
exact solution which is close to the exact solution of the original system. This is an indictment
against the algorithm used. When partial pivoting is incorporated, the computed solutionbecomes
x = 1 and y = 1, which is the exact solution of

v=1
ut+v=2

which is very close to the original system. For this example, backward analysis shows that Gaussian
elimination with partial pivoting acted in a very “stable’ way whereas without pivoting, the algo-
rithm was “unstable”,




Although Wilkinson, in his work of the early 1960’s, was the one responsible for developing
backward error analysis and providing a more complete and solid understanding of the numerical
analysis of Gaussian elimination, he has said that the notion of backward analysis was implicit in
some af the 1947 work of von Neumann and Goldstine but that it was concealed in their tedious
presentation. He also attributed the work of Turing in 1948 with containing some implicit back-
ward analysis. However, Wilkinson credits Wallace Givens as “the true father of backward error
analysis”. Givens presented in 1954 some work on analyzing the computations of eigenvalues of
tridiagonal matrices in which he emphasised the use of backward analysis.

This takes us up to problems still under investigation. A seemingly simple aspect of Gaussian
elimination which is still not completely understood concerns the problem of scaling. From the
early days of automatic computation it was known that even a good algorithm (such as Gaussian
elimination with partial pivoting) can fail if there are numbers of different magnitude involved.
For example, using 3-digit arithmetic and partial pivoting on the system

-10x + 109y = 105
x + y=2

produces a computed solution of x = O and y = 1, which is not very accurate since the exact solution
is x = 1/1.0001 and y = 1.0002/1.0001. The trouble stems from the fact that the first equation
contains coefficients which are extremely larger than those of the second equation. If we rescale
the system to insure that the coefficient of maximum magnitude in each row is 1 (i.e., multiply the
first equation by lﬂ‘ﬁ), then the result is the system given earlier in this article. For the rescaled
system, we have already seen that Gaussian elimination with partial pivoting produces a very accur-
ate computed solution,

In his 1961 paper, Wilkinson suggests that in order for pivoting strategies to be most effective,
all rows and columns of the coefficient matrix should have comparable norms. The ideal case is
when each row and column of the coefficient matrix has the same norm.2® For a system Ax = b,
scaling (or equilibrating) A is usually attempted by replacing A by D,AD, where the D’s are non-
singular diagonal matrices. (Pre-multiplication by a nonsingular diagonal matrix simply multiplies
each equation by a nonzero constant and, theoretically, doesn’t alter the solution. Post-multiplica-
tion by a diagonal matrix has the effect of multiplying the columns of A by constants, which is
equivalent to changing the units of each of the unknowns.) Unfortunately, it is not always possible
to exactly equilibrate A by using *diagonal scalings”. Furthermore, there is at present no known
strategy for determining “optimal® scaling matrices. There is still some research being conducted
on the problem of diagonal scalings.

As computer architecture became more sophisticated, it became possible to attempt to solve
larger and larger problems. During the 1970’s a great deal of emphasis was placed on solving very
large systems in which the coefficient matrix usually had some special structure. In addition to
being large, very frequently the problems of interest had a very sparse distribution of nonzeros.
Applying Gaussian elimination to these large sparse systems opened up new areas of research be-
cause when one applies an elimination technique to this kind of matrix, one wants to preserve the
sparsity. That is, you don’t want to create a matrix which is mostly nonzero from one which ori-
ginally was mostly full of zeros, especially if the size is quite large. Many new techniques (such as
graph theory) have recently been brought to bear on this type of problem and there is currently
still a great deal of research activity surrounding the very old and very simple idea of Gaussian
elimination,

As long as technology keeps evolving so as to produce even better types of computing machines
and as long as mathematicians are active in searching out new frontiers, Gaussian elimination will
also continue to evolve and always be a source of interest for those trying to “just solve a linear sys-
tem of equations.” [

NOTES

1t was probably written under the philosophy that “Just knowing the theory is sufficient for classroom pur-
poses.” After all, why clutter virgin minds with the nasty facts of practical life?
2¢Being in the red” obviously had a different connotation than it has today.
It is curious that the name of Gauss is associated with this concept since elimination methods were appar-
ently used hundreds of years before Gauss, More will be later said about this,
wo systems are equivalent if they possess the same solution set,
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SThe w:nrd “-:ietermi:nant“ seems to have originated with Gauss but in a somewhat different context. It ap-
pears tI:uat it was Augustin-Louis Cauchy (1789-1857) who later popularized this terminology in Europe for what
otherwise was described as “‘alternating symmetric functions™. '

6See The Theory of Determinants In The Historical Order of Development, Vols, 1, 11, 111, and IV, by Sir
Thomas Muir, :

Unfortunately, there still exist a few isolated elementary texts and some instructors that teach Cramer’s rule
as a tool to numerically solve a linear system, This is, of course, almost impossible for all but the simplest text-
book problem. Using Cramer’s rule and the n! terms in the expansion of an (n x n)determinant on a computer
capable of a million multiplications and additions each second, running day and night for a whole century, one
would not have enough time to solve even a (15 x 15) system. {This even neglects the effect of errors attributed
to roundoff.)

gThmria Motus corporum coelestium in sectionibus conicis solem ambientium, 1809,

Of course, Gauss didn’t phrase his discussions or his results in the modern matrix notation which we have
used here because matrix multiplication had not yet been defined. Gauss prescribed individual formulas for
each term of his process and didn’t place the terms in any sort of array.

An operation is a multiplication or a division. Because additions and subtractions are so much faster to

pr:Lfnrm in automatic computation, they are usually not counted when trying to gauge the efficiency of an algo-
rithm,

11The word matrix was first used by Sylvester in 1850 but not with today’s meaning. He invented the word
to refer to a rectangular array because he couldn’t use the word determinant, He was concerned only with deter-
minants which could be formed from the numbers of a rectangular array. Sir Thomas Muir said the use of the
word matrix was “‘entirely uncalled for . . . to take the place already satisfactorily occupied by the word array™.
12Caylc}r was not the first to compose linear transformations, In fact, an example of such a composition ap-
pears in the Disquisitiones Arithmeticae of Gauss in 1801. However, Gauss failed to make the connection be-
l".l.'ﬂﬁlg the compasition of linear transformations and composition of the associated matrices.
1 Unfortunately, there still exist a few isolated cases of textbooks and instructors who teach this to their
students.
If each leading principal minor of A is nonzero, this is guaranteed,
15G, W, Stewart in his text Introduction to Matrix Computations credits Alan Turing from England for intro-
ducing the terminology “LDU decomposition™ in 1948, However, it seems clear that the ideas surround triangu-
lar fagtnrizatinns existed and were used long before 1948.
164 truly incredible amount of mathematics, both pure and applied, has been spawned by the basic necessity |
to perform geodetic and least squares calculations,
Extensions to the case where A is symmetric but not positive definite are also considered in this context.
Crout’s method allows inner products to be accumulated in double precision. With the basic Gaussian elim-
ination as described earlier, this would double the storage requirements, i
Goldstine uses Atanasoff to make the point that there seems to be an optimal time for discovery as well as an
optimal period for perfection. If an idea is put forth too early, it frequently fails to survive due to inadequacies in |
existing knowledge and for technology and the inability to make connections with relevancies of the moment. We
have noted this phenomenon previously in the discussion of the discovery of Cramer’s rule and the Cholesky de-
compaosition of a positive definite matrix. If one proposes an idea too early, it can become lost because it can't be
properly perceived whereas if one proposed exactly the same idea, but waits too long, it can be considered “ob-
vious’' or “trivial”’.
For fixed point computation, the computer operates only on numbers for which the radix point is in a
“fixed" location, The most common representation was in the form

i'dldz'”d

L

with the radix point always "“fixed” at the far left hand side of a sequence of base b (usually b = 2) integers d.. It
was the programmer’s job to properly scale the numbers in the input and output phases (similar to how one used a
slide rule)., Most modern computers perform computations using floating-point numbers, A t-digit base-b floating
point number has the form

(+.d.d, ... d )x(b¢) |

where the base b, the exponent e, and the digits d, are integers. The base b is usually chosen from the set [2,4,8,10,
16] and the digits satisfy 0 <d. <b-1 with dlli}e 0, The range of e (-m <e <M)and the value of t vary greatly
among different machines. Thus a floating-point number is an adaptation of the familiar scientific notation,

21 ACE is the acronym for Automatic Computing Engine which was named in recognition of Charles Babbage's
“Analytical Engine" of 1834 which was never completed,

The term (M/m) in the von Neumann-Goldstine error bound given earlier is the condition aumber for a sym-
metric matrix, but von Neumann and Goldstine did not explicitly single out this number by name nor did they em-
phasize its relationship to the inherent sensitivity of the problem,

This is always a shock to a student seeing this illustrated for the first time because it indeed is a counter to a
novice’s intuition, Unfortunately, many elementary textbooks and instructors still teach their students that they
can always “check” the accuracy of their solution by substituting it back into the original system and see how close
it comes to solving the system, With electronic hand calculators and personal computers finding their way into the
high school (and even lower level) classrooms of today, it becomes important that these “fine points™ no longer be
regarded as “‘details not worth spending time with® when teaching students how to selve a linear system.

This is a glaring example of how a very simple and solid truth, in theory, can degenerate into a complete false-
hood when implemented (and thus slightly compromised ) in practice. Itisagain unfortunate that this very import-
ant distinction between the theory and practice of basic Gaussian elimination has not reached maost of the elem-
e.nta:g textbooks (as well as many instructors).

25 4Frror analysis of direct methods of matrix inversion™, J. Assoc., Comp., Mach., 8(1961) pp. 281-330,

Such matrices are termed “equilibrated”, a word Wilkinson says was invented by F. L. Bauer.
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