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ABSTRACT

The need to process and conceptualize large sparse matrices
effectively and efficiently (typically via low-rank approxima-
tions) is essential for many data mining applications, includ-
ing document and image analysis, recommendation systems,
and gene expression analysis. The nonnegative matrix fac-
torization (NMF) has many advantages to alternative tech-
niques for processing such matrices, but its use comes with
a caveat: the NMF must be initialized and the initialization
selected is crucial to getting good solutions. It is well-known
that good initializations can improve the speed and accu-
racy of the solutions of many NMF algorithms [43]. Add to
this the fact that many NMF algorithms are sensitive with
respect to the initialization of one or both NMF factors,
and the impact of initializations becomes very important.
In this paper, we compare the results of six initialization
procedures (two standard and four new) on two alternating
least squares algorithms, which we presented in [27].
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1. INTRODUCTION

Nonnegative data are pervasive. Consider the following
four important applications, each of which give rise to non-
negative data matrices.

e In document collections, documents are stored as vec-
tors. Each element of a document vector is a count
(possibly weighted) of the number of times a corre-
sponding term appears in that document. Stacking
document vectors one after the other creates a non-
negative term-by-document matrix that represents the
entire document collection numerically.

e Similarly, in image collections, each image is repre-
sented by a vector, and each element of the vector
corresponds to a pixel. The intensity and color of the
pixel is given by a nonnegative number, thereby creat-
ing a nonnegative pixel-by-image matrix.

e For item sets or recommendation systems, the infor-
mation for a purchase history of customers or ratings
on a subset of items is stored in a non-negative sparse
matrix.

e In gene expression analysis, gene-by-experiment ma-
trices are formed from observing the gene sequences
produced under various experimental conditions.

These are but four of the many interesting applications that
create nonnegative data matrices (and tensors) [5].

Three common goals in mining information from such ma-
trices are: (1) to automatically cluster similar items into
groups, (2) to retrieve items most similar to a user’s query,
and (3) identify interpretable critical dimensions within the
collection. For the past decade, a technique called Latent
Semantic Indexing (LSI) [4], originally conceived for the in-
formation retrieval problem and later extended to more gen-
eral text mining problems, was a popular means of achieving
these goals. LSI uses a well-known factorization of the term-
by-document matrix, thereby creating a low rank approxi-
mation of the original matrix. This factorization, the singu-
lar value decomposition (SVD) [18, 32], is a classic technique
in numerical linear algebra.

The SVD is easy to compute and works well for points (1)
and (2) above, but not (3). The SVD does not provide users
with any interpretation of its mathematical factors or why
it works so well. A common complaint from users is: do the
SVD factors reveal anything about the data collection? Un-
fortunately, for the SVD, the answer to this question is no,
as explained in the next section. However, an alternative



and much newer matrix factorization, known as the nonneg-
ative matriz factorization (NMF), allows the question to be
answered affirmatively. As a result, it can be shown that
the NMF works nearly as well as the SVD on points (1) and
(2), and further, can also achieve goal (3).

Most examples and applications of the NMF in this paper
refer to text mining because this is the area with which we
are most familiar. However, the phrase “term-by-document
matrix” which we will use frequently throughout this pa-
per can just as easily be replaced with gene-by-observation
matrix, purchase-by-user matrix, etc., depending on the ap-
plication area.

2. LOW RANK APPROXIMATIONS

Applications, such as text processing, data mining, and
image processing, store pertinent information in a huge ma-
trix. This matrix A is large, sparse, and often times non-
negative. In the last few decades, researchers realized that
the data matrix could be replaced with a related matrix,
of much lower rank. The low rank approximation to the
data matrix A brought several advantages. The rank-k ap-
proximation, denoted Ay, sometimes required less storage
than A. But most importantly, the low rank matrix seemed
to give a much cleaner, more efficient representation of the
relationship between data elements. The low rank approxi-
mation identified the most essential components of the data
by ignoring inessential components attributed to noise, pol-
lution, or inconsistencies. Several low rank approximations
are available for a given matrix: QR, URV, SVD, SDD,
PCA, ICA, NMF, CUR, etc. [24, 32, 42, 15]. In this sec-
tion, we focus on two such approximations, the SVD and
the NMF, that have been applied to data mining problems.

2.1 The Singular Value Decomposition

In 1991, Susan Dumais [17] used the singular value de-
composition (SVD) to build a low rank approximation to the
term-by-document matrix of information retrieval. In fact,
to build a rank-k approximation Ay to the rank r term-
by-document matrix A, simply use the k most significant
singular components, where k < r. That is,

k
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where o; is the " singular value of A, and u; and viT
are the corresponding singular vectors [18]. The technique
of replacing A with the truncated Ay is called Latent Se-
mantic Indexing (LSI) because the low rank approximation
reveals meanings and connections between documents that
were hidden, or latent, in the original noisy data matrix A.

Mathematically, the truncated SVD has one particularly
appealing property: of all possible rank-k£ approximations,
A, is the best approximation in the sense that ||[A — Ag||r
is as small as possible [4, 6]. Thus, the truncated SVD
provides a nice baseline against which all other low-rank ap-
proximations can be judged for quantitative accuracy. This
optimality property is also nice in practice. Algorithms for
computing the k£ most significant singular components are
fast, accurate, well-defined, and robust [2, 4, 18]. Two differ-
ent algorithms will produce the same results up to roundoff
error. Such uniqueness and computational robustness are
comforting. Another advantage of the truncated SVD con-
cerns building successive low rank approximations. Once

A100 has been computed, no further computation is required
if, for example, for sensitivity analysis or comparison pur-
poses, other lower rank approximations are needed. That is,
once Ao is available, then Ay is available for any & < 100.

LSI and the truncated SVD dominated text mining re-
search in the 1990s [1, 3, 4, 7, 6, 8, 9, 10, 12, 17, 21, 23, 22,
30, 46, 47, 48]. However, LSI is not perfect. For instance,
while it first appeared that the low rank approximation Ay
would save storage over the original matrix A, experiments
showed that this was not the case. A is generally very sparse
for text mining problems because only a small subset of the
terms in the collection are used in any particular document.
No matter how sparse the original term-by-document ma-
trix is, the truncated SVD produces singular components
that are almost always completely dense. In many cases,
A can require more (sometimes much more) storage than
A.

Furthermore, A is always a nonnegative matrix, yet the
singular components are mixed in sign. The SVD’s loss of
the nonnegative structure of the term-by-document matrix
means that the factors of the truncated SVD provide no
interpretability. To understand this statement, consider a
particular document vector, say, column 1 of A. The trun-
cated SVD represents document 1, A, as

Ai~ovn |w | +oovie |uz |+ Forvie | ur |,

which reveals that document 1 is a linear combination of the
singular vectors u;, also called the basis vectors. The scalar
weight o;v1; represents the contribution of basis vector ¢ in
document 1. Unfortunately, the mixed signs in u; and v;
preclude interpretation.

Clearly, the interpretability issues with the SVD’s basis
vectors are caused by the mixed signs in the singular vectors.
Thus, researchers proposed an alternative low rank approx-
imation that maintained the nonnegative structure of the
original term-by-document matrix. As a result, the nonneg-
ative matrix factorization (NMF) was created [29, 34]. The
NMF replaces the role played by the singular value decom-
position (SVD). Rather than factoring A as UyX; V7, the
NMF factors A as WiHy, where W, and Hj are nonneg-

ative.

2.2 TheNonnegative Matrix Factorization

Recently, the nonnegative matrix factorization (NMF) has
been used to create a low rank approximation to A that
contains nonnegative factors called W and H. The NMF of
a data matrix A is created by solving the following nonlinear
optimization problem.

min||Amxn mekaxn”i“: (1)
s.t. W >0,
H>o0.

The Frobenius norm is often used to measure the error be-
tween the original matrix A and its low rank approximation
WH, but there are other possibilities [14, 29, 33]. The rank
of the approximation, k, is a parameter that must be set by
the user.

The NMF is used in place of other low rank factoriza-
tions, such as the singular value decomposition (SVD) [32],



because of its two primary advantages: storage and inter-
pretability. Due to the nonnegativity constraints, the NMF
produces a so-called “additive parts-based” representation
[29] of the data. One consequence of this is that the factors
W and H are generally naturally sparse, thereby saving a
great deal of storage when compared with the SVD’s dense
factors.

The NMF also has impressive benefits in terms of inter-
pretation of its factors, which is, again, a consequence of the
nonnegativity constraints. For example, consider a text pro-
cessing application that requires the factorization of a term-
by-document matrix A,,x». In this case, k can be consid-
ered the number of (hidden) topics present in the document
collection. In this case, W, xr becomes a term-by-topic ma-
trix whose columns are the NMF basis vectors. The nonzero
elements of column 1 of W (denoted W), which is sparse
and nonnegative, correspond to particular terms. By con-
sidering the highest weighted terms in this vector, one can
assign a label or topic to basis vector 1. Figure 2.2 shows
four basis vectors for one particular term-by-document ma-
trix, the medlars dataset of medical abstracts, available at
http://www.cs.utk.edu/~1si/. For those familiar with the
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Figure 1: Interpretation of NMF basis vectors on
medlars dataset

domain of this dataset, the NMF allows users the ability to
interpret the basis vectors. For instance, a user might attach
the label “heart” to basis vector W of Figure 2.2. Similar
interpretation holds for the other factor H. Hyx,, becomes a
topic-by-document matrix with sparse nonnegative columns.
Element j of column 1 of H measures the strength to which
topic j appears in document 1.

Another fascinating application of the NMF is image pro-
cessing. Figure 2.2 clearly demonstrates two advantages of
the NMF over the SVD. First, notice that the NMF basis
vectors, represented as individual blocks in the W matrix,
are very sparse (i.e., there is much white space). Similarly,
the weights, represented as individual blocks in the H; vec-
tor, are also sparse. On the other hand, the SVD factors are
nearly completely dense. Second, the basis vectors of the
NMF, in the W matrix, have a nice interpretation, as indi-

vidual components of the structure of the face—ears, noses,
mouths, hairlines. The SVD basis vectors do not create an
additive parts-based representation. In addition, the gains
in storage and interpretability do not come at a loss in per-
formance. The NMF and the SVD perform equally well in
reconstructing an approximation to the original image.
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Figure 2: Interpretation of NMF and SVD basis vec-
tors on face dataset, from [29]

Of course, the NMF has its disadvantages too. Other pop-
ular factorizations, such as the SVD, have strengths concern-
ing uniqueness and robust computation. Yet these become
problems for the NMF. There is no unique global minimum
for the NMF. The optimization problem of equation (2) is
convex in either W or H, but not in both W and H, which
means that the algorithms can only, if at all, guarantee con-
vergence to a local minimum. In practice, NMF users of-
ten compare the local minima from several different starting
points, using the results of the best local minimum found.
However, this is prohibitive on large, realistically-sized prob-
lems. Not only will different NMF algorithms (and there
are many now [5]) produce different NMF factors, the same
NMF algorithm, run with slightly different parameters, can
produce different NMF factors.

2.3 Summary of SVD vs. NMF

We pause to briefly summarize the advantages of these two
competing low rank approximations. The properties and ad-
vantages of the SVD include: (1) an optimality property; the
truncated SVD produces the best rank-k approximation (in
terms of squared distances), (2) speedy and robust compu-



tation, (3) unique factorization; initialization does not affect
SVD algorithms, and ( 4) orthogonality; resulting basis vec-
tors are orthogonal and allow conceptualization of original
data as vectors in space. On the other hand, the advantages
of NMF are: (1) sparsity and nonnegativity; the factoriza-
tion maintains these properties of the original matrix, (2) re-
duction in storage; the factors are sparse, which also results
in easier application to new data, and (3) interpretability;
the basis vectors naturally correspond to conceptual prop-
erties of the data.

The strengths of one approximation become the weak-
nesses of another. The most severe weakness of the NMF
are its convergence issues. Unlike the SVD and its unique
factorization, there is no unique NMF factorization. Be-
cause different NMF algorithms can converge to different
local minima (and even this convergence to local minima
is not guaranteed), initialization of the algorithm becomes
critical. In practice, knowledge of the application area can
help guide initialization choices.

3. INITIALIZATIONS

All NMF algorithms are iterative and it is well-known
that they are sensitive to the initialization of W and H [43].
Some algorithms require that both W and H be initialized
[19, 20, 29, 28, 35], while others require initialization of only
W [34, 33, 39, 40]. In all cases, a good initialization can
improve the speed and accuracy of the algorithms, as it can
produce faster convergence to an improved local minimum
[42]. A good initialization can sidestep some of the con-
vergence problems mentioned above, which is precisely why
they are so important. In this section, we compare several
initialization procedures (two old and four new) by testing
them on the ALS algorithms presented in [27]. We choose to
use the ACLS and AHCLS algorithms because they produce
sparse accurate factors and require about the same time as
the SVD. Most other NMF algorithms require much more
time than the SVD, often times orders of magnitude more
time.

3.1 Two Existing Initializations

Nearly all NMF algorithms use simple random initializa-
tion, i.e., W and H are initialized as dense matrices of ran-
dom numbers between 0 and 1. It is well-known that ran-
dom initialization does not generally provide a good first
estimate for NMF algorithms [42], especially those of the
ALS-type of [27] [11, 31, 36, 38]. Wild et al. [43, 44, 45]
have shown that the centroid initialization, built from the
centroid decomposition [13] is a much better alternative to
random initialization. Unfortunately, this decomposition is
expensive as a preprocessing step for the NMF. Because our
ALS algorithms, ACLS and AHCLS, only require initializa-
tion of W, we only discuss techniques for computing a good
WO (not H® as well). In our algorithms, once W is
known, H® is computed quickly by a least squares compu-
tation.

3.2 Four New Initializations

Some text mining software produces the SVD factors for
other text tasks. Thus, in the event that the SVD factor V
is available, we propose a SVD-centroid initialization [26],
which initializes W with a centroid decomposition of the
low dimensional SVD factor V,xx [41]. While the cen-
troid decomposition of A,,x» can be too time-consuming,

the centroid decomposition of V is fast because V,x is
much smaller than A,.x». When the SVD factors are not
available, we propose a very inexpensive procedure called
random Acol initialization. Random Acol forms an initial-
ization of each column of the basis matrix W by averaging
p random columns of A. It makes more sense to build basis
vectors from the given data, the sparse document vectors
themselves, than to form completely dense random basis
vectors, as random initialization does. Random Acol initial-
ization is very inexpensive, and lies between random initial-
ization and centroid initialization in terms of performance
[25, 26].

We also present two more initialization ideas, one inspired
by the C matrix of the CUR decomposition [15], and another
by the term co-occurrence matrix [37]. We refer to these last
two methods as random C initialization and co-occurrence
initialization, respectively. The random C initialization is
similar to the random Acol method, except it chooses p
columns at random from the longest (in the 2-norm) columns
of A, which generally means the densest columns since our
text matrices are so sparse. The idea is that these might be
more likely to be the centroid centers. The co-occurrence
method first forms a term co-occurrence matrix C = AA”.
Next, the method for forming the columns of W described
as Algorithm 2 of [37] is applied to C. The co-occurrence
method is very expensive for two reasons. First, for text
mining datasets, such as reuters10, m >> n, which means
C = AAT is very large and often very dense too. Second,
the algorithm of [37] for finding W? is extremely expensive,
making this method impractical. All six initialization meth-
ods are summarized in Table 1. The two existing methods
appear first, followed by our four suggested methods.

3.3 Initialization Experimentswith Reuters10
dataset

The reuters10 collection is our subset of the Reuters-
21578 version of the Reuter’s benchmark document collec-
tion of business newswire posts. The Reuters-21578 version
contains over 20,000 documents categorized into 118 differ-
ent categories, and is available online.! Our subset, the
reuters10 collection, is derived from the set of documents
that have been classified into the top ten most frequently oc-
curring categories. The collection contains 9248 documents
from the training data of the “ModApte split” (details of
the split are also available at the website above).

The numbers reported in Table 2 were generated by apply-
ing the alternating constrained least squares (ACLS) algo-
rithm of [27] with Ag = Aw = .5 to the reuters10 dataset.
The error measure in this table is relative to the optimal
rank-10 approximation given by the singular value decom-
position. For this dataset, ||A — U19Z10Vip|lr = 22656.
Thus, for example, the error at iteration 10 is computed as

A — WIOH || — 22656
22656 '

Error—iter.10 =

We distinguish between quantitative accuracy, as reported
in Table 2, and qualitative accuracy as reported in Tables
3 through 9. For text mining applications, it is often not
essential that the low rank approximation be terribly pre-
cise. Often suboptimal solutions are “good enough.” After

"http://www.daviddlewis.com/resources/testcollections/
reuters21578/



Table 1: Initialization Methods for the NMF

Name Proposed by Pros Cons
Random Lee, Seung [28] easy, cheap to compute dense matrices, no intuitive basis
Centroid Wild et al. [43] reduces # NMF iterations, expensive, must run clustering

firm, intuitive foundation

algorithm on cols of A

SVD-Centroid
Random Acol
Random C

Co-occurrence

Langyville [26]
Langyville [25]

Langyville adapts

from Drineas [15]

Langyville adapts

from Sandler [37]

inexpensive, reduces # NMF
iterations

cheap, sparse matrices built
from original data

cheap, sparse

uses term-term similarities

SVD factor V must be available

only slight decrease in number of
NMEF iterations
not very effective

large, dense co-occurrence matrix,
very expensive computation

Table 2: Experiments with Initialization Methods for the NMF

Method Time W© Storage WO | Error—iter.0 | Error—iter.10 | Error—iter.20 | Error—iter.30
Random .09 sec 726K 4.28% .278% .146% .146%
Centroid 27.72 46K 2.02% .269% .181% A77%
SVD-Centroid 657 56K 2.08% .057% .057% .057%
Random Acol* .05 6K 2.01% 212% 155% .146%
Random C° A1 22K 3.35% .287% .199% .189%
Co-occurrence 3287 45K 3.38% 371% .269% .252%
ACLS time .37 sec 3.42 6.78 10.29

1 provided V of the SVD is already available

* each column of W formed by averaging 20 random columns of A
° each column of W(® formed by averaging 20 of the longest columns of A

reviewing Tables 3-9, it is easy to see why some initializa-
tions give better accuracy and converge more quickly. They
start with basis vectors in W that are much closer to
the best basis vectors found, as reported in Table 3, which
was generated by using the basis vectors associated with the
best global minimum for the reuters10 dataset, found by
using 500 random restarts. In fact, the relative error for this
global minimum is .009%, showing remarkable closeness to
the optimal rank-10 approximation. By comparing each sub-
sequent table with Table 3, it’s clear why one initialization
method is better than another. The best method, SVD-
centroid initialization, starts with basis vectors very close to
the “optimal” basis vectors of Table 3. On the other hand,
random and random Acol initialization are truly random.
Nevertheless, random Acol does maintain one clear advan-
tage over random initialization as it creates a very sparse
W The Random C and co-occurrence initializations suf-
fer from lack of diversity. Many of the longest documents
in the reuters10 collection appear to be on similar topics,
thus, not allowing WO to cover many of the reuters topics.

Because the algorithms did not produce the “wheat” vec-
tor always in column one of W, we have reordered the re-
sulting basis vectors in order to make comparisons easier.
We also note that the nonnegative matrix factorization did
produce basis vectors that cover 8 of the 10 “correct” reuters
classifications, which appear on the last line of Table 3. The
two missing reuters classifications are corn and grain, both
of which are lumped into the first basis vector labeled wheat.
This first basis vector does break into two separate vectors,
one pertaining to wheat and grain and another to corn
when the number of basis vectors is increased from k£ = 10 to

k = 12. We note that these categories have been notoriously
difficult to classify, as previously reported in [16].

4. FUTURE WORK

Surveying the tables in this paper, prompts us to propose
another initialization as future work. The SVD-centroid ini-
tialization is the best of the six methods studied, yet it re-
quires that the Vi, matrix of the truncated SVD be available.
If Vi is not available, then one would spend as much time
getting this matrix by computing a truncated SVD, as he
would computing the NMF. Clearly, this is an unreasonable
amount of preprocessing time. Thus, in the future, we will
experiment with a method for approximating Vi by com-
puting the truncated SVD of a random sample of columns
of A. We suspect this would be a preprocessing step whose
slight expense is worth the effort.

A common issue for many factorization algorithms is up-
dating. Once the data collection has changed and the A
matrix updated, what procedures exist, beyond total re-
computation, for updating the factorization? This is an
unstudied issue for the NMF. It is tempting to use NMF
factors from the original matrix to as initializations for the
updated matrix. We plan to experiment with these ideas in
a subsequent paper.

5. CONCLUSION

This paper presents four new initialization techniques for
the nonnegative matrix factorization. Only two, the SVD-
centroid and the random Acol initialization techniques, prove
beneficial. Comparing these two new initializations with the



Table 3: Basis vectors of W% from Best Global Minimum found for reuters10

Wgso) Wgso) Wgso) Wf’o) Wéso) Wéso) W$50) Wéso) W§50) W%o)
tonne | billion share stg mln-mln gulf dollar oil loss trade
wheat year offer bank cts iran rate opec profit japan
grain earn company money mln attack curr. barrel oper japanese
crop qrtr stock bill shr iranian bank bpd exclude tariff
corn rise sharehol. market net ship yen crude net import
agricul. pct common england avg tanker monetary price dlrs reagan
wheat earn | acquisition interest ship frgn-exch. oil trade
Table 4: Basis vectors of W created by Random Initialization for reuters10
WgO) WéO) W:(,)O) WEI()) WéO) WéO) W;O) Wa(;O) WéO) Wg(()))
announce wpp formality | bulletin | matthews | dramatic squibb wag cochran erik
medtec reflagging simply awfully nyt boca raton | kuwaiti oils mln support
pac kwik moonie blair barrel clever dacca hears barriers sale oil
purina tilbury tmg fresno purina billion democrat | bwtr deluxe direct
mezzanine | capacitor | bushnell farm june bkne induce nestle mkc wheat
foreign grain country | leutwiler trend clever rate federal | economic aid
Table 5: Basis vectors of W® created by Centroid Initialization for reuters10
WEO) WéO) WéO) Wio) WéO) WéO) W;O) WéO) WéO) Wg(()))
tonne bank share medar cts iran rate oil stg strike
wheat rate company | mdxr | mmln gulf dollar trade bill port
grain dollar offer mlx loss attack bank price | take-up | union
corn billion pct mlxx net iranian | currency | barrel | drain | seaman
crop pct stock mich shr missile market japan | mature | worker
agriculture | trade dlrs troy dlrs tanker | monetary | opec | money ship

Table 6: Basis vectors of W created by SVD-Centroid Initialization for reuters10

W [ WO [ WO [ Wi [ W [ w [ WO [ WO [ wy [ wi
tonne | billion share bank cts iran dollar oil loss trade
wheat year offer money shr gulf rate barrel | oper japan
grain earn company rate mln attack Ccurr. opec | profit | japanese
corn qrtr stock stg net iranian yen crude cts tariff
crop rise pct market | mln-mln | missile japan bpd mln import
agricul. pct common pct rev ship economic | price net country

Table 7: Basis vectors of W(® created by Random Acol Initialization for reutersi0

wi? | owP [ owy [ wy we  [w [ wi? | w? | ow [ wy
mln fee agl mln mark loss official dlrs bank trade
denman | mortgage tmoc dlrs mannesmann | mln | piedmont oper bancaire | viermetz
dlrs billion bank share dividend cts dollar billion austral mln
ecuador winley pct seipp min maki interest loss neworld nwa
venezuela mln company | billion dieter name tokyo texaco datron cts
revenue fed maki dome gpu kato | japanese | pennzoil share builder




6.

7.
1]

2]

8]

[4]

[5]

(6]

[7]

Table 8: Basis vectors of W created by Random C Initialization for reuters10

w” | Wy w? [ wP | w wg [ wP [ W [ we | W
analyst dollar economic bank market | analyst | analyst analyst trade rate
lawson rate policy rate bank | market | industry bank dollar trade
market | economist pct market | analyst | trade price currency japan official

trade mark cost currency price pct market japan price bank
sterling bank growth dollar mark last believe billion | japanese market
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