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Abstract

The rank of an object is its relative importance to the other objects in the set. Often a rank
is an integer assigned from the set 1,...,n. A ranking model is a method of determining a way in
which the ranks are assigned. Usually a ranking model uses information available on the objects to
determine their respective ratings. The most recognized application of ranking is the competitive
sports. Numerous ranking models have been created over the years to compute the team ratings
for various sports. In this paper we propose a flexible, easily coded, fast, iterative approach we call
the Offense-Defense Model (ODM), to generating team ratings. The convergence of the ODM is
grounded in the theory of matrix balancing.

∗Our special thanks go to Luke Ingram who has worked on developing ODM in his Masters thesis
with Amy Langville.



1 Introduction
The rank of an object is its relative importance to the other objects in the set. Often
a rank is an integer assigned from the set {1, 2, ..., n}. Ideally an assignment of avail-
able ranks ({1, 2, ..., n}) to n objects is one-to-one. However in certain circumstances
it is possible that more than one object is assigned the same rank. A ranking model is
a method of determining a way in which the ranks are assigned. Typically a ranking
model uses information available to determine a rating for each object. The ratings
carry more information than the ranks because they provide us with the degree of rel-
ative importance of each object. Once we have the ratings the assignment of the ranks
can be as simple as sorting the objects in the descending order of the corresponding
ratings. The ranking models can be used for a number of applications such as sports,
web search, literature search, etc. This paper concentrates on ranking teams (or players)
in sports that have paired comparisons (games) that produce scores for each team. The
first section of this article introduces the Offense-Defense Model (ODM).

A natural application of sports ranking models is predictions of game outcomes.
The game prediction in the second section of this article were done using four models,
the Offense-Defense Model, the Colley Matrix Method by Colley (2002), the Keener
Perron vector approach by Keener (1993), and the Massey Least Squares model by
Massey (1997). Both the method by Colley and the Massey’s model are part of the BCS
rankings. Following are brief introductions to the last three methods.

The Colley Matrix Method uses only the number of wins and losses and the number
of games played for each team, assuming no ties. The essence of the Colley Matrix
Method is to formulate and solve a system of linear equations Cr = b to obtain the
rating of each team. Each equation in the system corresponds to a team and the simul-
taneous solution to the system provides the rating score for each team. The algorithm
is based on a result from probability called Laplace’s Rule of Succession Ross (2006,
p.108). The rule is used to approximate probabilities of boolean events (in our case, the
probability of winning or losing a game). The existence and uniqueness of the solution
is based on a theory of a special type of nonnegative matrices, M-matrices.

James P. Keener proposed his ranking method based on the theory of nonnegative
matrices in 1993. Specifically, Keener makes use of properties of the Perron vector guar-
anteed by the Perron-Frobenius Theorem, see Meyer (2001, p.673). The nonnegative
score matrix K is formed using Laplace’s Rule of Succession and a smoothing function.
The substance of this ranking algorithm is in determining an eigenvector of the matrix
K corresponding to the dominant eigenvalue of K. Other examples of ranking models
that use the Perron-Frobenius Theorem are found in publications by Kleinberg (1999)
and Saaty (1987).

Kenneth Massey created a least squares approach to computing ratings. Computing
team ratings amounts to solving a least squares problem LTLx = LTb where L is a
game-by-team matrix and each (i, j) indicates whether team j won (set to be 1), lost
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(set to be -1) or did not play (set to be 0). Vector b is formed by using score differences
of the corresponding games. Another ranking model using a least squares approach can
be found in Stefani and Clarke (1992).

There are numerous other ranking models that fit into many different categories.
One type is the Markov Chains based ranking models for example Govan et al. (2008),
Kvam and Sokol (2006), Redmond (2003), and Brin and Page (1998). Another is the
Sinkhorn-Knopp based ranking models such as one by Smith (2005) and ODM. Yet
another type uses logistic regression, for examples see Clarke and Dyte(2000) or Holder
and Nevill (1997).

2 Offense-Defense Model
For a set of teams engaged in a competitive sport, the first objective of this article is
to present a model for rating the overall strength of each team relative to the others.
While there are numerous factors that might be taken into account, our approach is
to characterize “strength” by combining each team’s relative offensive and defensive
prowess in a non-linear fashion.

To compute offensive and defensive ratings we start with the assumption that larger
offensive ratings correspond to greater offensive strength, i.e. the capability of produc-
ing larger scores. On the other hand, smaller defensive ratings will correspond to greater
defensive strength, i.e., a low defensive rating indicates that it is hard for the opposition
to run up a large score.

If teams i and j compete, then let A = [aij] be such that aij is the score that team j
generated against team i (set aij = 0 if the two teams did not play each other). Alter-
nately, aij can be thought of as the number of points that team i held team j to. In other
words, depending on how it is viewed, aij simultaneously reflects relative offensive and
defensive capability. To utilize this feature we define the offensive rating of team j to
be the combination

oj = a1j(1/d1) + ...+ anj(1/dn),

where di is the defensive rating of team i that is defined to be

di = ai1(1/o1) + ...+ ain(1/on).

Since oj’s and di’s are interdependent, these values will have to be determined by a
successive refinement technique that is described below. For example, consider a league
consisting of three teams, called team 1, team 2, and team 3. Suppose that initially
team 1 has the strongest offense and defense, team 2 has the next strongest offense
and defense, and team 3 has the worst offense and defense. Then o1 ≥ o2 ≥ o3, and
d1 ≤ d2 ≤ d3. Suppose that some initial estimates of these quantities are made (or
guessed). Given that each team played every other team exactly once let us examine the
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refined offensive and defensive ratings for team 3. The new offensive rating for team 3
is

o3 = a13(1/d1) + a23(1/d2).

Since team 1 has strong defense then d1 is relatively small and therefore team 3’s offense
will be rewarded for scoring high against a strong opponent, i.e., points a13 produced
against team 1 will be divided by a smaller number thus boosting the offensive rating of
team 3.

The new defensive rating of team 3 is

d3 = a31(1/o1) + a32(1/o2).

Team 1 has the strongest offense, so the defense of team 3 is less penalized for allowing
team 1 to score more points. On the other hand, team 2’s offense is less impressive,
and therefore defense 3 must hold offense 2 to fewer points to avoid an increase in d3’s
rating.

This intuition leads to the following general rule for successive refinement. Given
A = [aij], initialize di = 1 for all i so that d(0) = ( 1 1 ... 1 )T . Define o(1) =

AT (1/d(0)), where 1/d(0) denotes the column vector 1/d(0) = ( 1/d1 ... 1/dn )T .
Now successively refine the defensive and offensive values by the following iterative
procedure

o(k) = AT 1

d(k−1)
,

d(k) = A
1

o(k)
.

(1)

2.1 Convergence of Offense-Defense model
The equations (1) for computing the offensive and defensive ratings are in fact equiva-
lent to a row-column scaling of the matrix A. That is, provided that the iterative proce-
dure converges, the entries of 1/o normalize columns of A and entries of 1/d normalize
rows of A so that A(1/o) = e and AT (1/d) = e, where e is a vector of all 1’s. In
other words, D(1/d)AD(1/o) is a doubly stochastic matrix where D(x) denotes the
diagonal matrix

D(x) =


x1

x2

. . .
xn

 .

Scaling of a square non negative matrix A so that row and column sums of A are 1 is
a special case of matrix balancing. In a general case the rows and columns of A do not
have to add to the same scalar, see Schneider and Zenios (1994) for details.
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The convergence of the Offense-Defense model is guaranteed by the Sinkhorn-
Knopp Theorem Sinkhorn and Knopp (1967). In order for the set of equations (1)
to converge, the matrix A has to have total support. A nonnegative square matrix A is
said to have total support if A 6= 0 and if every positive element of A lies on a positive
diagonal. A diagonal of the matrix A is a set of elements {a1,σ(1), ..., an,σ(n)}, where σ
is a permutation of {1, ..., n}.

In 1967 Sinkhorn proved the convergence of the matrix scaling method given that
matrix A is positive. An alternative proof was given in 1998 by Borobia (1998). The
following theorem states the conditions for convergence of the scaling method when A
is nonnegative.

Theorem 2.1 (Sinkhorn-Knopp, 1967) For each nonnegative matrix A with total sup-
port there exists a unique doubly stochastic matrix S of the form DAE where D and
E are unique (up to a scalar multiple) diagonal matrices with positive main diagonal.
Matrices D and E are obtained by alternatively normalizing columns and rows of A
using the 1-norm.

If a matrix A has support (has at least one positive diagonal), then the iterative
procedure of alternatively normalizing columns and rows of A converges. However the
sequences of the diagonal matrices produced for this normalization do not necessarily
converge.

The matrix scaling (see Schneider and Zenios, 1994, Kalantari et al., 1993, and
Rothblum et al., 1994) procedure in the Sinkhorn-Knopp theorem is one of the meth-
ods for matrix balancing and in some papers is referred to as a RAS method. Matrix
scaling and its convergence has received increased attention in the past several decades.
Rates of convergence Knight (2008), Kalantari et al. (1997), and Soules (1991), algo-
rithms Knight and Ruiz (2007), Ruiz (2001), and multidimensional scaling Franklin and
Lorenz (1989) are just a few related developing areas. We make use of the Sinkhorn-
Knopp convergence result for the nonnegative matrices in the following theorem.

Theorem 2.2 Given that the score matrix A has total support, the entries in the vectors
o and d are the reciprocals of the main diagonal elements of the matrices D and E.

Proof. The iterative method used to obtain matrices D and E using D0 = E0 = I is

cTk = eTDk−1AEk−1,
rk = Dk−1AEke,

where Dk = [D(rk)]
−1, and Ek = [D(ck)]

−1. Given that matrix A has total support,
this iteration converges, and the final matrices D = [D(r)]−1 and E = [D(c)]−1 are
unique. Consequently S = DAE = [D(r)]−1A[D(c)]−1, where S is doubly stochastic.
Using D(x)e = x and eTD(x) = xT with Se = e and eTS = eT produces

c = AT [D(r)]−1e,
r = A[D(c)]−1e.
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By setting c = o, r = d, and noting that the inverse of a diagonal matrix with
positive diagonal is obtained by taking the element-wise reciprocals of the diagonal
entries, the above equation set is rewritten as

o = AT 1

d
,

d = A
1

o
,

which is the limit of the original definition of the offense-defense (1) model with A
having total support. Thus the theorem is proven.

In practice there is no guarantee that the score matrix A will have total support. To
compensate, a rank-one perturbation can be incorporated to define a new matrix

P = A + εeeT .

This is used in place of A so that convergence of (1) is ensured.
This perturbation adds ε to all elements of A, and if ε is sufficiently small, then its

effect on the model should not be significant. However, adding εmay affect convergence
rates. The method is finalized below

Definition 2.3 The Offense-Defense Model (ODM)
The offensive ratings oi and the defensive ratings di are entries of the vectors o and

d that are limits of o(k) and d(k), as k →∞, in which

o(k) = PT 1

d(k−1)
, where d(0) = e,

d(k) = P
1

o(k)
,

(2)

where

pij =

{
aij + ε if team i played team j,
ε team i and j did not play,

and e is a vector of all 1’s.

The second part of the Sinkhorn-Knopp Theorem states that if a matrix A has sup-
port, then the sequences of the diagonal matrices produced for the matrix normalization
do not necessarily converge. Almost always matrices created using sports team data for
a season will have support (this happens when each team plays at least once or until each
team acquires a nonzero score), but it is not given that enough games played translates
to total support of the matrix A.

It is straightforward to check whether a matrix A has support — all row and column
sums have to be positive. Checking for existence of total support in a large matrix is
a nontrivial issue. One may check that each diagonal of A is either zero or positive.
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Alternatively one can check whether there is a positive diagonal to which each nonzero
element of A belongs, as each element of A belongs to multiple diagonals. This is the
reason why it is computationally simpler to perturb each element of A to force total
support rather than perturbing select elements.

Given that A has support, the matrix [D(d(k))]−1A[D(o(k))]−1 will converge to a
stochastic matrix as k tends to infinity, but the entries in o and d will either converge
to zero or grow without bound. Some numerical testing suggests that the relative order
of the entries in both o and d stabilize after only a few iterations. Since the ranking is
assigned based on the relative order of the vector values, we might not have to perturb
the matrix A after all.

2.2 Rank Aggregation
The Offense-Defense model assigns two rating scores, offensive and defensive, to each
team. In most ranking applications the preference is to have a single rating score for
each team. This can be accomplished by aggregating the corresponding offensive and
defensive rating scores.

Rank aggregation is a function which uses several ratings (or ranks) obtained using
various models as an input to produce a single rating (or rank) of each team as an output.
The simplest aggregation function that can be applied to the Offense-Defense model is
ri = oi/di, i.e., the overall rating score of team i is its offensive rating divided by its
defensive rating. This allows us to retain the “large value is better” interpretation of the
ratings. This rating score is a reciprocal of the Sinkhorn rating score proposed by Smith
(2005).

Another aggregation method is called the “Rank Aggregation model.” As an input it
takes several ranked lists of n teams. We then form a directed graph where all the teams
are represented by the graph nodes. The edges point from lower ranked teams to higher
ranked teams and each weight can be defined as

wij = number of ranked lists having i below j

or
wij = sum of rank differences from lists having i below j

Then we can apply our favorite ranking method to compute the ratings and form
the aggregated ranked list. In essence each ranked list can represent a round robin
tournament where the rank of the team is a score and the team with the lowest score
wins. In general the goal of rank aggregation is to minimize the effect of the outliers,
i.e., the teams that are assigned a rank by one method that differs significantly from the
ranks assigned by the majority of the other methods.

6

Journal of Quantitative Analysis in Sports, Vol. 5 [2009], Iss. 1, Art. 4

http://www.bepress.com/jqas/vol5/iss1/4



2.3 Score Matrix
It is not a certainty that a better team will always accumulate the highest score during a
given game. Hence we can take into account other statistics as alternative strength indi-
cators of a given team. For example, in football each team accumulates total yardage in
each game. We can form a score matrix A using the total yards statistic and compute the
offensive and defensive strength of a team according to this statistic. One can compute
multiple offensive and defensive ratings of a given team based on several statistics (e.g.
game scores, total rushing yards, total first downs, etc.) and aggregate them into a single
offensive and a single defensive scores.

2.4 Hyperlink-Induced Topic Search model (HITS)
The Offense-Defense model is in part inspired by the ranking algorithm HITS created
by Jon Kleinberg in 1998 for web ranking Kleinberg (1999). The origins of web-page
ranking lie in ranking methods for scientific journals via citations Pinski and Narin
(1976), Geller (1978). According to HITS a web page Pi has two rating scores asso-
ciated with it, an authority, ai, and a hub hi. The world wide web is represented as a
directed graph with web pages being nodes and hyperlinks as directed edges. The rating
scores are computed as

ai = l1ih1 + ...+ lnihn,
hi = li1a1 + ...+ linan.

where lij = 1 if Pi has a hyperlink to Pj and lij = 0 otherwise. The process of comput-
ing authority and hubs ratings is again iterative and can be written using the adjacency
matrix L of the directed web graph

a(k) = LTh(k−1),
h(k) = La(k),

which simplifies to
a(k) = LTLa(k−1),
h(k) = LLTh(k−1).

(3)

Analogous to the Offence-Defense model, HITS assumes each object has two ratings.
However, unlike the offense and defense ratings both authority and hub values are
“good” when they are high. Hence there are no reciprocals in the computation, and,
providing that the iterative procedure (3) converges, vectors a and h are eigenvectors
of LTL and LLT respectively. In other words HITS is a linear model while our ODM
formulation is non-linear.
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3 Game Prediction

3.1 Data Gathering
Now we proceed to the second objective of this article which is a validation of the
proposed Offense-Defense Model. One way to validate a ranking model is by means of
game predictions. This could amount to periodically computing the overall team ratings
and use them to predict the outcomes of the upcoming games. The process could be as
simple as comparing current team ratings and assigning the team with the higher rating
as the winner of an upcoming match. The predictions are then compared to the actual
results. We will refer to this approach as “foresight predictions.” A somewhat different
way of game prediction is to use the entire season of data to compute the ratings score,
and then use these rating scores to predict the outcomes of the games of that season. In
other words, if we have all the information available about a given season, what is the
maximum accuracy that we can achieve? This approach will be referred to as “hindsight
predictions.”

The complexity of the rating model may require a substantial effort in data gathering
and processing. If the model uses only win-loss counts and possibly scores of the indi-
vidual games played, then the data is relatively easy to acquire. Many sports websites
contain lists of NFL or National Collegiate Athletic Association (NCAA) games along
with scores for a number of seasons, see for example http://www.mratings.com/.

If there is a need for individual game statistics such as rushing or passing yards, then
the data gathering process may involve parsing data files of the game box score such
as ones found on the John M. Troan and ESPN websites (see references). Two main
attributes are required from the potential data website sources. One is the reliability
of the information, and the second is the stability of the file format used to showcase
the information. In the case of our game prediction experiments we chose to use game
scores to generate the offensive and defensive team ratings. All the data files were
downloaded and parsed, using Perl software, from two sources; the John M. Troan
website for the NFL and the ESPN website for NCAA football and basketball.

3.2 Game Prediction Results
In this section we present the results of the game predictions for three sports; football
(NFL), college football (NCAA football), and college basketball (NCAA basketball).
Different team sports present different challenges to game predictions. For example, the
NFL tends to have a very regular schedule with a sufficient interplay within divisions as
well as without. The NFL currently consists of only 32 teams that are relatively close
to each other in “quality.” This makes for a narrow difference in the ratings values.
A small number of teams corresponds to a small size matrix and hence fast Matlab
computations for the game predictions. In contrast, NCAA football currently has 120
Division I-A teams, and the team quality ranges wildly. The game data for the NCAA is
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very sparse since there are relatively few games played in comparison to the number of
teams. There is a small interplay between divisions, and Division I-A teams tend to play
I-AA teams during the beginning of the season. Finally, NCAA basketball currently has
341 teams in its Division I. On average each Division I team tends to play about 30
games per season, and although during the 2007-2008 season teams played more than
5000 games, the resulting matrices are sparse. There is also a great fluctuation in relative
strength of the teams.

Both foresight and hindsight game prediction results are presented for the NFL. The
first type recomputes the rating scores weekly and uses them to predict the winner of the
upcoming games. These predictions for the NFL are done for the regular season games
starting with week 1 through the Super Bowl. In order to ensure that the models have
enough game data the pre-season game results are taken into account during the first
three weeks of the regular season. After three weeks enough games have been played, so
the pre-season data is henceforth discarded. In case two teams play each other multiple
times, the scores produced by each team are accumulated, although another approach
would be to average them. The number of games predicted correctly by each of the
four models (Colley, Keener, Massey, and ODM) is converted into percentage since
over the years the total number of games played by NFL teams has changed. The
second type of game predictions is more theoretical in nature than practical because it
employs hindsight. The ratings used to do game predictions are computed using the
game outcomes for the entire season. Since different values of the ODM parameter ε
did not produce significant changes in the predictions, all the results assume a tolerance
tol = 0.01 and ε = 0.001. This gives us an idea of just how well the ranking methods
can do in an ideal case. There is a substantial increase in the accuracy of predictions as
evidenced in Table 3.2 and Figure 3.2.

Colley Keener Massey ODM Colley Keener Massey ODM

2001 57.92 58.69 60.23 60.62 72.97 72.97 69.88 69.88
2002 59.18 58.43 60.3 63.3 68.16 68.91 67.04 68.54
2003 63.3 58.05 64.04 61.05 75.66 73.78 71.91 72.28
2004 61.8 59.93 62.17 58.43 74.16 70.79 67.42 68.54
2005 61.8 62.55 65.17 64.04 73.03 75.66 75.28 76.4
2006 58.8 57.68 60.3 58.05 72.66 69.29 71.16 70.04
2007 66.67 62.55 68.16 68.91 75.66 76.03 73.41 72.28

Table 1: Foresight/Hindsight game prediction percentages for the NFL.
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Figure 1: Foresight/Hindsight game prediction percentages for the NFL.

Both foresight and hindsight predictions are done for NCAA football. Foresight
game predictions are done for the regular season of NCAA football starting with week
6 all the way through the Bowl games. Since NCAA football does not have a pre-season,
the game predictions can not start until week 6 of the regular season. Only Division I-A
teams are considered. The games played between I-A and I-AA are discarded. Both
foresight and hindsight prediction results for NCAA football are in Table 3.2 and the
following Figure 3.2.

Colley Keener Massey ODM Colley Keener Massey ODM

2003 66.3 70.29 69.62 69.18 82.04 76.72 77.38 76.05
2004 66.14 63.68 67.71 67.49 81.17 77.8 76.91 79.15
2005 67.34 64.21 67.79 64.43 81.66 77.63 76.06 74.27
2006 68.74 65.74 73.23 71.95 82.23 78.37 77.09 77.3
2007 67.1 68.82 69.89 68.6 79.35 76.77 77.42 75.48

Table 2: Foresight/Hindsight game prediction percentages for NCAA football.
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Figure 2: Foresight/Hindsight game prediction percentages for NCAA football.

The largest example of the game prediction in this paper is done with NCAA basket-
ball. Since teams may play more than once in any one week period, the game predictions
have to be done daily. As with previous sports, the total number of games played varies
from year to year, so the predictions are converted to percentages. Only the games be-
tween the Division I teams were used. The games of the Division I teams with teams
outside of the Division I were disregarded. Since there is no pre-season, foresight pre-
dictions wait until game day 26 to start the predictions and are predicted through the
tournament. The viable starting point may be earlier for some seasons depending on the
number of games discarded in the initial game days. The hindsight predictions used the
entire season together with the tournament to compute the ratings, and then these rat-
ings were used to predict games daily for the same season. Finally, given the tolerance
tol = 0.01 for ODM convergence, the NCAA basketball foresight and hindsight game
prediction results are shown in Table 3.2 and Figure 3.2.

Colley Keener Massey ODM Colley Keener Massey ODM

2001 68.60 64.60 69.65 70.03 76.00 70.03 74.40 74.11
2002 69.02 64.79 70.13 70.03 75.97 70.42 74.50 74.37
2003 68.92 64.92 70.19 70.22 76.90 70.13 75.83 75.66
2004 68.65 65.27 70.50 70.12 76.27 70.65 74.99 74.97
2005 66.98 64.44 68.95 69.56 75.99 69.32 74.80 74.57
2006 68.37 64.84 70.02 69.69 76.37 69.88 74.83 74.77
2007 68.28 64.91 70.13 70.07 76.05 69.82 74.92 74.83

Table 3: Foresight/Hindsight game prediction percentages for NCAA basketball.
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Figure 3: Foresight/Hindsight game prediction percentages for NCAA basketball.

There is a clear and expected increase in the prediction accuracy if we use the entire
season’s data to compute the ratings. Prediction results for all three sports yield an
interesting observation that ODM does better as a foresight predictor relative to the
other ranking models than it does as a hindsight predictor. Furthermore both Colley and
Keener excel in hindsight but not in foresight predictions. Another point of interest is
the computation time. Given that foresight predictions of NCAA basketball games is
the largest of the examples used, it is subsequently used to compute the total cpu time
expended and the number of iterations used by ODM. Provided that the tolerance for
the ODM is set to be tol = 0.01, Table 3.2 illustrates the total cpu time expended for
each of the methods. Table 3.2 considers the total number of iterations performed by
ODM for different values of ε.
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Colley Keener Massey ODM ODM ODM
ε = 10−3 ε = 10−4 ε = 10−5

2001 1.78125 162.90625 2.0625 0.90625 0.953125 0.9375
2002 1.5625 161.234375 2.015625 0.84375 0.921875 1.1875
2003 1.671875 167.609375 2.125 1.03125 1.0625 1.125
2004 1.796875 170.046875 2.09375 1.03125 0.90625 0.875
2005 1.84375 174.96875 2.03125 1.109375 1.03125 1.140625
2006 1.96875 181.5 2.1875 0.90625 0.953125 1.03125
2007 2.03125 207.09375 2.453125 1.140625 1.1875 1.203125

Table 4: Total cpu time (sec) for each of the methods on NCAA basketball.

ε = 0.001 ε = 0.0001 ε = 0.00001

2001 1576 1577 1577
2002 1690 1866 2174
2003 1622 2000 2619
2004 1515 1605 1745
2005 1748 1997 2402
2006 1421 1465 1532
2007 1555 1638 1776

Table 5: Total number of iterations used by ODM for each of the seasons on NCAA
basketball.

Finally, consider the Rank Aggregation model described in section 2.2. We use rank
differences for the weights and the aggregated ratings are produced using the ODM.
If we were to be concerned with game predictions only, then there is another simple
aggregation approach that is worth mentioning. Given five ranked lists (Aggregated
Rank, Colley, Keener, Massey, and ODM) we predict the game outcomes using each
of the lists, and then use these prediction to form an overall prediction. If a majority
of the ranked lists predicts team A to beat team B in a given game, then the overall
prediction is team A wins. If there is a tie in predictions (two of the ranked lists predict
A to win and one predicts a tie), then the user decides which method breaks the tie. In
the following experiments the ODM is chosen to be the tie breaker. The foresight game
prediction results for the aggregated methods as well as other four ranking models of
NCAA basketball appears in Table 3.2 and the graph 3.2.
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Aggregated Aggregated Colley Keener Massey ODM
Predictions Rank

2001 69.49 68.95 68.60 64.60 69.65 70.03
2002 70.16 69.85 69.02 64.79 70.13 70.03
2003 70.05 69.57 68.92 64.92 70.19 70.22
2004 69.89 69.43 68.65 65.27 70.50 70.12
2005 68.73 67.93 66.98 64.44 68.95 69.56
2006 69.28 68.42 68.37 64.84 70.02 69.69
2007 69.76 69.51 68.28 64.91 70.13 70.07

Table 6: Foresight game prediction percentages for NCAA basketball.
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Figure 4: Foresight game prediction percentages for NCAA basketball.

As before the tolerance for ODM is set to be tol = 0.01, and predictions start with
the game day 26 until the end of the NCAA basketball tournaments. As mentioned
before, the goal of aggregation it to deemphasize the effect of the outliers, and thus it
provides a greater level of confidence.

4 Conclusion
The Offense-Defense Method iteratively produces two ratings for team i; an offensive
oi and a defensive di. A simple way to combine them to produce an overall rating is
ri = oi/di. The convergence of the method is guaranteed and is fast provided that the
score matrix A has total support. The ODM can be used to make game predictions,
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and it tends to produce as good or better results as the leading sports ranking models in
less cpu time. Uses of ranking methods, such as the ODM, are not limited to predicting
outcomes of the games in competitive team sports. Other ranking applications (such
as web page ranking) that can be described as weighted directed graphs can benefit
from these models. Finally, the ODM lends itself to generalizations that can incorporate
a variety of performance statistics, and it can be generalized to multiple dimensions
beyond the two dimensions that have been discussed here.
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