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Abstract. A concept called stochastic complementation is an idea which occurs naturally,
although not always explicitly, in the theory and application of finite Markov chains. This
paper brings this idea to the forefront with an explicit definition and a development of some
of its properties. Applications of stochastic complementation are explored with respect to
problems involving uncoupling procedures in the theory of Markov chains. Furthermore, the
role of stochastic complementation in the development of the classical Simon–Ando theory of
nearly reducible system is presented.
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1. Introduction. Although not always given an explicit name, a quantity which
we shall refer to as a stochastic complement arises very naturally in the consideration
of finite Markov chains. This concept has heretofore not been focused upon as an
entity unto itself, and a detailed study of the properties of stochastic complementa-
tion has not yet been given. The purpose of the first part of this exposition is to
explicitly publicize the utility of this concept and to present a more complete and
unified discussion of the important properties of stochastic complementation.

A focal point of the development concerns the problem of determining the station-
ary distribution of an irreducible Markov chain by uncoupling the chain into several
smaller independent chains. In particular, if Pm×m is the transition matrix for an m-
state, homogeneous, irreducible Markov chain C, the stationary distribution problem
concerns the determination of the unique vector π1×m which satisfies

πP = π, πi > 0,

m∑
i=1

πi = 1.

For chains with relatively few states, this is not a difficult problem to solve using adap-
tations of standard techniques for solving systems of linear equations. However, there
exist many applications for which the number of states is too large to be comfortably
handled by standard methods. For large-scale problems, it is only natural to attempt
to somehow uncouple the original m-state chain C into two or more smaller chains—
say C1, C2, · · · , Ck—containing r1, r2, · · · , rk states, respectively, where

∑k
i=1 ri = m.

Ideally, this sequence of smaller chains should have the following properties:

• Each smaller chain Ci should be irreducible whenever the original chain C is
irreducible so that each Ci has a unique stationary distribution vector si.

• It should be possible to determine the si’s completely independent of each
other. For modern multiprocessor computer architectures it is desirable to
be able to execute the computation of the si’s in parallel.
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• Finally, it must be possible to easily couple the smaller stationary distribution
vectors si back together in order to produce the stationary distribution vector
π for the larger chain C.

The second part of this paper is dedicated to showing how to accomplish the
above three goals, and it is indicated how this can lead to fully parallel algorithms for
the determination of the stationary distribution vector of the original chain.

Finally, in the third part of this survey, the application of stochastic complemen-
tation to the classical Simon–Ando theory developed in [18] for nearly completely
reducible chains is presented. It is demonstrated how to apply the concept of stochas-
tic complementation in order to develop the theory for nearly completely reducible
systems in a unified, clear, and simple manner while simultaneously sharpening some
results and generalizing others.

2. Stochastic complementation. The purpose of this section is to introduce
the concept of a stochastic complement in an irreducible stochastic matrix and to
develop some of the basic properties of stochastic complementation. These ideas will
be the cornerstone for all subsequent discussions.

Unless otherwise stated, P will denote an m × m, irreducible, stochastic matrix
which will be partitioned as

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

where all diagonal blocks are square. It is well known that I−P is a singular M -matrix
of rank m − 1 and that every principal submatrix of I − P of order m − 1 or smaller
is a nonsingular M -matrix (see [2, p. 156]). In particular, if Pi denotes the principal
submatrix of P obtained by deleting the ith row and ith column of blocks from the
partitioned form of P, then each I − Pi is a nonsingular M -matrix. Therefore,

(I − Pi)−1 ≥ 0,(2.1)

so the indicated inverses in the following definition are well defined.
Definition 2.1. Let P be an m × m irreducible stochastic matrix with a k-level

partition

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

in which all diagonal blocks are square. For a given index i, let Pi denote the principal
block submatrix of P obtained by deleting the ith row and ith column of blocks from
P, and let Pi∗ and P∗i designate

Pi∗ = (Pi1 Pi2 · · · Pi,i−1 Pi,i+1 · · · Pik )
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and

P∗i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P1i
...

Pi−1,i

Pi+1,i

...
Pki

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, Pi∗ is the ith row of blocks with Pii removed, and P∗i is the ith column of
blocks with Pii removed. The stochastic complement of Pii in P is defined to be
the matrix

Sii = Pii + Pi∗(I − Pi)−1P∗i.

For example, the stochastic complement of P22 in

P =

⎛
⎝P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞
⎠

is given by

S22 = P22 + (P21 P23 )
(

I − P11 −P13

−P31 I − P33

)−1 (
P12

P32

)
.

The reason for the terminology “stochastic complement” stems from the fact that
all stochastic complements are stochastic matrices (see Theorem 2.1) together with
the observation that although stochastic complementation is not the same as the well
known concept of Schur complementation, there is nevertheless a direct connection in
the case of a two-level partition

P =
(

P11 P12

P21 P22

)
.

If P is an irreducible stochastic matrix with square diagonal blocks, then the stochastic
complement of P11 is given by

S11 = P11 + P12(I − P22)−1P21,

and the stochastic complement of P22 is

S22 = P22 + P21(I − P11)−1P12,

and it is easy to see that the stochastic complement of P11 is in fact

[I − Schur Complement(I − P22)] in the matrix I − P,

while the stochastic complement of P22 is

[I − Schur Complement(I − P11)] in the matrix I − P.

The concept of stochastic complementation arises very naturally in the considera-
tion of finite Markov chains, and more generally, in the theory of nonnegative matrices.
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Consequently, it is not surprising that the concept of stochastic complementation—
although not always known by that name—appears at least implicitly, if not explicitly,
in a variety of places. For example, stochastic complementation is a special case of
a more general concept known as Perron complementation which has been studied
in [17]. Simple forms of stochastic complementation can be found either explicitly
or implicitly in a variety of Markov chain applications such as those in [1], [3]–[6],
[8]–[10], [12]–[16], [20], [21], in addition to several others. However, it seems that
stochastic complementation has heretofore not been focused upon as an entity unto
itself, and a detailed study of the properties of stochastic complement matrices has
not yet been given. Part of the purpose of this paper is to explicitly publicize the
utility of this concept and to present a more complete and unified discussion of the
important properties of stochastic complementation.

The following technical lemma is needed to help develop the subsequent theory.
Its proof is a straightforward application of the standard features of permutation
matrices, and consequently the proof is omitted.

Lemma 2.1. For an m × m irreducible stochastic matrix

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

in which all diagonal blocks are square, let Q be the permutation matrix associated
with an interchange of the first and ith block rows (or block columns), and let P̃ be
the matrix

P̃ = QPQ.

If P̃ is partitioned into a 2 × 2 block matrix

P̃ =
(

P̃11 P̃12

P̃21 P̃22

)
where P̃11 = Pii,

then the stochastic complement of Pii in P is given by

Sii = S̃11 = P̃11 + P̃12

(
I − P̃22

)−1

P̃21.(2.2)

We are now in a position to prove that every stochastic complement is indeed a
stochastic matrix.

Theorem 2.1. If

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

is an irreducible stochastic matrix, then each stochastic complement

Sii = Pii + Pi∗(I − Pi)−1P∗i

is also a stochastic matrix.
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Proof. For a given index i, assume that P has been permuted and repartitioned
as described in Lemma 2.1 so that we may consider

P̃ =
(

P̃11 P̃12

P̃21 P̃22

)
where P̃11 = Pii.

According to (2.2), the stochastic complement of Pii in P is the same as the stochastic
complement of P̃11 in P̃—that is, Sii = S̃11. Since each principal submatrix of I−P
(and I − P̃) of order m − 1 or less is a nonsingular M -matrix, it follows from (2.1)

that
(
I − P̃22

)−1

≥ 0, and hence

S̃11 = P̃11 + P̃12

(
I − P̃22

)−1

P̃21 ≥ 0.

Note. S̃11 need not be strictly positive—an example is given after this proof. To see
that the row sums of S̃11 are each 1, let

e =

⎛
⎝ 1

...
1

⎞
⎠ ,

and allow the dimension of e to be defined by the context in which it appears. The
fact that the row sums in P̃ are all 1 can be expressed by writing

P̃11e + P̃12e = e(2.3)

and

P̃21e + P̃22e = e.(2.4)

Equation (2.4) implies

e =
(
I − P̃22

)−1

P̃21e,

and this together with (2.3) yields

S̃11e = P̃11e + P̃12

(
I − P̃22

)−1

P̃21e = P̃11e + P̃12e = e.

Consequently, S̃11 = Sii must be stochastic.
To see that a stochastic complement need not be strictly positive, consider a 4 × 4

irreducible stochastic matrix whose partitions and zero pattern are shown below.

P =

⎛
⎜⎜⎝

+ + 0 0
+ + + +
+ + + +
+ + + +

⎞
⎟⎟⎠

For this configuration,

S11 = P11 + P12(I − P22)−1P21 =

⎛
⎝ + + 0

+ + +
+ + +

⎞
⎠ +

⎛
⎝ 0

+
+

⎞
⎠ [+] ( + + + )

=

⎛
⎝ + + 0

+ + +
+ + +

⎞
⎠ .
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Although stochastic complements can have zero entries, the zeros are always in
“just the right places” so as to guarantee that each Sii is an irreducible matrix.
However, before this can be established, it is necessary to observe some additional
facts concerning stochastic complementation.

Theorem 2.2. Suppose that

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

is an irreducible stochastic matrix in which each Pii is square, and let

π = (π(1) π(2) · · · π(k) )

be the conformably partitioned stationary distribution vector for P. If each π(i) is
normalized in order to produce the probability vector

si =
π(i)

π(i)e
,(2.5)

then

siSii = si for each i = 1, 2, · · · , k.

That is, si is a stationary distribution vector for the stochastic complement Sii.

Proof. Assume that P has been permuted and repartitioned as described in
Lemma 2.1 so that

P̃ = QPQ =
(

P̃11 P̃12

P̃21 P̃22

)
.

Use the fact that 0 = π(I − P) implies

0 = πQ2(I − P)Q = (π(i) π(2) · · · π(1) · · · π(k) ) (I − P̃)

together with the equation(
I − P̃11 −P̃12

−P̃21 I − P̃22

) (
I 0

(I − P̃22)−1P̃21 I

)
=

(
I − S̃11 −P̃12

0 I − P̃22

)

in order to conclude that

π(i)(I − S̃11) = 0.

The desired result now follows from Lemma 2.1 because Sii = S̃11.
Although Theorem 2.2 establishes that each si is a stationary distribution vector

for Sii, nothing proven to this point allows for the conclusion that the si’s are unique.
However, this will follow once it is established that each Sii inherits the property of
irreducibility from the original matrix P.

Theorem 2.3. If

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠
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is an irreducible stochastic matrix, then each stochastic complement

Sii = Pii + Pi∗(I − Pi)−1P∗i

is also an irreducible stochastic matrix.

Proof. Assume that P has been permuted and repartitioned as described in
Lemma 2.1 so that

P̃ =
(

P̃11 P̃12

P̃21 P̃22

)

and

Sii = S̃11.(2.6)

The fact that each Sii is stochastic was established in Theorem 2.1. By virtue of
(2.6), we need only to prove irreducibility of S̃11. By noting that(

I P̃12

(
I − P̃22

)−1

0 I

)(
I − P̃11 −P̃12

−P̃21 I − P̃22

) (
I 0(

I − P̃22

)−1

P̃21 I

)

=
(

I − S̃11 0
0 I − P̃22

)
,

it follows that

Rank
(
I − P̃

)
= Rank

(
I − S̃11

)
+ Rank

(
I − P̃22

)
.

Suppose that P̃, P̃11, and P̃22 have dimensions m × m, r × r, and q × q, respectively,
with r+q = m. It is well known (see [2, p. 156]) that P̃ being irreducible and stochastic
implies that Rank

(
I − P̃

)
= m − 1 and Rank

(
I − P̃22

)
= q. Consequently,

Rank
(
I − S̃11

)
= m − 1 − q = r − 1,

and therefore I − S̃11 has a one-dimensional nullspace. The left-hand nullspace of
I − S̃11 is spanned by the strictly positive row vector

s̃1 = si

defined in (2.5), and the right-hand nullspace of I − S̃11 is spanned by the strictly
positive column vector e containing r 1’s. Since s̃1e = 1, the spectral projector
associated with the eigenvalue λ = 1 for S̃11 must be

Rr×r = es̃1 > 0.

Because every stochastic matrix is Cesàro summable to the spectral projector associ-
ated with the unit eigenvalue (see [11]), it follows that

lim
n→∞

I + S̃11 + S̃2
11 + · · · + S̃n−1

11

n
= R > 0.(2.7)
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It is now evident that S̃11 cannot be reducible—otherwise S̃11 could be permuted to
a form (

A B
0 C

)

and the limit in (2.7) would necessarily contain zero entries.
The proof given above is algebraic in nature, but because irreducibility is a strictly

combinatorial concept, one might wonder if a strictly combinatorial proof is possible.
The answer is yes, and the details may be obtained by restricting the discussion given
in [17] to the special case of stochastic matrices. Furthermore, it seems reasonable
that there should be a probabilistic argument, and indeed there is. Irreducibility is a
direct consequence of the probabilistic interpretation of stochastic complementation
as explained in the next section.

3. The probabilistic interpretation of stochastic complementation. As-
sume again that for a given index i, the original transition matrix P has been permuted
and repartitioned as described in Lemma 2.1 so that

P̃ =
( A B

A P̃11 P̃12

B P̃21 P̃22

)
where P̃11 = Pii,

and

Sii = S̃11 = P̃11 + P̃12

(
I − P̃22

)−1

P̃21.

Consider a new process—called the reduced chain—which is defined by observing the
old process only when it is in a state belonging to the subclass A. That is, transitions
to states in B are masked out, so a direct path Ak =⇒ Aj in the reduced chain
corresponds in the old process to either a direct path Ak −→ Aj or a detour

Ak −→ B −→ Aj

passing through B. In loose terms, one can say that the reduced chain is derived from
the original chain by “turning off the meter” whenever the old process is in B. If the
original chain is irreducible, then it is clear that the reduced chain is also irreducible.
For example, if

A1 −→ B2 −→ A3 −→ B4 −→ B5 −→ A6 −→ A7

is a sequence of direct paths from A1 to A7 in the original chain, then

A1 =⇒ A3 =⇒ A6 =⇒ A7

is a sequence of direct paths from A1 to A7 in the reduced chain.
For the reduced chain, the one-step transition probability of moving from Ak to

Aj is the probability in the original process of moving directly from Ak to Aj plus
the probability of moving directly from Ak to some state in B, and then eventually
moving back to A, hitting Aj first upon return. The probability of moving directly
from Ak to Aj in the original chain is

qkj =
[
P̃11

]
kj

,
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and the probability of moving directly from Ak to Bh ∈ B is

qkh =
[
P̃12

]
kh

.

The probability of moving from Bh to A such that Aj is the first state entered upon
return to A is

qhj =
[(

I − P̃22

)−1

P̃21

]
hj

.

As explained in [12], this expression for qhj is obtained by considering the states in
A to be absorbing states and applying the theory of absorbing chains. Consequently,
the one-step transition probabilities in the reduced chain are

qkj +
∑
Bh∈B

qkhqhj =
[
P̃11 + P̃12

(
I − P̃22

)−1

P̃21

]
kj

= [Sii]kj .

In other words, the stochastic complement Sii represents the transition matrix for the
reduced chain which is obtained from the original chain by masking out transitions to
states in B.

4. Uncoupling Markov chains. For an m-state irreducible Markov chain C
with transition matrix P, the object of uncoupling is to somehow decompose the
chain C into two or more smaller chains—say C1, C2, · · · , Ck—containing r1, r2, · · · , rk

states, respectively, where
∑k

i=1 ri = m. This sequence of smaller chains is required
to possess the following properties:

• Each smaller chain Ci should be irreducible whenever the original chain C is
irreducible so as to guarantee that each Ci has a unique stationary distribution
vector si.

• It should be possible to determine the si’s completely independent of each
other. For modern multiprocessor computer architectures it is desirable to
be able to execute the computation of the si’s in parallel.

• Finally, it must be possible to easily couple the smaller stationary distribution
vectors si back together in order to produce the stationary distribution vector
π for the larger chain C.

The purpose of this section is to show how the concept of stochastic complemen-
tation can be used to achieve these goals. As in the previous section, P will denote
an m × m irreducible stochastic matrix with a k-level partition

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

in which all diagonal blocks Pii are square, and the stationary distribution vector π
for P will be partitioned as

π = (π(1) π(2) · · · π(k) )

where the size of π(i) corresponds to the order of Pii. We know from the results of
Theorem 2.3 that each stochastic complement

Sii = Pii + Pi∗(I − Pi)−1P∗i
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is an irreducible stochastic matrix, and consequently, each Sii possesses a unique
stationary distribution vector si. Theorem 2.2 shows that each si and π(i) differ only
by a positive scalar multiple so that it is indeed possible to combine the si’s with
“coupling factors” {ξ1, ξ2, · · · , ξk} in order to produce

π = ( ξ1s1 ξ2s2 · · · ξksk ) .

However, the expressions for the coupling factors ξi given in Theorem 2.2 have the
form

ξi =
∑

h

π
(i)
h .

At first glance, this might seem to place the issue in a hopeless circle because prior
knowledge of π, in the form of the sums

∑
h π

(i)
h , is necessary in order to reconstruct

π from the si’s. Fortunately, there is an elegant way around this dilemma. The
following theorem shows that the coupling factors ξi are easily determined without
prior knowledge of the π(i)’s—this will become the key feature in the uncoupling-
coupling technique.

Theorem 4.1 (The coupling theorem). If P is an m × m irreducible stochastic
matrix partitioned as

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

with square diagonal blocks, then the stationary distribution vector for P is given by

π = ( ξ1s1 ξ2s2 · · · ξksk )

where si is the unique stationary distribution vector for the stochastic complement

Sii = Pii + Pi∗(I − Pi)−1P∗i,

and where

ξ = ( ξ1 ξ2 · · · ξk )

is the unique stationary distribution vector for the k × k irreducible stochastic matrix
C whose entries are defined by

cij ≡ siPije.

The matrix C is hereafter referred to as the coupling matrix, and the scalars ξi are
called the coupling factors.

Proof. First prove that the coupling matrix C is stochastic and irreducible. By
its definition, it is clear that C ≥ 0. To see that C is stochastic, use the fact that∑k

j=1 Pije = e and write

k∑
j=1

cij =
k∑

j=1

siPije = si

⎛
⎝ k∑

j=1

Pije

⎞
⎠ = sie = 1.
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To show that C is irreducible, note that because Pij ≥ 0, si > 0, and e > 0, it must
be the case that

cij = 0 if and only if Pij = 0.

Since P is irreducible, this implies that C must also be irreducible—otherwise, if C
could be permuted to a block triangular form, then so could P. Let

π = (π(1) π(2) · · · π(k) )

denote the partitioned stationary distribution vector for P where the sizes of the π(i)’s
correspond to the sizes of the Pii’s, respectively, and define ξ to be the vector

ξ = ( ξ1 ξ2 · · · ξk )

where each component is defined by

ξi = π(i)e =
∑

h

π
(i)
h .

According to Theorem 2.2,

ξisi = π(i),(4.1)

and this together with the fact that
∑k

i=1 π(i)Pij = π(j) yields

(ξC)j =
k∑

i=1

ξicij =
k∑

i=1

π(i)Pije =

(
k∑

i=1

π(i)Pij

)
e = π(j)e = ξj .

Consequently, ξC = ξ so that ξ is a stationary vector for C. It is clear that ξ must
also be a probability vector because

k∑
i=1

ξi =
k∑

i=1

π(i)e =
m∑

j=1

πj = 1.

Therefore, since C is irreducible, ξ must be the unique stationary distribution vector
for C, and the desired conclusion that

π = ( ξ1s1 ξ2s2 · · · ξksk )

follows from (4.1).
The results of Theorem 4.1 can be viewed as an “exact aggregation” technique.

The case of a two-level partition is of special interest because, as the following corollary
shows, it is particularly easy to uncouple and couple the stationary distribution vector
for these situations.

Corollary 4.1. If P is an m × m irreducible stochastic matrix partitioned as

P =
(

P11 P12

P21 P22

)

where P11 and P22 are square, then the stationary distribution vector for P is given
by

π = ( ξ1s1 ξ2s2 )
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where s1 and s2 are the unique stationary distribution vectors for the stochastic com-
plements

S11 = P11 + P12(I − P22)−1P21 and S22 = P22 + P21(I − P11)−1P12,

respectively, and where the coupling factors ξ1 and ξ2 are given by

ξ1 =
s2P21e

s1P12e + s2P21e
and ξ2 = 1 − ξ1 =

s1P12e
s1P12e + s2P21e

.

In this corollary, the coupling factors ξi are described in terms of the off-diagonal
blocks P12 and P21, but these quantities can also be expressed using only the diagonal
blocks in P by replacing the terms P12e and P21e with e − P11e and e − P22e,
respectively, so as to produce

ξ1 =
1 − s2P22e

2 − s1P11e − s2P22e
and ξ2 = 1 − ξ1 =

1 − s1P11e
2 − s1P11e − s2P22e

.

There is always a balancing act to be performed when uncoupling a Markov chain
using stochastic complementation as described in Theorem 4.1. As k increases and the
partition of P becomes finer, the sizes of the stochastic complements become smaller
thus making it easier to determine each of the stationary distribution vectors si, but
the order of the matrix inversion embedded in each stochastic complement becomes
larger, and the size of the coupling matrix Ck×k becomes larger. In the two extreme
cases when k = m or k = 1, there is no uncoupling of the chain whatsoever—if k = m,
then C = P, and if k = 1, then S11 = P. One must therefore choose the partition
which best suits the needs of the underlying application. For example, if computation
utilizing a particular multiprocessor computer is the goal, then the specific nature of
the hardware and associated software may dictate the partitioning strategy.

Rather than performing a single uncoupling-coupling operation to a high level
partition of P, an alternate strategy is to execute a divide-and-conquer procedure
using only two-level partitions at each stage. Starting with an irreducible stochastic
matrix P of size m × m, partition P roughly in half as

P =
(

P11 P12

P21 P22

)

to produce two stochastic complements, S11 and S22, which are each irreducible
stochastic matrices of order approximately m/2. The stochastic complements S11

and S22 may in turn be partitioned roughly in half so as to produce four stochastic
complements—say (S11)11, (S11)22, (S22)11, and (S22)22—each of which is of order
approximately m/4. This process can continue until all stochastic complements are
sufficiently small in size so that each easily yields a stationary distribution vector.
The small stationary distribution vectors corresponding to the small stochastic com-
plements are then successively coupled according to the rules given in Corollary 4.1
until the stationary distribution vector π for the original chain is produced. Using
this divide-and-conquer strategy, there are only two coupling factors to determine at
each coupling step, and they are almost trivial to compute. Furthermore, the order
of the largest inversion imbedded in any stochastic complement never exceeds m/2.

For example, consider the following 8 × 8 irreducible stochastic matrix.
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 .5 0 .1 .2 0 .1 .1
.2 0 .5 0 0 .2 0 .1
.1 .2 0 .5 .1 0 .1 0
0 .4 .2 0 .1 .1 0 .2

.1 0 .5 0 .1 .1 0 .2
0 .5 0 .2 .1 0 .2 0
.5 0 .2 .1 0 .1 0 .1
0 .2 .4 0 .2 0 .1 .1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the indicated partition, the stochastic complements of P are given by1

S11 =

⎛
⎜⎜⎝

.0899 .5566 .2329 .1205

.2327 .1311 .5885 .0476

.1665 .2194 .0986 .5155

.0443 .5156 .4102 .0299

⎞
⎟⎟⎠

and

S22 =

⎛
⎜⎜⎝

.2832 .2409 .1110 .3649

.2576 .2395 .2819 .2210

.2511 .2823 .1329 .3337

.3633 .1683 .2006 .2678

⎞
⎟⎟⎠ ,

with coupling vector

ξ(0) = ( .6852 .3148 ) .

Now, the two stochastic complements of S11 are

(S11)11 =
(

.1744 .8256

.4041 .5959

)
and (S11)22 =

(
.4278 .5722
.9056 .0944

)

with coupling vector

ξ(1) = ( .4548 .5452 ) ,

while the two stochastic complements of S22 are

(S22)11 =
(

.5776 .4224

.5512 .4488

)
and (S22)22 =

(
.3468 .6532
.3955 .6045

)

with coupling vector

ξ(2) = ( .5219 .4781 ) .

1 Numbers have been rounded so as to display four digits behind the decimal point.
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The stationary distribution vector for (S11)11 is given by

s(1)
1 = ( .3286 .6714 ) ,

and the stationary distribution vector for (S11)22 is

s(1)
2 = ( .6128 .3872 ) ,

so that the stationary distribution vector for S11 is

s1 =
(
ξ
(1)
1 s(1)

1 | ξ
(1)
2 s(1)

2

)
= ( .4548 × ( .3286 .6714 ) | .5452 × ( .6128 .3872 ) )
= ( .1495 .3054 .3341 .2111 ) .

Similarly, the stationary distribution vector for (S22)11 is given by

s(2)
1 = ( .5661 .4339 ) ,

and the stationary distribution vector for (S22)22 is

s(2)
2 = ( .3771 .6229 ) ,

so that the stationary distribution vector for S22 is

s2 =
(
ξ
(2)
1 s(2)

1 | ξ
(2)
2 s(2)

2

)
= ( .5219 × ( .5661 .4339 ) | .4781 × ( .3771 .6229 ) )
= ( .2955 .2264 .1803 .2978 ) .

Therefore, the stationary distribution vector for P must be

π =
(
ξ
(0)
1 s1 | ξ

(0)
2 s2

)
=

(
.6852 × ( .1495 .3054 .3341 .2111 )

∣∣∣
.3148 × ( .2955 .2264 .1803 .2978 )

)
= ( .1024 .2092 .2289 .1446 .0930 .0713 .0568 .0938 ) .

In addition to the divide-and-conquer process illustrated above, there are several
other variations and hybrid techniques (e.g., iterative methods) which are possible,
and it is clear that the remarks of this section can serve as the basis for fully par-
allel algorithms for computing the stationary distribution vector for an irreducible
chain. R. B. Mattingly has conducted some detailed experiments along these lines
in which he implemented the divide-and-conquer technique described above on a Se-
quent Balance 21000—a shared memory machine with 24 tightly coupled processors.
Exploring the numerical details and implementation of Mattingly’s work would lead
this exposition too far astray, but the interested reader can consult [14] or [15]. In
brief, Mattingly was able to achieve moderate speedups with the stochastic comple-
mentation divide-and-conquer technique—e.g., a speedup of approximately 8.5 with
16 processors was obtained. Although the operation count for straightforward elim-
ination is less than that for the divide-and-conquer technique, elimination methods
do not parallelize as well as the divide-and-conquer technique, so, as the number of
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processors was increased, the actual running times of the divide-and-conquer tech-
nique were competitive with optimized elimination schemes. But perhaps even more
significant is the fact that the divide-and-conquer technique can be extremely stable
for ill-conditioned chains—i.e., irreducible stochastic matrices which have a cluster of
eigenvalues very near the unit eigenvalue. For Mattingly’s ill-conditioned test matri-
ces, standard elimination methods returned only one or two correct digits whereas
the divide-and-conquer scheme based on stochastic complementation returned results
which were correct to the machine precision. This in part is due to the spectrum split-
ting effect which stochastic complementation provides—these results are discussed in
§6 of this exposition which concerns the spectral properties of stochastic complemen-
tation.

5. Primitivity issues. Primitivity is, of course, an important issue because for
an irreducible stochastic matrix P, the limit limn→∞ Pk exists if and only if P is
primitive. If P is not primitive, then we are necessarily restricted to investigating
limiting behavior in the weak (the Cesàro) sense, and consequently it is worthwhile to
make some observations concerning the degree to which primitivity—or lack of it—in
a partitioned stochastic matrix P is inherited by the smaller stochastic complements
Sii.

The first observation to make is that P being a primitive matrix is not sufficient
to guarantee that all stochastic complements are primitive. For example, the matrix

P =

⎛
⎜⎝

0 1 0
1
2 0 1

2

1 0 0

⎞
⎟⎠

is irreducible and primitive because P5 > 0. However, for the indicated partition, the
stochastic complement

S11 =
(

0 1
1 0

)

is not primitive. Although primitivity of a stochastic complement is not inherited
from the matrix P itself, the following theorem shows that primitivity is inherited
from the diagonal blocks of P.

Theorem 5.1. If Pii is primitive, then the corresponding stochastic complement
Sii must also be primitive.

Proof. Since Pii ≥ 0 and Pi∗(I − Pi)−1P∗i ≥ 0, it follows that for each positive
integer n,

Sn
ii =

[
Pii + Pi∗(I − Pi)−1P∗i

]n
= Pn

ii + N

where N ≥ 0. Therefore, Sn
ii > 0 whenever Pn

ii > 0.
While stochastic complements need not be primitive, most of them are. The next

theorem explains why those stochastic complements which are not primitive must
come from rather special stochastic matrices.

Theorem 5.2. If Pii has at least one nonzero diagonal entry, then the corre-
sponding stochastic complement Sii must be primitive.



16 C. D. MEYER

Proof. If Pii has at least one nonzero diagonal entry, then so does Sii. Fur-
thermore, Theorems 2.1 and 2.3 guarantee that each Sii is always nonnegative and
irreducible, and it is well known [2, p. 34] that an irreducible nonnegative matrix with
a positive trace must be primitive, so each Sii must be primitive.

The converse of Theorem 5.1 as well as the converse of Theorem 5.2 is false. The
stochastic matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1

2
1
2 0 0

0 0 0 0 1 0

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.1)

is irreducible, and the stochastic complements corresponding to the indicated partition
are

S11 =

⎛
⎝ 0 1 0

1
2 0 1

2
1 0 0

⎞
⎠ and S22 =

⎛
⎝ 0 1 0

0 0 1
1
2

1
2 0

⎞
⎠ .

Notice that each stochastic complement is primitive, but P, P11, and P22 are not
primitive.

The preceding example indicates another advantage which stochastic complemen-
tation can provide. The matrix P in (5.1) is not primitive because it is the transition
matrix of a periodic chain, and hence the associated stationary distribution vector π
cannot be computed by the power method—i.e., by the simple iteration

πn+1 = πnP where π0 is arbitrary.

However, the chain uncouples into two aperiodic chains in the sense that S11 and S22

are both primitive, and therefore each Sii yields a stationary distribution vector si by
means of two straightforward iterations

s(n+1)
1 = s(n)

1 S11 and s(n+1)
2 = s(n)

2 S22 where each s(0)
i is arbitrary.

Take note of the fact that the two iterations represented here are completely inde-
pendent of each other, and consequently they can be implemented simultaneously.
By using the coupling factors described in Corollary 4.1, it is easy to couple the two
limiting distributions s1 and s2 in order to produce the stationary distribution vector
π for the larger periodic chain. When these observations are joined with the results
of §6 of this exposition pertaining to the spectrum splitting effects which stochastic
complementation can afford, it will become even more apparent that stochastic com-
plementation has the potential to become a valuable computational technique for use
with multiprocessor machines.

6. Nearly completely reducible chains and spectral properties. Consider
an m-state irreducible chain C and k subclasses Q1,Q2, · · · ,Qk which partition the
state space. The chain C as well as an associated transition matrix is considered to
be nearly completely reducible 2 when the Qi’s are only very weakly coupled together.

2 Gantmacher’s [7] terminology “completely reducible” and the associated phrase “nearly
completely reducible” are adopted in this exposition. Some authors use the alternate termi-
nology “nearly completely decomposable.”
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In this case, the states can be ordered so as to make the transition matrix P have a
k-level partition

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠(6.1)

in which the magnitude of each off-diagonal block Pij is very small relative to 1.
We begin by investigating the limiting behavior of the chain as the off-diagonal

blocks in (6.1) tend toward zero. To this end, allow the off-diagonal blocks to vary
independently, and assume the diagonal block Pii in each row depends continuously on
the Pij ’s (the off-diagonal blocks in the corresponding row) while always maintaining
the irreducible and stochastic structure of the larger matrix P. The following result
gives an indication of why stochastic complementation is useful in understanding the
nature of a nearly completely reducible chain. For vectors x and matrices A, the
norms defined by

‖x‖∞ = max
i

|xi| and ‖A‖∞ = max
i

∑
j

|aij |

will be employed throughout.
Theorem 6.1. If P is an irreducible stochastic matrix with a k-level partition

as indicated in (6.1), and if

Sii = Pii + Pi∗(I − Pi)−1P∗i, i = 1, 2, · · · , k

are the associated stochastic complements, then

‖Sii − Pii‖∞ = ‖Pi∗‖∞,(6.2)

and

lim
Pi∗→0

Sii = Pii.(6.3)

Moreover, if S is the completely reducible stochastic matrix

S =

⎛
⎜⎜⎝

S11 0 · · · 0
0 S22 · · · 0
...

...
. . .

...
0 0 · · · Skk

⎞
⎟⎟⎠ ,

then

‖P − S‖∞ = 2 max
i

‖Pi∗‖∞.(6.4)

Proof. Let e denote a column of 1’s whose size is determined by the context in
which it appears, and begin by observing that all matrices which are involved are
nonnegative so that

‖Pi∗(I − Pi)−1P∗i‖∞ = ‖Pi∗(I − Pi)−1P∗ie‖∞ and ‖Pi∗‖∞ = ‖Pi∗e‖∞.
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Since P is stochastic, it must be the case that

Pie + P∗ie = e,

which in turn implies

(I − Pi)−1P∗ie = e.

Therefore,

‖Sii−Pii‖∞ = ‖Pi∗(I−Pi)−1P∗i‖∞ = ‖Pi∗(I−Pi)−1P∗ie‖∞ = ‖Pi∗e‖∞ = ‖Pi∗‖∞,

which is the desired conclusion of (6.2), and the statement (6.3) that Sii → Pii as
Pi∗ → 0 follows. To establish (6.4), use the fact that Pii − Sii ≤ 0 in order to write

‖P − S‖∞ = max
i

‖ (Pi1 Pi2 · · · Pii − Sii · · · Pik ) ‖∞

= max
i

‖Pi1e + Pi2e + · · · + (Sii − Pii)e + · · · + Pike‖∞.
(6.5)

Now observe that Piie + Pi∗e = e implies

(Sii − Pii)e = e − Piie = Pi∗e,

and use this in (6.5) together with the fact that

k∑
j=1
j �=i

Pije = Pi∗e

to produce

‖P − S‖∞ = max
i

‖Pi1e + · · · + Pi∗e + · · · + Pike‖∞

= max
i

‖2Pi∗‖∞ = 2 max
i

‖Pi∗‖∞.

If δ denotes the expression

δ = 2 max
i

‖Pi∗‖∞,

then it is clear that 0 ≤ δ ≤ 2, and P is completely reducible if and only if δ = 0.
This together with the result (6.4) motivates the following terminology.

Definition 6.1. For an m × m irreducible stochastic matrix with a k-level par-
tition

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠ ,

the number

δ = 2 max
i

‖Pi∗‖∞

is called the deviation from complete reducibility.
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It is worthwhile to explore the spectral properties of stochastic complementation
as the deviation from complete reducibility tends toward 0. If P is nearly completely
reducible, then each Pii is nearly stochastic (in particular, Theorem 6.1 guarantees
Pii ≈ Sii), and continuity of the eigenvalues insures that P must necessarily have at
least k−1 nonunit eigenvalues clustered near the simple eigenvalue λ = 1. This means
that P is necessarily badly conditioned in the sense that if the sequence {Pn}∞n=1 con-
verges, then it must converge very slowly. For the time being, suppose P has exactly
k − 1 nonunit eigenvalues clustered near λ = 1. Since each stochastic complement
Sii is an irreducible stochastic matrix, the Perron–Frobenius theorem guarantees that
the unit eigenvalue of each Sii is simple. By virtue of Theorem 6.1 and continuity of
the eigenvalues, it follows that the nonunit eigenvalues of each Sii must necessarily
be rather far removed from the unit eigenvalue of Sii—otherwise the spectrum σ(P)
of P would contain a cluster of at least k nonunit eigenvalues positioned near λ = 1.
In other words, P → S as δ → 0, and the cluster consisting of the k − 1 nonunit
eigenvalues together with λ = 1 itself in σ(P) must “split” and map to the k unit
eigenvalues in σ(S)—one unit eigenvalue in each σ(Sii). This splitting effect is picto-
rially illustrated below in Fig. 1 for a 12 × 12 matrix with the three-level partition

P =

⎛
⎝P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞
⎠ and S =

⎛
⎝S11 0 0

0 S22 0
0 0 S33

⎞
⎠ .

Fig. 1

The conclusion to be derived from this discussion is summarized in the following
statement.

Theorem 6.2. If the underlying transition matrix

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

of a nearly completely reducible Markov chain has exactly k − 1 nonunit eigenvalues
clustered near λ = 1, then the process of uncoupling the chain into k smaller chains by
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using the method of stochastic complementation forces the spectrum of P to naturally
split apart so that each of the smaller chains has a well-conditioned transition matrix
Sii in the sense that each Sii has no eigenvalues near its unit eigenvalue.

When the states in a nearly completely reducible chain are naturally ordered,
and when the transition matrix P is partitioned in the natural way according to the
closely coupled subclasses, then the desirable spectrum splitting effect described above
almost always occurs. However, there are pathological cases when this effect is not
achieved. If, for a k-level partition of P, the spectrum σ(P) contains more than k− 1
nonunit eigenvalues clustered near λ = 1, then continuity dictates that some Sii must
necessarily have a nonunit eigenvalue near its unit eigenvalue. This can occur even
for naturally partitioned matrices. For example, consider

P =
(

P11 P12

P21 P22

)

in which both P12 and P21 are extremely small in magnitude, and assume neither
P11 nor P22 are nearly completely reducible. Furthermore, suppose that P11 is a very
small perturbation of

Cn×n =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

where n is quite large. Since σ(C) consists of the nth roots of unity

ωh = e(2πi/n)h, h = 0, 1, · · · , n − 1,

it is clear that ω1 = e2πi/n must be very close to ω0 = 1 whenever n is large. Therefore,
P11 must have a nonunit eigenvalue near λ = 1 and, by virtue of Theorem 6.1, the
same must hold for S11—thereby making S11 badly conditioned. Needless to say,
pathological cases of this nature are rare in practical work.

As illustrated with the matrix given in (5.1), it is possible for stochastic comple-
mentation to uncouple a periodic chain into two aperiodic chains, thereby allowing the
straightforward power method to be used where it ordinarily would not be applicable.
A similar situation can hold for nearly completely reducible chains. The standard
power method

πn+1 = πnP where π0 is arbitrary(6.6)

applied to the transition matrix P of an aperiodic chain which is nearly completely
reducible will fail—not in theory, but in practice—because the existence of eigenvalues
of P which are near λ = 1 causes (6.6) to converge too slowly. However, if the chain
is not pathological in nature (i.e., if P does not have more than k−1 eigenvalues near
λ = 1), then the spectrum splitting effect described earlier insures that each of the k
sequences

s(n+1)
i = s(n)

i Sii where s(0)
i is arbitrary, i = 1, 2 · · · k(6.7)

will exhibit rapid convergence. Recall from Theorems 5.1 and 5.2 that the ith sequence
in (6.7) converges if and only if Pii is primitive, and this is guaranteed if Pii has at
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least one nonzero diagonal entry. Again take note of the fact that these k sequences
in (6.7) are completely independent of each other, so each iteration can be executed
in parallel—after which the limiting vectors

si = lim
n→∞

s(n)
i

are easily coupled according to the rules of Theorem 4.1 in order to produce the
stationary distribution vector for P as

π = ( ξ1s1 ξ2s2 · · · ξksk ) .

7. The Simon–Ando theory for nearly completely reducible systems.
Simon and Ando [18] provided the classical theory for nearly completely reducible
systems, and Courtois [3] (along with others who followed his pioneering work) applied
the theory and helped develop numerical aspects associated with queueing networks.
The contribution of Simon and Ando [18] was to provide mathematical arguments
for what had previously been a rather heuristic theory concerning nearly completely
reducible systems. The major conclusion of this theory is that if the off-diagonal
blocks Pij in the transition matrix

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

of a finite aperiodic chain have sufficiently small magnitudes, then closely coupled
subclasses associated with the diagonal blocks Pii must each tend toward a local
equilibrium long before a global equilibrium for the entire system is attained. In
the short run, the chain behaves as though it were completely reducible with each
subclass tending toward a local equilibrium independent of the evolution in other
subclasses. After this short-run stabilization, the local equilibria are approximately
maintained—in a relative sense—within each subclass while the entire chain evolves
toward its global equilibrium. The approach and substance of the theorems of Simon
and Ando have become accepted as the theoretical basis for aggregation techniques
and algorithms.

Although the conclusions of Simon and Ando [18] are extremely important, their
mathematical development utilizes some rather cumbersome notation and proofs. At
times, the arguments are difficult to appreciate, and they do not fully illuminate
the basic underlying mechanisms. This is corroborated by the fact that although the
conclusions of the Simon–Ando theory are fundamental to the development of material
in his text, Courtois [3] chooses to omit the Simon–Ando proofs on the grounds that
they have “little relevance” to subsequent developments.

The purpose of the latter portion of this exposition is to apply the concept of
stochastic complementation in order to develop the theory for nearly completely re-
ducible systems in a unified, clear, and simple manner while simultaneously sharpening
some results and generalizing others. The discussion is divided into three parts—the
short-run dynamics, the middle-run dynamics, and the long-run dynamics.

8. Short-run dynamics. The object of the short-run analysis is to examine the
behavior of the distribution

πn = π0Pn where π0 is arbitrary,
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for smaller values of n. The following theorem provides the basis for doing this.
Theorem 8.1. For an m × m irreducible stochastic matrix with a k-level parti-

tion

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠ ,

let S be the completely reducible stochastic matrix

S =

⎛
⎜⎜⎝

S11 0 · · · 0
0 S22 · · · 0
...

...
. . .

...
0 0 · · · Skk

⎞
⎟⎟⎠ ,

and assume that each stochastic complement Sii is primitive.3 Let the eigenvalues of
Sm×m be ordered as

λ1 = λ2 = · · · = λk = 1 > |λk+1| ≥ |λk+2| ≥ · · · ≥ |λm|,
and assume that S is similar to a diagonal matrix 4

Z−1SZ =
(

Ik×k 0
0 D

)
where D =

⎛
⎜⎝

λk+1 · · · 0
...

. . .
...

0 · · · λm

⎞
⎟⎠ .

If S∞ denotes the limit

S∞ = lim
n→∞

Sn =

⎛
⎜⎜⎝

es1 0 · · · 0
0 es2 · · · 0
...

...
. . .

...
0 0 · · · esk

⎞
⎟⎟⎠

where si is the stationary distribution vector for Sii, then

‖Pn − S∞‖∞ ≤ nδ + κ|λk+1|n(8.1)

where δ is the deviation from complete reducibility as defined in Definition 6.1, and
where κ is the constant

κ = ‖Z‖∞‖Z−1‖∞.

Moreover, if the (row) vector norm defined by ‖r‖1 =
∑

i |ri| is used, then for every
n = 1, 2, · · · , the difference between πn and the limit

s = lim
n→∞

π0Sn

can be measured by

‖πn − s‖1 ≤ nδ + κ|λk+1|n.(8.2)

3 The primitivity assumption is included here for clarity of exposition because it insures
that limits exist in the strong sense. Although Theorems 5.1 and 5.2 show that almost all
stochastic complements are primitive, it will later be argued that primitivity is not needed to
reach the same general conclusions of this theorem.

4 This assumption is also for clarity of exposition—it will later be indicated how the results
of this theorem can be preserved without this diagonalizability assumption.
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Proof. Begin by observing that the identity

Pn − Sn = Sn−1(P − S) + Sn−2(P − S)P + · · · + S(P − S)Pn−2 + (P − S)Pn−1

is valid for all n = 1, 2, · · ·. Use this together with (6.4) and the fact that

‖Pj‖∞ = ‖Sj‖∞ = 1 for every j

in order to conclude that

‖Pn − Sn‖∞ ≤ nδ.(8.3)

By writing

Sn = Z
(

I 0
0 Dn

)
Z−1 and lim

n→∞
Sn = Z

(
I 0
0 0

)
Z−1,

it is clear that

Sn − S∞ = Z
(

0 0
0 Dn

)
Z−1.

Taking norms produces

‖Sn − S∞‖∞ ≤ ‖Z‖∞|λk+1|n‖Z−1‖∞ = κ|λk+1|n.(8.4)

Now use (8.4) together with (8.3) to write

‖Pn−S∞‖∞ = ‖Pn−Sn +Sn−S∞‖∞ ≤ ‖Pn−Sn‖∞ +‖Sn−S∞‖∞ ≤ nδ+κ|λk+1|n,

which is the desired conclusion (8.1). The second conclusion (8.2) follows by noting
that the inequality ‖rA‖1 ≤ ‖r‖1‖A‖∞ holds for row vectors r and square matrices
A so that

‖πn − s‖1 = ‖π0(Pn − S∞)‖1 ≤ ‖Pn − S∞‖∞ ≤ nδ + κ|λk+1|n.

The results of Theorem 8.1 motivate the following definition.
Definition 8.1. For each ε > 0, there is an associated short-run stabilization

interval I(ε) which is defined to be the set

I(ε) =
{

n

∣∣∣∣ ‖Pn − S∞‖∞ < ε

}
.

The set

E(ε) =
{

n

∣∣∣∣ δn + κ|λk+1|n < ε

}

is referred to as the estimated short-run stabilization interval, and the function
defined by

f(x) = δx + κ|λk+1|x

is called the estimating function. Notice that Theorem 8.1 insures E(ε) ⊆ I(ε).
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Examining the characteristics of the graph of the estimating function f(x) pro-
vides an indication of the nature of the short-run stabilization interval I(ε). Refer
to Fig. 2 and notice that as long as ε is greater than the minimum value of f , which
occurs at

xmin =
ln

(
−δ

κ ln |λk+1|

)
ln |λk+1|

,

the estimated short-run stabilization interval E(ε) is nonempty. Because f(x) is
asymptotic to the line y = δx, the length of the interval E(ε) increases as δ → 0,
i.e., E(ε) grows as the Pij ’s→ 0 in the underlying partitioned matrix P.

y = f(x) = δx + κ|λk+1|x

E(ε)

εy =

y = tδ

Fig. 2

To appreciate the relationship between the short-run stabilization interval I(ε)
and its estimate E(ε), consider the following example in which P is the nearly com-
pletely reducible matrix

P =

⎛
⎜⎜⎝

.6999 .3000 .0001 0

.2000 .7996 0 .0004

.0003 0 .7997 .2000
0 .0007 .1000 .8993

⎞
⎟⎟⎠ .(8.5)

Let g(n) be the function defined by

g(n) = ‖Pn − S∞‖∞,

and let f(n) be the estimating function

f(n) = δn + κ|λk+1|n.
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For the matrix (8.5), δ = .0014, κ = 8.657, and λk+1 = .6996 (rounded to four
significant digits). The graph of g(n), shown in Fig. 3, illustrates how rapidly powers
of P initially approach the matrix S∞ and then how Pn gradually pulls away from
S∞.

Fig. 3

For this example (which is not pathological), the graphs in Fig. 3 show that the
estimating function f(n) gives a good indication of the evolution of the process in the
sense that f(n) is essentially parallel with g(n). That is, f(n) decreases, stabilizes, and
then increases more or less in concert with g(n). Although necessarily conservative,
the estimating function f(n) is not overly pessimistic in estimating the length of the
short-run stabilization period. For example, if ε is taken to be ε = .04, then—as
depicted in Fig. 3—the associated short-run stabilization interval is

I(.04) = [11, 35]

while the estimated short-run stabilization interval is

E(.04) = [18, 28].

Corollary 8.1. If, for a given ε > 0, n lies in the interval defined by

ln ε/2κ

ln |λk+1|
< n <

ε

2δ
,(8.6)

then

‖Pn − S∞‖∞ < ε,

and for every π0,

‖πn − s‖1 < ε.
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More precisely, {
n

∣∣∣∣ ln ε/2κ

ln |λk+1|
< n <

ε

2δ

}
⊆ E(ε) ⊆ I(ε).

Proof. The fact that |λk+1| < 1 means ln |λk+1| < 0 so that the left-hand inequal-
ity in (8.6) implies

ln |λk+1|n < ln ε/2κ,

and hence κ|λk+1|n < ε/2. Similarly, the right-hand inequality in (8.6) says that
nδ < ε/2, and the desired conclusions follow from Theorem 8.1.

To understand the significance of a short-run stabilization interval, suppose there
are mi states in the ith subclass Qi (i.e., Pii is mi × mi), and observe that if si is the
stationary distribution vector for Sii, then for an initial distribution π0 partitioned
as

π0 =
(
π

(1)
0 π

(2)
0 · · · π

(k)
0

)
in which π

(i)
0 contains mi components, the limiting distribution s is given by

s = π0S∞ = π0

⎛
⎜⎜⎝

es1 0 · · · 0
0 es2 · · · 0
...

...
. . .

...
0 0 · · · esk

⎞
⎟⎟⎠ = ( ν1s1 ν2s2 · · · νksk )

where the coefficient νi associated with the ith subclass is given by

νi = π
(i)
0 e =

mi∑
h=1

(
π

(i)
0

)
h

.

Suppose that n belongs to a short-run stabilization interval I(ε). Roughly speaking,
this means that n simultaneously satisfies the two conditions

|λk+1|n << 1 and n <<
1
δ
,(8.7)

and for such values of n, Theorem 8.1 guarantees that

πn ≈ s = ( ν1s1 ν2s2 · · · νksk )

where the νi’s are constant—they depend only on π0. Therefore, each closely coupled
subclass Qi will approximately be in a local equilibrium which is defined by the
stationary distribution vector si as long as n satisfies (8.7).

In other words, the chain initially evolves in such a way that each closely coupled
subclass begins to approach a short-run equilibrium—defined by the si’s—completely
independent of the evolution in all other subclasses. As the chain continues to
evolve, there will exist a period (the short-run stabilization interval I) in which each
subclass—and hence the entire chain—is approximately stable. As time proceeds be-
yond I, the chain will move away from s, the approximate point of short-run stability,
and it will evolve along a path en route toward global stability.
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The existence of an approximate short-run local equilibrium is a major conclusion
of the classical Simon–Ando theory, but the description of the short-run stabilization
interval and the estimate given in Definition 8.1 or (8.7) is new. The fact that the
approximate short-run local equilibrium can be described by the stationary distribu-
tion vectors of the individual stochastic complements also appears to be new. The
preceding remarks are formally summarized in the following theorem.

Theorem 8.2 (Short-run dynamics). For an irreducible stochastic matrix with a
k-level partition

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

in which the stochastic complements (Sii)mi×mi
are each primitive and diagonalizable,

let

π0 =
(
π

(1)
0 π

(2)
0 · · · π

(k)
0

)
be an arbitrary initial distribution, and let

|λk+1| = max
λ�=1

{
|λ|

∣∣∣ λ ∈
k⋃

i=1

σ(Sii)

}
.

If the magnitudes of the off-diagonal blocks Pij are small enough to guarantee the
existence of values of n such that

|λk+1|n << 1 and n <<
1
δ
,(8.8)

then as long as n satisfies (8.8), it must be the case that

Pn ≈

⎛
⎜⎜⎝

S∞
11 0 · · · 0
0 S∞

22 · · · 0
...

...
. . .

...
0 0 · · · S∞

kk

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

es1 0 · · · 0
0 es2 · · · 0
...

...
. . .

...
0 0 · · · esk

⎞
⎟⎟⎠

and

πn = π0Pn ≈ ( ν1s1 ν2s2 · · · νksk )

where si is the stationary distribution vector for Sii, and where

νi = π
(i)
0 e =

mi∑
h=1

(
π

(i)
0

)
h

.

Before turning to the middle-run and long-run dynamics, observe that the assump-
tion of Theorems 8.1 and 8.2 that S is diagonalizable is not necessary—it merely makes
the conclusions easier to grasp. In the more general case, there exists a nonsingular
matrix Z such that

Z−1SZ =
(

Ik×k 0
0 J

)
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where J is in Jordan canonical form, and the spectral radius of J is ρ(J) = |λk+1|. It
is well known (see [19] or [11]) that for every square matrix A and each ε > 0, there
exists a matrix norm ||| • ||| such that

ρ(A) ≤ |||A||| ≤ ρ(A) + ε.

Clearly, this norm can be made to be meaningful for row vectors r simply by concate-
nating enough zero rows to r so as to fill out a square matrix. This means that for
every n and for each ε > 0, there is a norm ||| • ||| such that

|λk+1|n ≤ |||Jn||| ≤ |λk+1|n + ε,

and (8.2) can be replaced by

|||πn − s||| ≤ nδ + κ (|λk+1|n + ε)(8.9)

where κ = |||π0Z||| |||Z−1|||. Although the analysis is more involved, (8.9) used in place
of (8.2) leads to the same general conclusions given in Theorems 8.1 and 8.2.

9. Middle-run dynamics. According to the short-run dynamics,

Pn ≈ S∞ and πn ≈ s = ( ν1s1 ν2s2 · · · νksk )

as long as n belongs to a short-run stabilization interval characterized by (8.8). As
the chain continues to evolve, and as n advances beyond the short-run stabilization
interval, Pn moves away from S∞ and tends toward P∞ (assuming P is primitive),
while the distribution πn diverges away from s and moves along a path en route to
the global stationary distribution vector π. However, after the short-run stabilization
period has ended, components of πn belonging to the same subclass Qi will never-
theless continue to remain in approximate equilibrium relative to each other. The
following theorems precisely articulate the sense in which this occurs.

Theorem 9.1. For an m × m irreducible stochastic matrix

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

with stochastic complements Sii which are each primitive, let si be the stationary
distribution vector for Sii, and let πn = π0Pn where π0 is an arbitrary initial distri-
bution. If ε > 0 is a number such that the associated short-run stabilization interval
I(ε) is nonempty, then for each integer n beyond I(ε), there exist scalars βi (which
vary with n) such that the vector

vn = (β1s1 β2s2 · · · βksk )

satisfies the inequality

‖πn − vn‖1 < ε.
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Proof. If n is an integer beyond the short-run stabilization interval I(ε), then
there exist positive integers q and r such that n = q + r, where

q ∈ I(ε).

Write πn as

πn = πq+r = πrPq

where πr is partitioned as

πr =
(
π

(1)
r π

(2)
r · · · π

(k)
r

)
.

Define vn to be the vector

vn = πrS∞ = πr

⎛
⎜⎜⎝

S∞
11 0 · · · 0
0 S∞

22 · · · 0
...

...
. . .

...
0 0 · · · S∞

kk

⎞
⎟⎟⎠ = πr

⎛
⎜⎜⎝

es1 0 · · · 0
0 es2 · · · 0
...

...
. . .

...
0 0 · · · esk

⎞
⎟⎟⎠

= (β1s1 β2s2 · · · βksk )

where

βi = π(i)
r e =

mi∑
h=1

(
π(i)

r

)
h

.(9.1)

Because q ∈ I(ε), we may conclude that

‖πn − vn‖1 = ‖πrPq − πrS∞‖1 ≤ ‖πr‖1‖Pq − S∞‖∞ < ε.

The short-run dynamics established the fact that as long as n ∈ I(ε),

πn ≈ ( ν1s1 ν2s2 · · · νksk )(9.2)

where the νi’s are constant—they depend only on the initial distribution π0. The
middle-run dynamics guarantees that for all n beyond I(ε),

πn ≈ (β1s1 β2s2 · · · βksk )(9.3)

where the βi’s vary with n. Therefore, if states Si and Sj each belong to the same
subclass—say Qr—and if Si and Sj represent the rith and rjth states within Qr, then
it is clear from (9.2) and (9.3) that the ratio between the ith and j th components in
πn during the short run is

(πn)i

(πn)j

≈
(νrsr)ri

(νrsr)rj

=
(sr)ri

(sr)rj

,

and this ratio is approximately maintained beyond the short run because during the
middle run,

(πn)i

(πn)j

≈
(βrsr)ri

(βrsr)rj

=
(sr)ri

(sr)rj

.
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This realization is the second fundamental feature of the Simon–Ando theory, which
is formally stated below.

Theorem 9.2 (Middle-run dynamics). Consider an irreducible stochastic matrix

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

for which each stochastic complement is primitive, and suppose that the off-diagonal
blocks Pij are sufficiently small in magnitude so as to guarantee the existence of a
nonempty short-run stabilization interval I. After n enters I, the ratio between
any two components in πn, within the same closely coupled subclass Qr, remains
approximately constant for all time thereafter. This ratio is approximately the same
as the ratio between the corresponding components in the stationary distribution vector
sr of the associated stochastic complement Srr. In other words, after n enters I, the
relations

(πn)i

(πn)j

≈
(sr)ri

(sr)rj

(9.4)

are maintained throughout the entire evolution of the chain, and the ratios in (9.4)
are independent of the initial distribution π0.

10. Long-run dynamics. The only observation which needs to be made con-
cerning long-run behavior is that the short-run and middle-run relative stability ex-
pressed by (9.4) is maintained in the limit. For the time being, assume that P is
primitive so that its stationary distribution vector is given as the limit

π = lim
n→∞

πn = lim
n→∞

π0Pn,

and recall from Theorem 4.1 there exist constants ξi (the coupling factors) such that

π = ( ξ1s1 ξ2s2 · · · ξksk ) .

Theorem 9.1 guarantees that during the middle run,

πn ≈ (β1s1 β2s2 · · · βksk )

where the βi’s vary with n, and hence it appears that each βi should eventually settle
down to the constant coupling factor ξi. To rigorously demonstrate this, recall from
(9.1) that each βi is of the form

βi = π(i)
r e =

mi∑
h=1

(
π(i)

r

)
h

where πr is a distribution partitioned as

πr =
(
π

(1)
r π

(2)
r · · · π

(k)
r

)
,

and where r = n − q for some fixed positive integer q. Use the fact that

πr → π = ( ξ1s1 ξ2s2 · · · ξksk )
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in conjunction with (4.1) to conclude

lim
n→∞

βi = lim
r→∞

π(i)
r e = ξisie = ξi.

The entire evolution of a nearly completely reducible chain can now be formally
summarized by the following theorem.

Theorem 10.1 (Summary). Consider a nearly completely reducible chain whose
transition matrix

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

as well as each stochastic complement Sii is primitive. For an arbitrary initial dis-
tribution π0, the distribution πn = πn−1P = π0Pn evolves as follows:

Short-run evolution—The components in πn begin to evolve in such a way that
groups of components corresponding to closely coupled subclasses independently tend
toward their own approximate local equilibrium. The approximate local equilibrium
values within each closely coupled subclass are proportional to the values in the sta-
tionary distribution si of the associated stochastic complement Sii.

Short-run stabilization—As the chain continues to evolve, there is an interval of
time, the short-run stabilization interval I, during which the chain is approximately
stable in the sense that

πn ≈ (α1s1 α2s2 · · · αksk )(10.1)

where the αi’s are constants which depend only on π0.
Middle-run evolution—As n passes beyond I, the distribution πn moves away

from the short-run stabilization vector given in (10.1), but πn nevertheless maintains
an approximate relative stability between components corresponding to the same closely
coupled subclass in the sense that

πn ≈ (β1s1 β2s2 · · · βksk )(10.2)

where the βi’s vary with n.
Long-run evolution—The βi’s in (10.2) begin to settle down to limiting values

which define the stationary distribution vector for the entire chain.
Long-run stabilization—As n → ∞, πn → π, and βi → ξi where the ξi’s are

the constant coupling factors given in Theorem 4.1. So for practical purposes, there
is some point in time past which

πn ≈ ( ξ1s1 ξ2s2 · · · ξksk ) .

11. Relaxing primitivity. An explicit hypothesis of Theorem 10.1 is that P
and each stochastic complement Sii are primitive. Although it is implicit in the
Simon–Ando development [18] and in treatment by Courtois [3], the primitivity as-
sumption is nevertheless present in these places as well. Of course, primitivity is not
an overly restrictive hypothesis because it is frequently present in practical problems.
However, the primitivity assumption is not necessary. The purpose of this section is
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to give a brief indication of how and why the conclusions of Theorem 10.1 remain
valid in a more general sense without the assumption of primitivity.

Suppose that

P =

⎛
⎜⎜⎝

P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

⎞
⎟⎟⎠

as well as its associated stochastic complements Sii are not necessarily primitive,
and assume only that P is irreducible. According to Theorem 2.3, all stochastic
complements Sii are therefore irreducible, and hence P as well as the Sii’s each possess
a unique stationary distribution vector—denote them by π and si, respectively. If S
is the matrix

S =

⎛
⎜⎜⎝

S11 0 · · · 0
0 S22 · · · 0
...

...
. . .

...
0 0 · · · Skk

⎞
⎟⎟⎠ ,

and if P(n) and S(n) denote the averages

P(n) =
I + P + P2 + · · · + Pn−1

n
and S(n) =

I + S + S2 + · · · + Sn−1

n
,

then it is well known (see [11]) that

P(n) → P∞ = eπ and S(n) → S∞ =

⎛
⎜⎜⎝

es1 0 · · · 0
0 es2 · · · 0
...

...
. . .

...
0 0 · · · esk

⎞
⎟⎟⎠ .

If the off-diagonal blocks Pij in P are quite small in magnitude, then Theorem 6.1
guarantees P ≈ S so that Pn ≈ Sn, and hence P(n) ≈ S(n), as long as n is not too
large. Moreover, if the magnitudes of the Pij ’s are sufficiently small, then there are
some values of n such that each S(n)

ii is near its limiting value S∞
ii before P(n) and

S(n) have moved too far apart. That is, if P is nearly completely reducible, then there
is a short-run stabilization interval I such that

P(n) ≈ S(n) ≈ S∞ =

⎛
⎜⎜⎝

es1 0 · · · 0
0 es2 · · · 0
...

...
. . .

...
0 0 · · · esk

⎞
⎟⎟⎠

as long as n ∈ I, and during this period,

π(n) = π0P(n) ≈ s = π0S∞ = ( ν1s1 ν2s2 · · · νksk )

where the νi’s are the constants given by

νi = π
(i)
0 e =

∑
h=1

(
π

(i)
0

)
h

.
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In such a manner, the analogue of short-run stabilization can be established for the
more general case, and essentially the same arguments used in §8 can be used to
provide rigorous proofs. Similarly, the middle-run and long-run dynamics of a non-
primitive nearly completely reducible chain are derived from essentially the same
arguments used in §9 and §10 thereby providing a direct extension of Theorem 10.1
to the more general case by simply replacing Pn, Sn

ii, and πn by P(n), S(n)
ii , and π(n),

respectively.

12. Acknowledgments. The author is indebted to Paul Schweitzer, Moshe Ha-
viv, Bruce Mattingly, and W. J. Stewart for their useful comments which helped to
improve this exposition.
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