
SIAM J. SCI. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 2112–2120

A REORDERING FOR THE PAGERANK PROBLEM∗

AMY N. LANGVILLE† AND CARL D. MEYER‡

Abstract. We describe a reordering particularly suited to the PageRank problem, which reduces
the computation of the PageRank vector to that of solving a much smaller system and then using
forward substitution to get the full solution vector. We compare the theoretical rates of convergence
of the original PageRank algorithm to that of the new reordered PageRank algorithm, showing that
the new algorithm can do no worse than the original algorithm. We present results of an experimental
comparison on five datasets, which demonstrate that the reordered PageRank algorithm can provide
a speedup of as much as a factor of 6. We also note potential additional benefits that result from
the proposed reordering.

Key words. Markov chains, PageRank, reorderings, power method, convergence, stationary
vector, dangling nodes

AMS subject classifications. 65B99, 65F10, 65C40, 60J22, 65F15, 65F50

DOI. 10.1137/040607551

1. Introduction. It is well known that many subsets of the web contain a large
proportion of dangling nodes, i.e., webpages with no outlinks. Dangling nodes can
result from many sources: a page containing an image or a PostScript or pdf file; a
page of data tables; or a page whose links have yet to be crawled by the search engine’s
spider. These dangling nodes can present philosophical, storage, and computational
issues for a search engine such as Google that employs a ranking system for ordering
retrieved webpages.

Let us introduce some notation. The hyperlink structure of the web defines a
directed graph, which can be expressed as a sparse matrix. The founders of Google,
Brin and Page, defined the elements of a hyperlink matrix H as hij = 1/|Oi| if there
exists a hyperlink from page i to page j, and 0 otherwise. The scalar |Oi| is the
number of outlinks from page i. Thus, the nonzero rows of H sum to 1. The matrix
H contains a 0T row for each dangling node. Brin and Page define the PageRank
vector, a vector holding the global measure of importance for each page, to be the
stationary vector for a Markov chain related to H [3, 4]. This definition is intuitive,
as the stationary vector gives the long-run proportion of time the chain will spend
in each state. For Brin and Page’s application, the stationary elements represent
the long-run proportion of time a random web surfer will spend on a page in the
web, and thus provide a measure of a page’s importance or popularity. One problem
with the hyperlink matrix H created strictly from the web’s structure is that it is not
stochastic, and a Markov chain is defined only for stochastic matrices. To remedy this
and create the stochastic matrix called S, Brin and Page suggest replacing each 0T row
(corresponding to a dangling node) of the sparse hyperlink matrix with a dense vector.
The original fix for the dangling node problem used a uniform vector eT /n (e is the
vector of all ones), which was later replaced by the more general probability vector

∗Received by the editors April 29, 2004; accepted for publication (in revised form) April 20, 2005;
published electronically February 21, 2006.

http://www.siam.org/journals/sisc/27-6/60755.html
†Department of Mathematics, College of Charleston, Charleston, SC 29424 (langvillea@cofc.edu).
‡Center for Research in Scientific Computation, Department of Mathematics, North Carolina

State University, Raleigh, NC 27695-8205 (meyer@math.ncsu.edu). This author’s research was sup-
ported in part by NSF CCR-ITR-0113121 and NSF DMS 9714811.

2112

REORDERED PAGERANK ALGORITHM 2113

vT , known as the personalization or teleportation vector. Of course, if this suggestion
were to be implemented explicitly, storage requirements would increase dramatically.
Instead, the stochasticity fix can be modeled implicitly with the construction of one
vector denoted a. Element ai = 1 if row i of H corresponds to a dangling node, and
0 otherwise. Then S can be written as a rank-one update of H; S = H + avT .

Before the existence of the stationary PageRank vector could be guaranteed, Brin
and Page had to make one final adjustment to the hyperlink matrix. Because the web
is reducible, their original PageRank algorithm would often get caught in a rank sink,
causing convergence problems. To remedy this, and thereby guarantee the existence
and uniqueness of the PageRank vector, Brin and Page added another rank-one up-
date, this time an irreducibility adjustment in the form of a dense perturbation matrix
evT that creates direct connections between each page. The stochastic, irreducible
matrix called the Google matrix G is given by

G = αS + (1 − α) evT

= αH + α avT + (1 − α) evT

= αH + (α a + (1 − α) e)vT ,

where 0 < α < 1. Brin and Page, and consequently Google, then use the power
method to compute the unique stationary vector of this enormous Markov chain,
thereby producing their famous PageRank vector.

We now turn to the philosophical issue of the presence of dangling nodes. In one
of their early papers [2], Brin et al. report that they “often remove dangling nodes
during the computation of PageRank, then add them back in after the PageRanks
have converged.” From this vague statement it is hard to say exactly how Brin and
Page compute PageRank for the dangling nodes. However, the removal of dangling
nodes at any time during the power method does not make intuitive sense. Some
dangling nodes should receive high PageRank. For example, a very authoritative pdf
file could have many inlinks from respected sources and thus should receive a high
PageRank. Simply removing the dangling nodes biases the PageRank vector unjustly.
(See [5] and [13] for additional arguments against removal of dangling nodes.) Further,
incorporating dangling nodes into the PageRank power method is very simple and
inexpensive. The power method treats PageRank as an eigenvector problem and
follows the iterative formula

x(k)T = x(k−1)TG

= αx(k−1)TS + (1 − α)x(k−1)TevT

= αx(k−1)TS + (1 − α)vT

= αx(k−1)TH + αx(k−1)TavT + (1 − α)vT ,(1)

since x(k−1)T is a probability vector, and thus, x(k−1)Te = 1. This shows that the
power method applied to G can be implemented with vector-matrix multiplications
on the extremely sparse H, and G and S are never formed or stored. Since the
vector-matrix multiplications involve enormous entities, an important question to
ask is how many iterations can we expect until the power method converges to the
PageRank vector. It has been proven that the asymptotic rate of convergence of the
power method applied to the Google matrix (after the stochasticity and irreducibility
adjustments) is the rate at which αk → 0. Since Google uses α = .85, one can expect
roughly 114 power iterations to give a convergence tolerance (as measured by the norm

2114 AMY N. LANGVILLE AND CARL D. MEYER

of the difference of successive iterates) of less than 10−8. Further, this means that on
the order of O(114 ·nnz(H)) operations must be performed to compute the PageRank
vector with that prescribed tolerance, where nnz(H) is the number of nonzeros in H.
Since H is so sparse, this is not a prohibitive cost, but it does nevertheless take days
of computation when n, the number of pages in the index, is billions.

At this point, we have arrived at the computational issue associated with the
dangling nodes. Since the dangling nodes form identical rows in the H matrix, they
can be conveniently lumped into one class and the theory of lumpable and aggre-
gated Markov chains can be used to compute the PageRank vector quickly. Lee,
Golub, and Zenios were the first to notice and exploit the structure provided by the
dangling nodes [13]. Their iterative power method implementation on aggregated
Markov chains led to drastic improvements in the computation of PageRank. On
some sample datasets dangling nodes make up over 80% of the webpages, meaning
the Lee–Golub–Zenios algorithm can compute PageRank with a factor of 5 speedup,
since the aggregated chain is roughly 1/5 the size of the full chain.

In this paper, we present an analogous formulation of the Lee–Golub–Zenios al-
gorithm (section 2). Our formulation uses a linear system formulation rather than a
Markov chain formulation. Then we extend the idea of exploiting the dangling nodes
to reduce computation, thereby producing a convenient reordering of the Google ma-
trix, which has several advantageous properties (section 3). In section 4, we present
the results of our reordering algorithm on several sample datasets.

2. A linear system formulation for exploiting dangling nodes. Although
the size of the Google problem makes the power method with its eigenvector for-
mulation (πT = πTG and πTe = 1) one of the few practical solution methods for
obtaining the PageRank vector πT , there are other formulations of the problem that
are theoretically possible. The following theorem shows that a related linear system
exists.

Theorem 2.1 (linear system for Google problem). Solving the linear system

xT (I − αH) = vT(2)

and letting πT = xT /xTe produces the PageRank vector.
Proof. πT is the PageRank vector if it satisfies πTG = πT and πTe = 1. Clearly,

πTe = 1. Showing πTG = πT is equivalent to showing πT (I − G) = 0T , which is
equivalent to showing xT (I − G) = 0T :

xT (I − G) = xT (I − αH − αavT − (1 − α)evT)

= xT (I − αH) − xT (αa + (1 − α)e)vT

= vT − vT = 0T .

The above line results from the fact that xT (αa + (1 − α)e)vT = 1 because

1 = vTe

= xT (I − αH)e

= xTe − αxTHe

= xTe − αxT (e − a)

= (1 − α)xTe + αxTa.

Thus, PageRank is both the stationary distribution of a Markov chain and the
solution of a linear system. While these two views are inherently linked, they suggest

REORDERED PAGERANK ALGORITHM 2115

different methods for finding the PageRank vector. Future advances in computation
will likely require a thorough understanding and use of both views.

As a result, we examine the linear system view, which has received much less at-
tention. The coefficient matrix (I−αH) of the linear system has many nice properties,
which were proven in [12]. Some that are relevant for this paper are as follows:

• (I − αH) is nonsingular.
• The row sums of (I − αH)−1 are equal to 1 for the dangling nodes and less

than or equal to 1/(1 − α) for the nondangling nodes.
• The row of (I − αH)−1 corresponding to dangling node i is eTi , where ei is

the ith column of the identity matrix.
The last property makes the computation of the PageRank vector especially ef-

ficient. Suppose the rows and columns of H are permuted (i.e., the indices are re-
ordered) so that the rows corresponding to dangling nodes are at the bottom of the
matrix:

H =

(ND D

ND H11 H12

D 0 0

)
,(3)

where ND is the set of nondangling nodes and D is the set of dangling nodes. Then
the coefficient matrix in the sparse linear system formulation becomes

(I − αH) =

(
I − αH11 −αH12

0 I

)
,

and the inverse of this matrix is

(I − αH)−1 =

(
(I − αH11)

−1 α(I − αH11)
−1H12

0 I

)
.

Therefore, the unnormalized PageRank vector xT = vT (I−αH)−1 can be written as

xT =
(
vT

1 (I − αH11)
−1 | αvT

1 (I − αH11)
−1H12 + vT

2

)
,

where the personalization vector vT has been partitioned into nondangling (vT
1) and

dangling (vT
2) sections. In summary, we now have an algorithm that computes the

PageRank vector using only the nondangling portion of the web, exploiting the rank-
one structure of the dangling node fix.

Algorithm 1.

1. Reorder the states of the Markov chain so that the reordered matrix has the
structure of (3).

2. Solve for xT
1 in πT

1 (I − αH11) = vT
1 .

3. Compute xT
2 = απT

1 H12 + vT
2 .

4. Normalize πT = [xT
1 xT

2]/‖[xT
1 xT

2]‖1.

This algorithm is much simpler and cleaner than, but equivalent to, the specialized
iterative method proposed by Lee, Golub, and Zenios [13], which exploits the dangling
nodes to reduce computation of the PageRank vector, sometimes by a factor of 5.

3. A PageRank algorithm based on a reordering of the Google matrix.

2116 AMY N. LANGVILLE AND CARL D. MEYER

3.1. The reordered PageRank algorithm. The linear system formulation of
section 2 leads to a deeper examination of the structure of the Google matrix H.
Since the presence of zero rows in the matrix is so advantageous, we hope to find
more zero rows in the submatrix H11, which is needed to solve the system in step 1
of Algorithm 1. This process of locating zero rows can be repeated recursively on
smaller and smaller submatrices of H, continuing until a submatrix is created that
has no zero rows. The result of this process is a decomposition of the H matrix that
looks like Figure 1. This process amounts to a simple reordering of the indices of the
Markov chain. The top part shows the original H matrix, and the bottom part is the
reordered matrix according to the recursive dangling node idea. The dataset CA.dat
(available from http://www.cs.cornell.edu/Courses/cs685/2002fa/) is a typical subset
of the web. It contains 9,664 nodes and 16,773 links pertaining to the query topic of
“california.”

In general, after this symmetric reordering, the hyperlink matrix H has the fol-
lowing structure:

H =

⎛
⎜⎜⎜⎜⎜⎝

H11 H12 H13 · · · H1b

0 H23 · · · H2b

0 · · · H3b

. . .

0

⎞
⎟⎟⎟⎟⎟⎠ ,(4)

where b ≥ 2 is the number of square diagonal blocks in the reordered matrix. There-
fore, the coefficient matrix of the linear system formulation of the PageRank prob-
lem (2) has the following structure:

(I − αH) =

⎛
⎜⎜⎜⎜⎜⎝

I − αH11 −αH12 −αH13 · · · −αH1b

I −αH23 · · · −αH2b

I · · · −αH3b

. . .

I

⎞
⎟⎟⎟⎟⎟⎠ .(5)

As a result, the PageRank system in (2) after reordering can be solved by forward
substitution. The only system that must be solved directly is the first subsystem,
xT

1 (I − αH11) = vT
1 , where xT and vT have also been partitioned according to the

number and size of the blocks. The remaining subvectors of xT are computed quickly
and efficiently by forward substitution. In the CA.dat example, a 2,622×2,622 system
can be solved instead of the full 9,664×9,664 system, or even the once-reduced 5,132×
5,132 system of Algorithm 1. The reordered PageRank algorithm is an extension of
the dangling node method of section 2. This reordered PageRank idea can also be
written in a Markov chain formulation, thereby extending the ideas in [13]. The
steps of the reordered PageRank (in its linear system formulation) are enumerated in
Algorithm 2.

Algorithm 2.

1. Reorder the states of the Markov chain so that the reordered matrix has the
structure of (4).

2. Solve for xT
1 in xT

1 (I − αH11) = vT
1 .

3. For i = 2 to b, compute xT
i = α

∑i−1
j=1 xT

j Hji + vT
i .

4. Normalize πT = [xT
1 xT

2 · · · xT
b]/‖[xT

1 xT
2 · · · xT

b]‖1.

REORDERED PAGERANK ALGORITHM 2117

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773

Fig. 1. Original H (top) and reordered H matrix (bottom) for CA.dat.

3.2. Analysis of the reordered PageRank algorithm. We discuss each step
of Algorithm 2. The reordering, step 1 of Algorithm 2, can be accomplished with a
simple recursive scheme that successively locates zero rows of submatrices within H,
and thus amounts to the work of a few power iterations on the full matrix. However,
the memory manipulation required to successively reorder the submatrices can make
this step time consuming and potentially of less value than Algorithm 1 (see the
experiments of section 4). The forward substitution step of Algorithm 2, step 3,
amounts to slightly less than the work of one power iteration. Of course, step 4
is trivial. Thus, the small system solve of step 2 is the most time-consuming step.
Table 1 in section 4 gives an enlightening numerical comparison of the amount of work
spent on each step.

2118 AMY N. LANGVILLE AND CARL D. MEYER

Some hyperlink matrices H can be particularly suited to the reordered PageRank
algorithm. In this case, large sets of zero rows are consecutively extracted, and the
remaining H11 block is very small. In the worst case, b = 2 and nnz(H11)/nnz(H)
is close to 1. Regardless, the smaller system xT

1 (I − αH11) = vT
1 can be solved

by any appropriate direct or iterative method. However, we have found that the
sparsity of the H11 matrix makes a simple iterative method very attractive. The
Jacobi method [14] is especially simple due to the properties of the H11 matrix. The
diagonal elements of H11 are 0, since by convention no webpage links to itself. This
means that the diagonal matrix D involved in the splitting of the coefficient matrix
(I − αH11) is the identity matrix I. Therefore, the Jacobi iterates are

x(k)T = αx(k−1)TH11 + vT
1 .(6)

This stationary iterative process converges to a unique solution for all starting iterates
because ρ(αH11) ≤ 1. (H11 is substochastic.) The asymptotic rate of convergence of
the iterative reordered PageRank process is the same as or better than the asymptotic
rate of convergence of the standard PageRank power method. In fact, the reordered

PageRank method will require about O(log(τ)
log(α) · nnz(H11)) operations to reach a con-

vergence tolerance of τ . In summary, Algorithm 2, the reordered PageRank method,

requires roughly nnz(H11)
nnz(H) % of the time that the original PageRank method requires.

The Jacobi iterates of (6), like the power iterates of the original PageRank algorithm,
also allow for easy parallelization, which is essential due to the scale of the matri-
ces involved in practical applications. Further, acceleration methods [1, 6, 8, 9, 10],
such as extrapolation and preconditioners, can be applied to the small H11 system to
achieve even greater speedups.

4. Experiments with the reordering method. We compare the reordered
PageRank algorithm to the original PageRank algorithm, experimenting with four
datasets. The first two datasets are small, containing fewer than 10,000 pages. The
remaining two datasets are much larger, with one containing over 325,000 pages and
the other over 450,000 pages. Each dataset is a different type of subset of the web.
The CA.dat dataset contains 9,664 pages pertaining to the query topic of “california.”
NCSU.dat is a crawl that started at the North Carolina State homepage and stopped
once 10,000 pages were reached. Most of the pages are internal to the NCSU domain,
but some are external. The dataset ND.dat contains 325,729 pages within the Notre
Dame domain. Finally, SU450k.dat contains 451,237 pages from a 2001 crawl of the
Stanford domain by the Stanford WebBase project.

The experiments in this section were conducted on a 867 MHz Mac G4 with 1.5 GB
of RAM. We used α = .9 as the scaling factor and τ = 10−10 as the convergence
tolerance. The original PageRank algorithm and both reordered PageRank algorithms
(Algorithms 1 and 2) were run on each dataset. The results are summarized in Table 1.

The reordered PageRank algorithm beats the original PageRank algorithm by a

factor of almost 6 on some datasets. The speedup depends on the ratio nnz(H)
nnz(H11)

,

which depends on the properties of a particular dataset and the number of zero rows
that can be successively squeezed out of the submatrices. The reordered PageRank
algorithm is guaranteed to outperform the original PageRank method as long as some
dangling nodes are present, i.e., b ≥ 2.

Unfortunately, Table 1 clearly shows that Algorithm 2 is not necessarily an im-
provement over Algorithm 1 because the cost of memory management required by the
reordering step often offsets the decrease in the size of the system solve. Nevertheless,

REORDERED PAGERANK ALGORITHM 2119

Table 1

Comparison of original PageRank and reordered PageRank algorithms.

CA.dat NCSU.dat ND.dat SU450k.dat

Original n(H) 10K 10K 325K 450K
PageRank nnz(H) 16K 101K 1,497K 1,082K

Iterations 178 162 166 164
Time (sec.) 3.30 5.28 126.71 175.55

Reordered PR b 2 2 2 2
Algorithm 1 n(H11) 5K 7K 138K 137K

(b = 2) nnz(H11) 8K 81K 1,208K 307K
Iterations 170 162 166 145
Time: Step 1 .14 .32 2.37 2.84

Step 2 .78 3.96 62.47 26.84
Step 3 .10 .13 .66 1.16
Total 1.02 4.41 65.50 30.89

Speedup 3.2 1.2 1.9 5.7
Reordered PR b 7 5 18 12
Algorithm 2 n(H11) 2.6K 6.8K 127K 84K

(b > 2) nnz(H11) 5K 79K 1,191K 267K
Iterations 169 160 170 145
Time: Step 1 .24 .58 22.74 12.42

Step 2 .57 4.17 64.62 20.76
Step 3 .11 .13 2.53 2.16
Total .92 4.88 89.89 35.34

Speedup 3.6 1.1 1.4 5.0

compared to the original PageRank algorithm, both algorithms do drastically improve
the time required to compute the PageRank vector.

5. Future work. The relationship between the spectrum of G and that of S is
known [7, 12]. However, their relationship to the spectrum of H is not known. Recall
that S and G are web matrices that have been artificially enhanced to generate
advantageous mathematical properties in the matrices. The true web matrix is H,
yet little is known about how far S and G and their corresponding ranking vectors
stray from the web’s true nature. The reordering presented here may illuminate this
unknown relationship. The symmetric reordering shows that the eigenvalues of H are
the eigenvalues of H11 plus many 0 eigenvalues for the 0 diagonal blocks. The size of
H11 may be small enough that its subdominant eigenvalues and eigenvectors can be
computed. These subdominant eigenvectors can provide beneficial information about
the community structure of a subset of the web [11]. Further, since S is created from
a rank-one update to H, perturbation theory for eigenvalues and eigenvectors can
provide additional information about the PageRank vector with respect to its original
hyperlink structure (H, not S or G).

6. Conclusions. Reorderings for linear systems have been well studied. Some
popular reorderings, such as the minimum degree reordering, the reverse Cuthill–
McKee reordering, and the Dulmage–Mendelson reordering, do not give the nice
structure of (5), which requires only one small system solve plus a quick forward
substitution that amounts to the work of one power iteration. This reordering nat-
urally produces an efficient alternative to the original PageRank algorithm, which
we have called the reordered PageRank algorithm. The reordered algorithm has an
asymptotic rate of convergence that is as good as or better than the asymptotic rate
of convergence of the original method. The reordered algorithm produces a dataset-
dependent speedup over the original algorithm. We presented experimental results

2120 AMY N. LANGVILLE AND CARL D. MEYER

comparing the reordered PageRank algorithm to the original PageRank algorithm on
five datasets, showing a factor of nearly 6 speedup on one dataset. This reordering
and its linear system formulation also open the door for new PageRank acceleration
techniques beyond the usual power method acceleration techniques.

Acknowledgments. The paper [13] by Chris Lee of Stanford University and dis-
cussions with Michele Benzi of Emory University sparked the reordering idea presented
in this paper. We thank Cleve Moler (Mathworks), Ronny Lempel (IBM Research
Labs), and Jon Kleinberg (Cornell) for providing us with several small datasets that
we used for testing. Our large dataset from the Stanford web crawl was provided by
Chris Lee.

REFERENCES

[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin, PageRank computation and the structure of
the Web: Experiments and algorithms, in The Eleventh International WWW Conference,
ACM Press, New York, 2002.

[2] S. Brin, R. Motwani, L. Page, and T. Winograd, What can you do with a Web in your
pocket?, Data Engrg. Bull., 21 (1998), pp. 37–47.

[3] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, Comput.
Networks and ISDN Syst., 33 (1998), pp. 107–117.

[4] S. Brin, L. Page, R. Motwami, and T. Winograd, The PageRank Citation Ranking: Bringing
Order to the Web, Technical Report 1999-0120, Computer Science Department, Stanford
University, Stanford, CA, 1999.

[5] N. Eiron, K. S. McCurley, and J. A. Tomlin, Ranking the Web frontier, in The Thirteenth
International World Wide Web Conference, ACM Press, New York, 2004.

[6] G. H. Golub and C. Greif, Arnoldi-Type Algorithms for Computing Stationary Distribu-
tion Vectors, with Application to PageRank, Technical Report SCCM-2004-15, Scientific
Computation and Computational Mathematics, Stanford University, Stanford, CA, 2004.

[7] T. H. Haveliwala and S. D. Kamvar, The Second Eigenvalue of the Google Matrix, Technical
Report 2003-20, Stanford University, Stanford, CA, 2003.

[8] S. D. Kamvar, T. H. Haveliwala, and G. H. Golub, Adaptive Methods for the Computation
of PageRank, Technical Report 2003-26, Stanford University, Stanford, CA, 2003.

[9] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, Exploiting the Block
Structure of the Web for Computing PageRank, Technical Report 2003-17, Stanford Uni-
versity, Stanford, CA, 2003.

[10] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, Extrapolation methods
for accelerating PageRank computations, in The Twelfth International World Wide Web
Conference, ACM Press, New York, 2003.

[11] J. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM, 46 (1999), pp. 604–
632.

[12] A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet Math. J., 1 (2005),
pp. 335–380.

[13] C. P.-C. Lee, G. H. Golub, and S. A. Zenios, A Fast Two-Stage Algorithm for Computing
PageRank and Its Extensions, Technical Report SCCM-2003-15, Scientific Computation
and Computational Mathematics, Stanford University, Stanford, CA, 2003.

[14] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

