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Abstract

In this technological age, vast amounts of data are generated. Vari-
ous statistical methods are used to find patterns in data, including clus-
tering. Many common methods for cluster analysis, such as k-means
and Nonnegative Matrix Factorization, require input of the number of
clusters in the data. However, usually that number is unknown. There
exists a method that uses eigenvalues to compute the number of clus-
ters, but sometimes it underestimates that number. In this paper, we
propose a complementary method to identify the number of clusters.
This method is used to analyze three data sets and gives fairly accurate
estimates of the number of clusters.

1 Introduction

Cluster analysis is a type of data analysis that partitions observations into
groups, or clusters, so that observations in the same group have similar
characteristics. For numerical data, numbers that are close to one another
would be clustered together. Nonnumerical data, such as text data, can be
converted to numerical data and then clustered.
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There are numerous algorithms that cluster data into k clusters when k
is specified. Two common ones are k-means [1] and Nonnegative Matrix
Factorization (NMF) [2]. However, in many situations k is unknown, so it is
often necessary to estimate k before executing an algorithm. The Stochastic
Clustering Algorithm (SCA) [3] does not require k to be input. Instead, the
number of clusters is calculated in a step of the algorithm that we call the
Stochastic Clustering (SC) method.

Our task was to explore an alternative method of deriving k, the number of
clusters, from a data set. We devised a new, graphical method that, when
applied to three well-known data sets, performs better than the SC method.

This paper is organized as follows. In Section 2, we introduce and discuss
some important clustering terminology and describe the SC method. In
Section 3, we describe and give intuition for our new approach to find the
number of clusters. In Section 4, we test our method on three data sets and
explore its limitations. Lastly, in Section 5, we conclude our discussion.

2 Background

A clustering algorithm takes as input data with n observations and groups
them into k clusters. A clustering assignment is a surjective map f
from the set of data points D = {d1, d2, ..., dn} to the set of clusters C =
{1, 2, ..., k}; that is, f : D → C.

Given a clustering assignment, we can construct a symmetric adjacency
matrix A, which is of size n× n and is defined as follows:

aij =

{
1 if f(di) = f(dj)

0 otherwise

With multiple runs of a clustering algorithm on a data set, we have multi-
ple clustering assignments and adjacency matrices. Then, we may calculate
a symmetric consensus matrix. Formally, with m runs of clustering al-
gorithm and corresponding adjacency matrices A1, A2, . . . , Am, the

consensus matrix is defined as S =
1

m

m∑
i=1

Ai.

To calculate the number of clusters in a data set, the SC method takes as
input a n × n consensus matrix S, constructed after multiple runs of some
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clustering method on a data set using a variety of numbers of clusters. First,
it converts S into a n × n doubly stochastic matrix P using the Sinkhorn-
Knopp Algorithm [4]. Then, it calculates the eigenvalues of P , which lie
in [0, 1]: 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. If the largest difference between
consecutive eigenvalues is between λk and λk+1, the SC method concludes
that the data set has k clusters. The theory behind the SC method can be
found in Meyer and Wessell [3].

At the crux of our new method to calculate the number of clusters in a data
set is the uncoupling measure of a consensus matrix, given in Meyer and
Wessell [3]. It is defined as follows.

Let S be a n× n consensus matrix and n1 and n2 be positive integers such
that n1 + n2 = n. S can be partitioned into the form

S =

[
S11 S12
S21 S22

]
where S11 is n1 × n1 and S22 is n2 × n2 for n1 ∈ [1, n − 1]. The un-
coupling measure of S with respect to n1 is the function σ(S, n1) =
eTS12e+ eTS21e

eTSe
=

2eTS12e

eTSe
, where e is a column vector of ones. In other

words, the uncoupling measure is the ratio of the sum of the entries in
the off-diagonal blocks to the sum of all entries in the matrix.

3 Proposed Graphical Method: Local Maxima

We can make some observations about the uncoupling measures of a con-
sensus matrix for a data set. Consider some such matrix S. The entry sij
would be close to 1 if the data points di and dj are often assigned to the
same cluster by the algorithms used to construct S, and close to 0 otherwise.
Suppose that we know the correct clustering assignment of the data. Using
that, permute S so that the rows and columns corresponding to data points
in the same cluster are adjacent. Then, assuming that the algorithms used
to construct S are accurate, S would approximate a block diagonal matrix,
with each block corresponding to a cluster. The entries in the blocks would
be close to 1, and the other entries would be close to 0.

Now consider the uncoupling measure of S. If n1 is such that none of the
blocks are partitioned, then σ(S, n1) would be close to 0. If it is not, σ(S, n1)
would be larger. Indeed, it would be largest when a block is partitioned in
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half. Therefore, the plot of σ(S, n1) versus n1 would have one local maximum
for each cluster. That is, the number of clusters in the data set would be
equal to the number of local maxima in the plot of the uncoupling measure
of a consensus matrix.

Suppose now that we do not know the actual number of clusters and must
run a clustering algorithm to derive the clustering assignment used to per-
mute S. If the clustering assignment used to permute S were derived from
an algorithm using l clusters, where l < k, then rows and columns corre-
sponding to data in different clusters may be mixed together. Their distinct
local maxima would be replaced by one local maximum, and we would see
at least l and at most k local maxima in the plot of σ(S, n1). However,
if l = k, we should see k local maxima, with similar reasoning as in the
previous paragraph.

On the other hand, if l > k, some cluster must be divided into multiple
clusters. Then, the rows and columns of S corresponding to the data in
that cluster may not be adjacent. The numbers off the diagonal would
increase. Thus, the local maxima in the plot of σ(S, n1) would become less
pronounced and there may be less than l local maxima.

Based on these observations, we propose the following Local Maxima (LM)
method to find the number of clusters in a data set:

1. Construct a consensus matrix S for the data set D = {d1, d2, ..., dn} by
executing a clustering method multiple times with a variety of numbers
of clusters.

2. Repeat the following steps for l = 2, 3, 4, ...:

• Run the same clustering method on the data with l clusters to
get a clustering assignment f .

• Permute S such that if f(di) = f(dj), the rows of S corresponding
to di and dj are adjacent and the columns of S corresponding to
di and dj are adjacent.

• Plot σ(S, n1) for n1 ∈ [1, n − 1], and count the number of local
maxima.

• If this number is less than l, the algorithm stops, and we conclude
there are l − 1 clusters.
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4 Experimental Design and Results

We tested this method on three well-known data sets: the Ruspini data set
[5], the Fisher Iris data set [6], and the Leukemia data set [7].

4.1 Ruspini

The Ruspini data set [5] consists of 75 observations with two variables each.
It has four clusters. To illustrate the data, we carried out Principle Com-
ponent Analysis. Figure 1 is a histogram of the coordinates of the first
principal component for each data point. There are two clear clusters, al-
though it may be argued that each contains two clusters since there seems
to be two modes.

Figure 1: Ruspini: Data Projection on First Principal Component

To build the consensus matrix S, we used the results from executing the
k-means algorithm on the data 10 times each for k = 2, k = 3, k = 4, k = 5,
and k = 6.

For simplicity, we just show the last three steps of the method. For l = 2,
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there were two local maxima in the plot of σ(S, n1) versus n1. Figure 2(a)
shows the next step of the method, the plot of σ(S, n1) versus n1 for l = 3.
There are either two or three local maxima. If there are two, the method
ends and we say that there are two clusters. If there are three, we continue
to the next step.

Figure 2(b) is the plot of σ(S, n1) for l = 4. There are two, three, or four
local maxima. If there are two or three, the method ends and we say that
there are three clusters. If there are four, we continue to the next step.

Figure 2(c) is the plot of σ(S, n1) for l = 5. Here, there are definitely
less than five local maxima; there are at least two, and possibly two more.
Therefore, the method ends.

The LM method predicts that the Ruspini data set to have at least two and
up to four clusters.

4.2 Iris

The Fisher Iris data set, first introduced in [6], contains 150 observations
with 4 dimensions corresponding to different features of the flower. It has
three clusters, one for each species of iris: Iris setosa, Iris versicolor, and
Iris virginica. However, a recent paper by Benson-Putnins et al. [8] asserts
that there may be actually two clusters in the Iris setosa cluster.

Again, we did Principle Component Analysis on the data. Figure 3 is a
histogram of the coordinates of the first principal component for each data
point. There are two clear clusters, although it is possible that the second
consists of two or three clusters.

To build the consensus matrix, we executed the k-means algorithm 10 times
each for k = 2, k = 3, k = 4, and k = 5.

Figure 4(a) is the plot of σ(S, n1) versus n1 for l = 2. There are clearly two
local maxima, so we proceed to the next step of the method.

Figure 4(b) is the plot of σ(S, n1) for l = 3. There are either two or three
local maxima. If there are two, the method ends and we say that there are
two clusters. If there are three, we continue to the next step.

Figure 4(c) is the plot of σ(S, n1) for l = 4. There are two local maxima,
even though there are several small bumps on the curve. Since this is less
than 4, the method ends.
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Figure 2: Ruspini: Uncoupling Measures
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Figure 3: Iris: Data Projection on First Principal Component

We conclude that the Iris data set has two or three clusters.

We may make an interesting observation here. As shown in Figure 4(b),
there are two clusters that are close together but are further away from the
third cluster. Similarly, in the plot corresponding to l = 3, there are two
clear local maxima and one less apparent one. Thus, it is possible that the
existence of an obvious local maximum for a cluster is determined by that
cluster’s dissimilarity from other clusters.

4.3 Leukemia

The Leukemia data set [7] consists of 38 observations with 5000 dimensions.
It contains gene expression data for 38 cancer patients, provided by the
Broad Institute of Harvard and MIT. There are three clusters, corresponding
to three types of leukemia: acute lymphoblastic leukemia, B-cell subtype
(ALL-B), acute lymphoblastic leukemia T-cell subtype (ALL-T), and acute
myelogenous leukemia (AML).
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Figure 4: Iris: Uncoupling Measures
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To build the consensus matrix S, we executed the k-means algorithm on the
data 10 times each for k = 2, k = 3, k = 4, and k = 5.

Figure 5a is the plot of σ(S, n1) versus n1 for l = 2. There are clearly only
two local maxima, so we proceed to the next step of the method.

Figure 5b is the plot of σ(S, n1) for l = 3. There are three local maxima, so
we continue to the next step of the method.

Figure 5c is the plot of σ(S, n1) for l = 4. Again, there are three local
maxima, less than l = 4. Therefore, the algorithm ends, and we conclude
that there are three clusters in the Leukemia data set.

4.4 Comparison with Stochastic Clustering Method

We implemented the SC method on the Ruspini, Iris, and Leukemia data
sets as well. Table 1 shows the number of clusters for each data set returned
by each method.

Table 1: Comparison of the Number of Clusters Estimated
Number of clusters Ruspini Iris Leukemia

SC 1-2 1-2 2

LM 2-4 2-3 3

Actual 4 3 3

We immediately see that the LM method performs just as well or better
than the SC method on all three data sets. Both methods sometimes un-
derestimate the number of clusters, but the SC does so more often and with
greater error.

The range of values given for the SC method is due to randomness in the
algorithms used to construct the consensus matrices. The range of values
given for the LM method is due to this randomness as well as the ambiguity
of interpretation of the graphs of σ(S, n1); for example, in the l = 3 plot for
the Ruspini data set, the number of local maxima is debatable.

4.5 Discussion

As shown in the experiments, the local maximum for a cluster may not be
apparent if the data in that cluster is similar to the data in another cluster.
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Figure 5: Leukemia: Uncoupling Measures
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Therefore, the LM method may fail if clusters are not sufficiently distinct
from one another.

However, we believe that the biggest weakness of the current LM method is
its lack of rigor. Now the number of local maxima is counted by eye, but
ideally there should be a mathematically rigorous method to analyze the
graphs.

5 Conclusion and Future Work

In this paper, we introduced, discussed, and applied our Local Maxima
method to identify the number of clusters in three data sets with fairly
accurate results. This method is complementary to the Stochastic Clustering
method given in Meyer and Wessell [3]. Combining these two methods could
allow us to identify the number of clusters in data sets with acceptable
accuracy.

We tested the Local Maxima method on three data sets. In future, we plan
to apply it to many others to verify its capabilities. Moreover, we would
like to examine the theoretical basis for this method and develop a rigorous
technique to count the number of local maxima.
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