
A Flexible Iterative Framework for Consensus
Clustering

Carl Meyer, Shaina Race

May 26, 2014

Abstract
A novel framework for consensus clustering is presented which has the

ability to determine both the number of clusters and a final solution us-
ing multiple algorithms. A consensus similarity matrix is formed from an
ensemble using multiple algorithms and several values for k. A variety of
dimension reduction techniques and clustering algorithms are considered
for analysis. For noisy or high-dimensional data, an iterative technique
is presented to refine this consensus matrix in way that encourages algo-
rithms to agree upon a common solution. We utilize the theory of nearly
uncoupled Markov chains to determine the number, k , of clusters in a
dataset by considering a random walk on the graph defined by the consen-
sus matrix. The eigenvalues of the associated transition probability ma-
trix are used to determine the number of clusters. This method succeeds
at determining the number of clusters in many datasets where previous
methods fail. On every considered dataset, our consensus method pro-
vides a final result with accuracy well above the average of the individual
algorithms.

1 Introduction
Cluster analysis is an important tool used in hundreds of data mining applica-
tions like image segmentation, text-mining, genomics, and biological taxonomy.
Clustering allows users to find and explore patterns and structure in data with-
out prior knowledge or training information. Hundreds (if not thousands) of
algorithms exist for this task but no single algorithm is guaranteed to work
best on any given class of real-world data. This inconsistency of performance in
cluster analysis is not unique to the clustering algorithms themselves. In fact,
the dimension reduction techniques that are expected to aid these algorithms by
revealing the cluster tendencies of data also tend to compete unpredictably, and
it is difficult to know beforehand which low-dimensional approximation might
provide the best separation between clusters. Having many tools and few ways
to make an informed decision on which tool to use, high-dimensional cluster
analysis is doomed to become an ad hoc science where analysts blindly reach
for a tool and hope for the best. Cluster analysis is not the first type of data

1

mining to encounter this problem. Data scientists were quick to develop ensem-
ble techniques to escape the unreliability of individual algorithms for tasks like
prediction and classification. Ensemble methods have become an integral part
of many areas of data mining, but for cluster analysis such methods have been
largely ignored.

An additional problem stems from the fact that the vast majority of these
algorithms require the user to specify the number of clusters for the algorithm
to create. In an applied setting, it is unlikely that the user will know this
information before hand. In fact, the number of distinct groups in the data may
be the very question that an analyst is attempting to answer. Determining the
number of clusters in data has long been considered one of the more difficult
aspects of cluster analysis. This fact boils down to basics: what is a cluster?
How do we define what should and should not count as two separate clusters?
Our approach provides an original answer this question: A group of points
should be considered a cluster when a variety of algorithms agree that they
should be considered a cluster. If a majority of algorithms can more or less
agree on how to break a dataset into two clusters, but cannot agree on how to
partition the data into more than two clusters, then we determine the data has
two clusters. This is the essence of the framework suggested herein.

Our purpose is to address both problems: determining the number of clus-
ters and determining a final solution from multiple algorithms. We propose a
consensus method in which a number of algorithms form a voting ensemble,
proceeding through several rounds of elections until a majority rule is deter-
mined. This allows the user to implement many tools at once, increasing his or
her confidence in the final solution.

2 Consensus Clustering

2.1 Previous Proposals for Consensus Clustering
In recent years, the consensus idea has been promoted by many researchers
[1, 26, 22, 23, 29, 44, 27, 41, 10, 11, 40, 37, 31]. The main challenge to ensemble
methods using multiple algorithms is generally identified to be the wide variety
in the results produced by different algorithms due to the different cluster cri-
teria inherent in each algorithm. Thus any direct combination of results from
an ensemble will not often generate a meaningful result [33, 19].

Most often the consensus problem has been formulated as an optimization
problem, where the optimal clustering, C ∗, minimizes some relative distance
metric between C ∗ and all of the clusterings Ci in the ensemble. There are
many ways to define the distance between two clusterings, for example one
could take the minimum number of elements that need to be deleted for the two
partitions to become identical [14]. Using d(C1,C2) to denote some measure of

2

distance between two different clusterings, we’d write

C ∗ = argmin
C

N∑

i=1

d(Ci,C). (1)

This problem is known as the median partition problem in the literature and
dates back to the 1965-‘74 work of Régnier ([13]) and Mirkin ([25]) [11]. Alter-
natively, some authors use a relative validity metric like the normalized mutual
information NMI(Ci,C) in place of a distance function and attempt to max-
imize the objective function in Eq. 1 [40]. The median partition problem was
shown by Krivanek and Moravek, and also by Wakabayashi, to be NP-complete
[11], but many heuristics have since been proposed to find approximate solutions
[40, 11, 1, 27].

We believe that these methods are bound to suffer because each clustering
in the ensemble is given equal importance. Suppose we had 4 perfect clusterings
and 1 terribly inaccurate clustering. These methods would not take into account
the fact that the majority of the algorithms share 100% agreement on a perfect
clustering, and instead may shift the optimal clustering away from perfection
towards inaccuracy. Thus, we feel that the optimization in Eq. 1 leads to a
“middle-of-the-road” solution or a compromise between algorithms, rather than
a solution of “agreement” or consensus. In our method, the clustering algorithms
act as a voting ensemble and continually move through a series of elections until
a desired level of consensus is reached. Additionally, we introduce a parameter
of intolerance, which allows the user to impose a level of agreement that must
be reached between algorithms in order to accept a cluster relationship between
objects.

2.2 The Consensus Matrix
To begin, we introduce some notation. Since consensus methods combine multi-
ple solutions from multiple algorithms (or multiple runs of the same algorithm),
we start with a cluster ensemble. A cluster ensemble, C = {C1,C2, . . . ,CN},
is a set of N clusterings of the n data objects x1,x2, . . . ,xn. That is, each
clustering Cj in the ensemble is a kj-way partition of the data, composed of
individual clusters,

Cj = [C1, C2, . . . , Ckj
],

where the number of clusters kj in each clustering may be allowed to vary. In
Figure 1, we illustrate a simple example with N = 3 clusterings.

The information from a cluster ensemble is then recorded in a consensus
matrix.

Definition 1 (The Consensus Matrix). Given a cluster ensemble,

C = {C1,C2, . . . ,CN},

3

1

2

8

3

4
5

9

6
7

10

11

1

2

8

3

4
5

9

6
7

10

11

C1 = { {1, 2, 3, 4} {5, 6, 7, 8, 9} {10, 11}}
k1 = 3

C2 = { {1, 2, 3, 4} {5, 7} {6, 8, 9} {10, 11}}
k2 = 4

C3 = { {1, 2} {3, 4} {5, 6, 8} {7, 9} {10, 11}}
k3 = 5

1

1

2

8

3

4

5

9

6
7

10

11

Figure 1: Example of an Ensemble of N = 3 Clusterings

of n data points x1,x2, . . . ,xn, the consensus matrix M is an n × n matrix
such that

M(C)ij = # of times object xi was placed in the same cluster as xj in the ensemble C .

One might prefer to think of the consensus matrix as the sum of individual
adjacency matrices for each clustering in the ensemble. For a given clustering
Ci we could define an adjacency matrix, Ai as

Aij =

{
1 if object xi was clustered with xj

0 otherwise

Then the consensus matrix M would be the sum of the adjacency matrices of
each clustering in the ensemble:

M(C) =

N∑

i=1

Ai.

4

As an example, the consensus matrix for the ensemble depicted in Figure 1
is given in Figure 2.

1 2 3 4 5 6 7 8 9 10 110
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

1 3 3 2 2 0 0 0 0 0 0 0
2 3 3 2 2 0 0 0 0 0 0 0
3 2 2 3 3 0 0 0 0 0 0 0
4 2 2 3 3 0 0 0 0 0 0 0
5 0 0 0 0 3 2 2 2 1 0 0
6 0 0 0 0 2 3 1 3 2 0 0
7 0 0 0 0 2 1 3 1 2 0 0
8 0 0 0 0 2 3 1 3 2 0 0
9 0 0 0 0 1 2 2 2 3 0 0

10 0 0 0 0 0 0 0 0 0 3 3
11 0 0 0 0 0 0 0 0 0 3 3

1

Figure 2: The Consensus Matrix for the Ensemble in Figure 1

The consensus matrix from Figure 2 is very interesting because the ensemble
that was used to create it had clusterings for various values of k. The most
reasonable number of clusters for the colored circles in Figure 1 is k∗ = 3.
The 3 clusterings in the ensemble depict k1 = 3, k2 = 4, and k3 = 5 clusters.
However, the resulting consensus matrix is clearly block-diagonal with k∗ = 3
diagonal blocks! This is not an isolated phenomenon, in fact it is something
we should expect from our consensus matrices if we labor under the following
reasonable assumptions:

• If there are truly k distinct clusters in a given dataset, and a clustering
algorithm is set to find k̃ > k clusters, then the k “true” clusters will be
broken apart into smaller clusters to make k̃ total clusters.

• Further, if there is no clear “subcluster" structure, meaning the original
k clusters do not further break down into meaningful components, then
different algorithms will break the clusters apart in different ways.

This block-diagonal structure is the subject of Section 3.3.

2.2.1 Benefits of the Consensus Matrix

As a similarity matrix, the consensus matrix offers some benefits overs tradi-
tional approaches like the Gaussian or Cosine similarity matrices. One problem
with these traditional methods is the curse of dimensionality: In high dimen-
sional spaces, distance and similarity metrics tend to lose their meaning. The
range of values for the pairwise distances tightens as the dimensionality of the
space grows, and little has been done to address this fact. In Figure 3 we show
the distribution of similarity values for the same 1 million entries in a consensus
matrix compared to the cosine similarity matrix. As you can see, the consen-
sus approach allows a user to witness some very high levels of similarity in

5

high-dimension data, whereas the cosine similarities have a much smaller range.
The dataset, which is more formally introduced in Section 3.2, is the Medlars-
Cranfield-CISI document collection (≈ 4, 000 documents) [18]. Such contrast is
typical among high-dimensional datasets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4 x 105

(a) Histogram of 1 million random entries in
a cosine similarity matrix

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18 x 104

(b) Histogram of same 1 million entries in con-
sensus similarity matrix

Figure 3: Distribution of Similarity Values in Cosine vs. Consensus Matrix

An additional benefit is that entries in the consensus matrix have depth. By
this, we mean that they result from summing entries in adjacency matrices out-
put by individual clustering algorithms, so more information is available about
the meaning of each similarity value. The cosine of the angle between two data
vectors xi and xj may tell us something about their correlation, but knowing,
for instance that these two objects were clustered together by all algorithms
with k̃ ≤ 5, by some algorithms with 6 ≤ k̃ ≤ 7, and never when k̃ ≥ 7, pro-
vides a depth of insight not previously considered. While we do not use this
information explicitly in our analysis, it may be beneficial in practical research.

The greatest benefit of using a consensus matrix for clustering is that it
provides superior information about clustering within the data. This has been
demonstrated time and again in the literature [23, 35, 36, 12, 26, 41, 22, 40, 15,
31]. We add to the pile of evidence for this statement with the experiments in
this paper.

3 Iterative Consensus Clustering (ICC)
The consensus approach outlined herein is based on the work in [22, 41, 34, 23,
12] where the consensus matrix is treated as similarity matrix and used as input
to a clustering algorithm to reach a final solution. In [22] the authors suggest
using many runs of the k -means algorithm, initialized randomly, to build the
consensus matrix and then using a spectral clustering method, such as normal-
ized cut (NCut) [39], to determine a final solution. In [41, 15, 12], the approach
is again to build a consensus matrix using many runs of the k -means algorithm
and then to cluster the consensus matrix with one final run of k -means . In

6

[23] a consensus matrix is formed via k -means and then used as input to the
stochastic clustering algorithm (SCA). While all these methods provide better
results than individual algorithms, they still rely on a single algorithm to make
both the consensus matrix and the final decision on cluster membership.

Our method uses a variety of algorithms, rather than just k -means , to create
the initial cluster ensemble. In addition, each algorithm is paired with different
dimension reductions because it is often unclear which dimension reduction gives
the best configuration of the data; each lower dimensional representation has
the potential to separate different sets of clusters in the data. In this way,
we essentially gather an initial round of votes for whether or not each pair
of objects (xi,xj) belong in the same cluster. These votes are collected in a
consensus matrix M as defined in Definition 1.

3.1 Clustering Algorithms Used for Ensembles
The experiments contained herein use a number of different clustering algo-
rithms. The details of these popular algorithms are omitted due to space con-
siderations but we refer the reader to the following resources:

Data Clustering Algorithms

1. Spherical k-means (solution with lowest objective value from 100 runs,
randomly initialized) [32]

2. PDDP: Principal Direction Divisive Partitioning [3]

3. PDDP-k-means: k-means with initial centroids provided by PDDP clus-
ters [35]

4. NMFcluster: k dimensional Nonnegative Matrix Factorization for Clus-
tering [38]

Graph Clustering Algorithms (Requiring a similarity matrix)

1. PIC: Power Iteration Clustering [9]

2. NCUT: Normalized Cuts according to Shi and Malik [39]

3. NJW: Normalized Cuts according to Ng, Jordan, and Weiss [28]

Each algorithm in our ensemble is assumed to be reasonable, making good
choices on cluster membership most of the time. It is inevitable that each of
the clustering algorithms will make mistakes, particularly on noisy data, but it
is assumed that rarely will the majority of algorithms make the same mistake.
To account for this error, we introduce an intolerance parameter, τ , for which
entries in the consensus matrix Mij < τN will be set to zero. In other words, τ
is the minimum proportion of algorithms that must agree upon a single cluster
relationship (xi,xj) in order to keep those “votes” in the consensus matrix.

7

After the initial consensus matrix is formed, we use it as input to each of the
clustering algorithms again. Essentially we start a debate between algorithms,
asking each of them to use the collective votes of the ensemble to determine
a second solution. Again these solutions are collected in a consensus matrix
and the process repeats until a simple majority of algorithms agree upon one
solution. Once the majority of algorithms have chosen a common solution,
we say the algorithms have reached consensus and call that resulting solution
the final consensus solution. This process is illustrated in the flow chart in
Figure 4.

Clustering
Algorithm 1

Clustering
Algorithm 2

Clustering
Algorithm N

Data Matrix

Consensus Matrix

cluster solution
1

cluster solution
2

cluster solution
N

cluster solution
1

cluster solution
2

cluster solution
N

If no consensus reached
Consensus Matrix

Clustering
Algorithm 1

Clustering
Algorithm 2

Clustering
Algorithm N

Figure 4: Iterated Consensus Clustering (ICC) Process

3.2 Example with Medlars-Cranfield-CISI Text Collection
To illustrate the effectiveness of this procedure, we consider a combination of 3
text datasets used frequently in the information retrieval literature. For simplic-
ity, we assume the number of clusters is known a priori. In Section 3.3 this infor-
mation will be extracted from the data. The combined Medlars-Cranfield-CISI
(MCC) collection consists of nearly 4,000 scientific abstracts from 3 different dis-
ciplines. These 3 disciplines (Medlars = medicine, Cranfield = aerodynamics,
CISI = information science) form 3 natural clusters in the data [2, 18].

The document data is high-dimensional with m ≈ 11, 000 features (words).
As a result, clustering algorithms tend to run slowly on the raw data. Thus, we
reduce the dimensions of the data using 3 preferred algorithms:

1. Nonnegative Matrix Factorization (NMF) by Alternating Constrained Least

8

Squares (ACLS) [21]

2. Singular Value Decomposition (SVD) [8, 6]

3. Principal Components Analysis (PCA) [16]

One should realize that PCA is, in fact, a Singular Value Decomposition of
Data under z-score normalization. However, in practice, these two decomposi-
tions generally provide quite different results, particularly for high-dimensional
data.

For each dimension reduction technique, the number of features is reduced
from m = 11, 000 to r = 5, 10, and 20 creating a total of 9 input data sets. On
each input dataset, 3 different clustering methods were used to cluster the data:

1. k-means

2. PDDP

3. PDDP-k-means

The accuracy (proportion of documents classified correctly [35]) of each al-
gorithm on each data input are given in Table 1.

Features Algorithm NMF input SVD input PCA input
k -means 0.8741 0.7962 0.8260

(r = 5) PDDP 0.9599 0.9049 0.9026
PDDP-k -means 0.9599 0.9049 0.9026
k -means 0.8628 0.8268 0.8286

(r = 10) PDDP 0.9764 0.9774 0.9481
PDDP-k -means 0.9764 0.9774 0.9481
k -means 0.8530 0.8263 0.8281

(r = 20) PDDP 0.9722 0.9802 0.9478
PDDP-k -means 0.6114 0.9802 0.9478
Average Accuracy of All Clusterings: 0.90

Table 1: Accuracy Results for 3 Clustering Algorithms on 9 Low Dimensional
Representations of the Medlars-Cranfield-CISI text data

The accuracy of the results ranges from 61% (>1,500 misclassified) to 98%
(78 misclassified). A reasonable question one might ask is this: Why not choose
the solution with the lowest k -means objective value? The biggest problem with
this boils down to the curse of dimensionality: the distance measures used to
compute such metrics lose their meaning in high-dimensional space [35, 31].
The only comparison we could make between clusterings would be with the
full dimensional data and, surprisingly, the objective function values for the
minimum accuracy solution is approximately equal to the maximum accuracy
solution! Other internal metrics, like the popular Silhouette coefficient [32] suffer
from the same problem. One must be very careful when attempting to compare
high-dimensional clusterings with such metrics.

9

Our suggestion is instead to compile the clusterings from Table 1 into a
consensus matrix, cluster that consensus matrix with multiple algorithms, and
repeat that process until the majority of the algorithms agree upon a solution.
This can be done with or without dimension reduction on the consensus matrix.
For simplicity, we’ll proceed without reducing the dimensions of the consensus
matrix, but we will include an additional clustering algorithm, NMFCluster,
which was not well suited for the analysis on the low-dimensional representations
in Table 1. Table 2 provides the accuracy of these 4 clustering algorithms on
the consensus matrices through iteration. Boxes are drawn around values to
indicate a common solution chosen by algorithms. A final consensus solution is
found in the third iteration with 3 of the 4 algorithms agreeing upon a single
solution. The accuracy of this final consensus solution is much greater than the
average of all the initial clustering results in Table 1. Such a result is typical
across all datasets considered.

Algorithm Consensus Iter 1 Consensus Iter 2 Consensus Iter 3
PDDP 0.939 0.969 0.969

PDDP-k -means 0.954 0.966 0.966
NMFcluster 0.969 0.954 0.966
k -means 0.966 0.966 0.966

Table 2: Medlars-Cranfield-CISI text collection: Accuracies for 4 Clustering
Algorithms on Consensus Matrices through Iteration

3.3 Perron Cluster Analysis
In Section 2.2 an example was given that alluded to our methodology for de-
termining the number of clusters. We approach this task using Perron-cluster
methodology [23, 30, 7, 36, 35] on the consensus similarity matrix. Perron-
cluster analysis involves the examination of eigenvalues of a nearly uncoupled or
nearly completely reducible Markov chain. We consider the transition probabil-
ity matrix P of a random walker on the graph defined by the consensus matrix
M:

P = D−1M

where D is a diagonal matrix containing the row sums of M: D = diag(Me).
According to our assumptions in Section 1, there exists some simultaneous per-
mutation of rows and columns of our consensus matrix such that the result is
block-diagonally dominant. By this we essentially mean that P (after row and
column permutation) is a perturbation of a block-diagonal matrix B, such that

10

P = B+E =

B11 E12 E13 . . . E1k

E21 B22 E23 . . . E2k

E31 E32 B33
. . . E3k

...
...

...
. . .

...
Ek1 Ek2 Ek3 . . . Bkk

(2)

where the off-diagonal blocks, Eij , are much smaller in magnitude than the the
diagonal blocks. In fact, the entries in the off-diagonal blocks are small enough
that the diagonal blocks are nearly stochastic, i.e. Biie ≈ 1 for i = 1, 2, . . . , k.
A transition probability matrix taking this form describes a nearly uncoupled
or nearly completely reducible Markov Chain.

The degree to which a matrix is considered nearly uncoupled is dependent
on one’s criteria for measuring the level of coupling (interconnection) between
the aggregates (clusters of states) of the Markov chain [30, 24, 43]. In [24], the
deviation from complete reducibility is defined as follows:

Definition 2 (Deviation from Complete Reducibility). For an m×n irreducible
stochastic matrix with a k-cluster partition

P =

P11 P12 P13 . . . P1k

P21 P22 P23 . . . P2k

P31 P32 P33
. . . P3k

...
...

...
. . .

...
Pk1 Pk2 Pk3 . . . Pkk

the number
δ = 2max

i
‖Pi∗‖∞,

where Pi∗ represents a row of blocks, is called the deviation from complete
reducibility.

It is important to point out that the parameter δ, or any other parameter
that measures the level of coupling between clusters in a graph (like those sug-
gested in [30, 43]) cannot be computed without prior knowledge of the clusters
in the graph. Such parameters are merely tools for the perturbation analysis,
used to present the following important fact regarding the spectrum of block-
diagonally dominant stochastic matrices [30, 17, 23, 24, 7, 4]:

Fact 1 (The Spectrum of a Block-Diagonally Dominant Stochastic Matrix [30,
24, 7, 23]). For sufficiently small δ 6= 0, the eigenvalues of P(δ) are continuous
in δ, and can be divided into 3 parts:

1. The Perron root, λ1(δ) = 1,

2. a cluster of k − 1 eigenvalues λ2(δ), λ3(δ), . . . , λk(δ) that approach 1 as
δ → 0 (known as the Perron cluster), and

11

3. the remaining eigenvalues, which are bounded away from 1 as δ → 0.

In order to recover the number of blocks (clusters), we simply examine the
eigenvalues of the stochastic matrix P = D−1M and count the number of eigen-
values in the Perron cluster, which is separated from the remaining eigenvalues
by the Perron gap, the largest difference between consecutive eigenvalues λk
and λk+1. The size of this gap is determined by the level of uncoupling in the
graph, with larger gaps indicating more nearly uncoupled structures [23].

3.4 Perron Cluster Analysis for Consensus Matrices
To build the consensus similarity matrix, we use one or more algorithms to
cluster the data into a varying number of clusters. We set the algorithm(s) in
our ensemble to find k̃1, k̃2, . . . , k̃J clusters in the data. The choice of the values
k̃i is for the user, but we suggest choosing these values such that they might over-
estimate the number of clusters but remain less than

√
n. We then construct

the consensus similarity matrix M from the resulting clusterings, examine the
eigenvalues of the transition probability matrix P = D−1M, and count the
number of eigenvalues near λ1 = 1 by locating the largest gap in the eigenvalues.

It is sometimes helpful in this phase of the algorithm to consider the use of an
intolerance parameter τ in the construction of the consensus matrix because we
may have allowed the algorithms to partition the data into fewer clusters than
actually exist in the data. We return to the Medlars-Cranfield-CISI (MCC)
collection discussed in Section 3.2 as an example where traditional SSE plots
generally fail to provide a clear picture of how many clusters may be optimal
[35]. Before discussing the results of our method, we first look at the eigenvalues
of the transition probability matrix that would result from using cosine as a
measure of similarity (this is the most common similarity matrix used for text
collections in the spectral clustering literature). The largest eigenvalues of this
3891×3891matrix are displayed in Figure 5. The plot shows only one eigenvalue
in the Perron cluster and therefore, as with the other methods discussed in [35],
no information is gathered about the number of clusters in the data.

Now we look at the eigenvalues of the transition probability matrix asso-
ciated with a consensus similarity matrix. This consensus matrix was built
from an ensemble of various algorithms paired with different dimension reduc-
tions and different levels of dimension reduction. All 3 of the authors’ preferred
dimension reduction techniques (NMF, PCA, SVD) were used to reduce the
dimensions of the data to r = 5, 10, and 20 dimensions, creating a total of 10
data inputs (including the raw high-dimensional data) for each clustering algo-
rithm. Three different clustering methods were used to cluster each data input:
PDDP, spherical k -means initialized randomly, and spherical k -means initialized
with centroids from the clusters found by PDDP. Counting every combination of
dimension reduction and clustering procedure, the ensemble had 30 algorithms
at work. For each of the 30 algorithms, k̃ = 2, 3, 4, . . . , 10 clusters were deter-
mined and the resulting 270 clusterings were collected in the consensus matrix
M. We show in Figure 6 side-by-side images showing the eigenvalues of the

12

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 i

 λ i

Figure 5: Dataset MCC: 20 Largest Eigenvalues Found Using Cosine Similarity
Matrix

transition probability matrix associated with the consensus similarity matrix
with and without use of the intolerance parameter τ . Particularly with text and
other high-dimensional data, this intolerance parameter, by removing extrane-
ous connections in the consensus graph, encourages a nearly uncoupled structure
in the clustering results [36, 35]. This uncoupling effect, even for conservative
values of τ , is clearly identified by the widened gap after λ3 in the eigenvalue
graphs.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 i

 λ i

(a) No Intolerance (τ = 0.0)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 i

 λ i

(b) 10% Intolerance (τ = 0.1)

Figure 6: Dataset MCC: 20 largest eigenvalues found using consensus similarity
matrices with (right) and without (left) the intolerance parameter τ . Ensemble
of 30 algorithms, each clustering data into k̃ = 2, 3, . . . , 10 clusters

However, both eigenvalue plots in Figure 6, with and without the intolerance
parameter, reveal a Perron-cluster containing k∗ = 3 eigenvalues, as desired.

13

3.4.1 Refining the Consensus Matrix through Iteration

We have seen with the Medlars-Cranfield-CISI collection that the consensus
matrix can provide better clustering information than the raw data. Therefore
it seems reasonable that iterating the consensus process using multiple values of
k̃ may refine the consensus matrix in way that minimizes or eliminates elements
outside of the diagonal blocks, revealing a more identifiable Perron cluster. This
is most often the case. Iterating the clustering process has an uncoupling effect
on the consensus matrix [36]. In Figure 7a we show a matrix heat-map of a
consensus matrix formed by clustering 700 documents (100 of each in 7 clusters)
into k̃ = [10, 11, . . . , 20] clusters with 4 different algorithms and 3 different
dimension reductions. Red pixels indicate high levels of similarity while yellow
pixels represent lower levels of similarity. There is a considerable amount of noise
outside of the diagonal blocks. This consensus matrix was then clustered by the
same 4 algorithms and 3 dimension reductions, again into k̃ = [10, 11, . . . , 20],
and a heat map of the resulting consensus matrix (iteration 2) is shown in
Figure 7b. It is easy to see the refinement of the clusterings by the reduction
of noise outside the diagonal blocks. The difference is also clearly shown in
the eigenvalue plots displayed in Figure 8. For high-dimensional or noise-ridden
data, we suggest this iterated procedure in determining the Perron gap, because
spurious cluster relationships will often couple the clusters together.

max

min

(a) Consensus Matrix prior to iteration

max

min

(b) Consensus Matrix after Iteration

Figure 7: The Uncoupling Effect of Iteration: Matrix Heat Map

In Section 4 the flexibility of our approach is demonstrated using a com-
prehensive example on another benchmark dataset. The Iterative Consensus
Clustering Framework is summarized in Algorithm 1.

14

Algorithm 1 Iterative Consensus Clustering (ICC) Framework
Part I: Determining the Number of Clusters (If desired number of clusters
is known, skip to Part II.)

Input: Data MatrixX, intolerance parameter τ (if desired), and sequence
k̃ = k̃1, k̃2, . . . , k̃J

1. Using each clustering method i = 1, . . . , N , partition the data into k̃j
clusters, j = 1, . . . , J

2. Form a consensus matrix, M with the JN different clusterings determined
in step 1.

3. Set Mij = 0 if Mij < τJN .

4. Let D = diag(Me). Compute the eigenvalues of P using the symmetric
matrix I−D−1/2MD−1/2.

5. Output the number of eigenvalues in the Perron cluster, k. Repeat steps
1-5 using M as the data input in place of X, if the number of eigenvalues
in the Perron cluster remains the same, stop.

Part II: Determining the Consensus Solution

Input: Final consensus matrix from part I, intolerance parameter τ (if
desired), and the number of clusters k. (Or if desired number of clusters
is known before hand, the raw data matrix X).

1. Using each clustering method i = 1, . . . , N , partition the matrix into k̃j
clusters, j = 1, . . . , J

2. If the majority of algorithms agree upon a single solution, stop and output
this solution.

3. Form a consensus matrix, M with the JN different clusterings determined
in step 1.

4. Set Mij = 0 if Mij < τJN .

5. Repeat steps 1-5.

15

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

i
(a) Eigenvalues prior to iteration

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

i
(b) Eigenvalues after iteration

Figure 8: The Uncoupling Effect of Iteration: Eigenvalues

4 Comprehensive Results on a Benchmark Dataset

4.1 NG6: Subset of 20 Newsgroups
The Newsgroups 6 (NG6) dataset is a subset from the infamous "Twenty News-
groups" text corpus that has become a common benchmark for cluster analysis.
The Twenty Newsgroups corpus consists of approximately 20,000 news docu-
ments (web articles) partitioned somewhat evenly across 20 different topics.
The collection of these documents is attributed to Ken Lang, although it is
never mentioned explicitly in his original paper [20]. It is now publicly available
via the web [5]. To create the NG6 collection, 300 documents from 6 topics were
randomly selected, resulting in a term-document matrix with 11,324 terms and
1800 documents. Our initial consensus matrix (used to determine the number of
clusters) was formed using only the k -means algorithm (randomly initialized),
performed on the raw data and 3 dimension reductions. To determine an ap-
propriate rank for dimension reduction we followed convention by observing the
screeplot (plot of the singular values) for the NG6 data matrix. The screeplot
shown in Figure 9, indicates our decision to reduce the dimensions of the data
from m = 11, 324 to r = 10.

The dimensionality of the data was then reduced using our 3 preferred di-
mension reduction algorithms:

1. Principal Components Analysis

2. Singular Value Decomposition

3. Nonnegative Matrix Factorization

and 10 iterations of k -means clustering was performed on each dimension re-
duction to create k̃ = 10, 11, 12, . . . , 20 clusters. Since the clustering is only

16

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

 i

σ i

Figure 9: Dataset NG6: Screeplot (First 100 Singular Values by Index)

performed on the reduced data, this phase of the process proceeds extremely
fast. The result was a total of 330 clusterings which contributed to the initial
consensus matrix. An intolerance parameter was not used for this initial ma-
trix. The next step in our analysis is to examine the eigenvalues of the transition
probability matrix associated with this initial consensus matrix.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 i

 λ i

Figure 10: Dataset NG6: Eigenvalues associated with Initial (unadjusted) Con-
sensus Matrix

The Perron cluster in Figure 10 contains 5 eigenvalues for initial consensus
matrix. As discussed in Section 3.4 there are two adjustments one might consider
to further explore the cluster structure.

1. Implement an intolerance parameter τ to distinguish the Perron cluster

2. Iterate the consensus procedure using the initial consensus matrix as input
(no dimension reduction was used here).

In Figure 11 the results of both adjustments are shown. In either scenario,
a Perron cluster with k∗ = 6 eigenvalues becomes clear. When the iterative

17

procedure is repeated once more, the number of eigenvalues in the Perron cluster
does not change.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 i

λ i

(a) Eigenvalues after τ = 0.3
(Consensus A)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 i

 λ i

(b) Eigenvalues after one iteration
(Consensus B)

Figure 11: Dataset NG6: Eigenvalues associated with consensus similarity
matrices adjusted by intolerance (right) or adjusted by iteration (left) using
k̃ = 10, 11, 12, . . . , 20 clusters. The k∗ = 6 eigenvalues in the Perron cluster
correctly identify the number of clusters.

For the purposes of comparison, we present in Figure 12 the eigenvalues of the
transition probability matrix associated with the Cosine similarity matrix, which
is commonly used to cluster document datasets with spectral algorithms. No
information regarding the number of clusters is revealed by the Perron cluster,
which contains only a single eigenvalue.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 i

λ i

Figure 12: Dataset NG6: Eigenvalues associated with Cosine Similarity Matrix

4.1.1 NG6 Data: Determining a Cluster Solution

Comparing the Consensus Matrix as Input Tables 3, 4 and 5 demon-
strate the superiority of the consensus matrices to traditional data inputs. The
accuracies of certain algorithms increase by as much as 60% when the consensus

18

matrix is used as input compared with the raw data. The average accuracies
of all the algorithms also increases dramatically. One interesting fact to point
out is that in this example, the algorithms perform quite poorly on the NMF
dimension reduction. Even though these results are contained in the consensus
matrices, the nature of the process is able to weed out these poor results. The
authors have experimentally discovered time and again that the ICC process
is not sensitive to a small number of poor results contained in the cluster en-
semble. When it comes to clustering the ensemble, such results are essentially
“voted out.”

Algorithm Raw Data PCA r = 10 SVD r = 10 NMF r = 10
PDDP 0.32 0.75 0.80 0.31

PDDP-k -means 0.77 0.99 0.99 0.60
NMF-Basic 0.46 - - -
k -means 0.18 0.81 0.68 0.18
Average 0.43 0.85 0.82 0.36

Table 3: Dataset NG6: Accuracies for individual algorithms on raw data and
dimension reductions.

Algorithm Initial Consensus Consensus A Consensus B
PDDP 0.85 0.93 0.98

PDDP-k -means 0.96 0.94 0.98
NMF-Basic 0.98 0.98 0.99
k -means 0.75 0.72 0.78
Average 0.88 0.89 0.93

Table 4: Dataset NG6: Accuracies for individual algorithms on 3 different con-
sensus matrices.

Algorithm Cosine Initial Consensus Consensus A Consensus B
PIC 0.52 0.86 0.97 0.98

NCUT 0.98 0.98 0.98 0.99
NJW 0.87 0.82 0.80 0.99

Average 0.79 0.89 0.92 0.99

Table 5: Dataset NG6: Accuracies for spectral algorithms on different similarity
matrices.

4.1.2 NG6 Data: Determining a Final Solution

Our second step in the ICC process, once the number of clusters has been
determined via the eigenvalue analysis, is to iterate the consensus procedure
using the determined number of clusters in an attempt to witness agreement

19

between algorithms. Combining the clustering results of each algorithm on
Consensus B (Column 3 in Table 4 and Column 4 in Table 5) into another
consensus matrix, we run through a second round of “voting”. The matrix
Consensus B was chosen because the eigenvalue gap was larger, although using
Consensus matrix A provides a similar result. The accuracies of the resulting
solutions are given in Table 6. The boxed in values indicate a common solution
among algorithms. We call this the final consensus solution.

Algorithm Consensus Iter 2
PDDP 0.83

PDDP-k -means 0.99
NMF-Basic 0.99
k -means 0.99

PIC 0.99
NCUT 0.99
NJW 0.82

Table 6: Dataset NG6: 4 of 7 algorithms find a common solution in one iteration
of the final consensus process

4.1.3 NG6 Data: Conclusion

We began our analysis with a collection of documents and algorithms - both for
dimension reduction and for clustering. Traditional tools for determining the
number of clusters were not successful. An analyst, having somehow determined
the number of clusters and attempting to cluster this data with the given set of
tools had a chance of finding a solution with accuracy ranging from 18% to 99%.
If that analyst had chosen the best dimension reduction algorithm (PCA) for
this particular dataset (a task for which there are no hard and fast guidelines),
the accuracy of his/her solution may have been between 77% and 99%. Internal
cluster validation metrics like the k -means objective function would not have
been much help in choosing between these solutions, as such measures are dif-
ficult to compare on high-dimensional data. However, by using all of the tools
at our disposal in the Iterative Consensus Clustering Framework, we found that
the clustering algorithms worked out their differences constructively - finally
settling down on a solution with the highest level of accuracy achieved by any
of the algorithms independently.

5 Conclusion
Herein we have presented a flexible framework for combining results from mul-
tiple clustering algorithms and/or multiple data inputs. Not only does this
framework provide the user with an above average clustering solution, it also

20

contains a practical exploratory procedure for determining the number of clus-
ters.

We have discovered that consensus matrices built using multiple algorithms
and multiple values for the number, k, of clusters will often allow users to
estimate an appropriate number of clusters in data by determining the maximum
number of clusters for which algorithms are likely to agree on a common solution.
We have provided several examples to show how this approach succeeds at
determining the number of clusters in datasets where other methods fail. When
the initial consensus matrix does not provide this information, it can be refined
through the use of an intolerance parameter or iteration to get a clearer picture
of how many clusters the algorithms might be able to agree upon.

While the consensus matrix itself is not a new idea, the practice of using
multiple algorithms and dimension reductions together to create the matrix had
not previously been explored, nor had varying the number of clusters for the
purposes of approximating k. Our approach to building the consensus matrix
is novel and improves clustering results from nearly every clustering algorithm
on all datasets considered. This consensus matrix has several advantages over
traditional similarity matrices as discussed in Section 2.2.1.

The ICC Framework encourages clustering algorithms to agree on a common
solution to help escape the unreliability of individual algorithms. While previ-
ous consensus methods have aimed to average cluster solutions in one way or
another, ours is the first to emphasize agreement between clustering algorithms.
After seeing some of the results of the individual algorithms in our ensemble, it
should be clear that an average solution could be very poor indeed. Rather than
deciding each clustering is equally valid, we simply sum the number of times
a cluster relationship was made between two points and let the algorithms de-
cide whether this sum is considerable enough to draw those points together, or
whether it might be more reasonable to dissolve the connection in favor of oth-
ers. This framework iteratively encourages algorithms to agree upon a common
solution because the value of the similarity metric reflects the level of algorith-
mic agreement at each step. Thus, through iteration, cluster relationships upon
which the algorithms do not agree are abandoned in favor of relationships with
higher levels of agreement.

References
[1] P. Berman, B. DasGupta, M. Kao, and J. Wang. On constructing an opti-

mal consensus clustering from multiple clusterings. Information Processing
Letters, 104:137–145, 2007.

[2] M.W. Berry, editor. Survey of Text Mining I: Clustering, Classification
and Retrieval Volume I. Springer, 2004.

[3] D. Boley. Principal direction divisive partitioning. Data Mining and Knowl-
edge Discovery, 2(4):325–344, December 1998.

21

[4] W. Cao and W.J. Stewart. Iterative aggregation/disaggregation techniques
for nearly uncoupled markov chains. Journal of the ACM, 32(2):702–719,
1985.

[5] Twenty Newsgroups Dataset. http://qwone.com/~jason/20newsgroups/.
August 5th, 2013.

[6] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. Journal for the American
Society for Information Science, 41(6):391–407, September 1990.

[7] P. Deuflhard and M.Webber. Robust peron cluster analysis in conformation
dynamics. Linear Algebra and its Applications, 398, 2004.

[8] P. Drineas, A. Frieze, R. Kanna, S. Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. Machine Learning, 56(1):9–33,
2004.

[9] W. W. Cohen F. Lin. Power iteration clustering. Proceedings of the 27th
International Conference of Machine Learning, 2010.

[10] X. Z. Fern and C. E. Brodley. Cluster ensembles for high dimensional
clustering: An empirical study. Technical report, 2006.

[11] V. Filkov and S. Skiena. Integrating microarray data by consensus cluster-
ing. International Journal on Artificial Intelligence Tools, 2004.

[12] A. Fred and A.K. Jain. Combining multiple clusterings using evidence accu-
mulation. Pattern Analysis and Machine Intelligence IEEE Transactions,
27(6):835–850, 2005.

[13] S. Régnier. Sur quelques aspects mathematiques des problems de classifi-
cation automatique. ICC Bulletin, 4:175–191, 1965.

[14] D. Gusfield. Partition-distance: A problem and class of perfect graphs
arising in clustering. Information Processing Letters, 82:159–164, 2002.

[15] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 2009.

[16] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistices.
Springer, 2nd edition, 2002.

[17] T. Kato. Perturbation Theory for Linear Operators. Springer, 1995.

[18] J. Kogan. Introduction to Clustering Large and High-Dimensional Data.
Cambridge University Press, Cambridge, New York, 2007.

[19] S. Kotsiantis and P. Panayiotis. Recent advances in clustering: A brief
survey. WSEAS Transactions on Information Science and Applications,
1(1):73–81, 2004.

22

[20] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the
12th International Conference on Machine Learning, pages 331–339, 1995.

[21] A. Langville, M.W. Berry, M. Browne, V. P. Pauca, and R. J. Plemmons.
Algorithms and applications for the approximate nonnegative matrix fac-
torization. Computational Statistics and Data Analysis, 2007.

[22] F. de Toledo, M. Nascimento and A. Carvalho. Consensus clustering using
spectral theory. Advances in Neuro-Information Processing, 461-468, 2009

[23] C. D. Meyer and C. D. Wessell. Stochastic Data Clustering. SIAM Journal
on Matrix Analysis and Applications, 33(4):1214–1236, 2012.

[24] C. D. Meyer. Stochastic complementation, uncoupling markov chains, and
the theory of nearly reducible systems. SIAM Review, 31(2), 1989.

[25] B. Mirkin. The problems of approximation in spaces of relations and quali-
tative data analysis. Information and Remote Control, 35:1424–1431, 1974.

[26] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering:
A resampling-based method for class discovery and visualization of gene
expression microarray data. Machine Learning, 52:91–118, 2003.

[27] L. Murino, C. Angelini, I. De Feis, G. Raiconi, and R. Tagliaferri. Be-
yond classical consensus clustering: The least squares approach. Pattern
Recognition Letters, 2011.

[28] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm, 2001.

[29] N. Nguyen and R. Caruana. Consensus clusterings. In Seventh IEEE
International Conference on Data Mining, 2007.

[30] A. Fischer, Ch. Schutte, P. Deuflhard, and W. Huisinga. Identification of
almost invariant aggregates in reversible nearly uncoupled markov chains.
Linear Algebra and its Applications, 315:39–59, 2000.

[31] B. G. Mirkin. Clustering: A Data Recovery Approach. Chapman & Hall,
CRC Computational Science Series, 2013.

[32] V. Kumar, P. Tan, and M. Steinbach. Introduction to Data Mining. Pear-
son, 2006.

[33] Y. Qian and C. Suen. Clustering combination method. In International
Conference on Pattern Recognition (ICPR), volume 2, pages 732–735, 2000.

[34] S. Race. Clustering via dimension-reduction and algorithm aggregation.
Master’s thesis, North Carolina State University, 2008.

[35] S. Race. Iterated Consensus Clustering. PhD thesis, North Carolina State
University, 2014.

23

[36] S. Race, C.D. Meyer, and K. Valakuzhy. Determining the number of clusters
via iterative consensus clustering. In Proceedings of SIAM 13th Interna-
tional Conference on Data Mining, 2013.

[37] M. Sales-Pardo, R. Guimera, A.A. Moreira, and L.A.N. Amaral. Extract-
ing the hierarchical organization of complex systems. Proceedings of the
National Academy of Sciences, 104(39), 2007.

[38] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons. Document
clustering using nonnegative matrix factorization. Inf. Process. Manage.,
42(2):373–386, 2006.

[39] J Shi and J Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[40] A. Strehl and J. Ghosh. Cluster ensembles–a knowledge reuse framework for
combining multiple partitions. The Journal of Machine Learning Research,
3(583-617), 2003.

[41] A. Topchy, A. K. Jain, and W. Punch. Clustering ensembles: Models of
consensus and weak partitions. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(12):1866–1881, 2005.

[42] U. von Luxburg. A tutorial on spectral clustering. Statistics and Comput-
ing, 17:4, 2007.

[43] C. Wessell. Stochastic Data Clustering. PhD thesis, North Carolina State
University, 2011.

[44] Y. Zeng, J. Tang, J. Garcia-Frias, and G. R. Gao. An adaptive meta-
clustering approach: Combining the information from different clustering
algorithms. In Proceedings of the IEEE Computer Society Bioinformatics
Conference, 2002.

24

