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ABSTRACT 

An n X n irreducible stochastic matrix P can possess a subdominant eigenvalue. 
say h,(P), near h = I. In this article we clarify the relationship between the nearness 
of these eigenvalues and the near-uncoupling (some authors say “nearly completely- 
decomposable”) of P. We prove that for fixed n, if h,(P) is sufficiently close to A = 1, 
then P is nearly uncoupled. We then provide examples which show that h,(P) must, 
in general, be remarkably close to I before such uncoupling occurs. 0 3998 Elsevier 
Science Inc. 
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1. INTRODUCTION 

D. J. HARTFIEL AND CARL D. MEYER 

Markov chain techniques are often used to model the behavior of large 
irreducible nearly uncoupled evolutionary systems in which the states (as- 
sumed to be finite in number) naturally divide into say k-clusters such that 
the states within each cluster are strongly coupled, but the clusters them- 
selves are only weakly coupled to each other. Such systems are commonly 
encountered in the analysis of queuing networks and computer systems, 
discrete economic models, and many stochastic models found in biological 
and social science. When the states of such a chain are suitably arranged, the 
transition probability matrix P is an irreducible nearly uncoupled (row) 
stochastic matrix which can be partitioned into k + 1 levels: 

P = 
nxn 

Pll p12 *** Plk plk+l 
P 21 P 22 *** P 2k P 2k+l 

P,, Pi2 *I* P,, . Pkk+l 

P k+ll pk+12 ‘** Pk+lk Pk+lk+l 

(14 

such that the nearly uncoupled diagonal blocks P,,, . . . , Pkk are square, and 
the norm of each off-diagonal block, in block rows 1, . . . , k, is small relative 
to 1. Because the nearly uncoupled diagonal blocks are nearly stochastic 
matrices, continuity of the eigenvalues forces P to have at least k eigenvalues 
near the unit eigenvalue h = 1. (See [4] for related material.) This is of some 
concern, because having subdominant eigenvalues near h = 1 poses prob- 
lems for the numerical computation of statistics for the associated Markov 
chain-e.g., there are sensitivity and conditioning problem [5, 71, and itera- 
tive methods converge slowly. 

While it is clear that nearly uncoupled irreducible stochastic matrices 
must possess subdominant eigenvalues near A = 1, the converse is less than 
clear. In other words, if an irreducible stochastic matrix P has a subdominant 
eigenvalue, say A,(P), near A = 1, must P be nearly uncoupled? We answer 
this question in the following section. 
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2. UNCOUPLING RESULT 

Let P be an n X n stochastic matrix. Define the uncoupling measure of P 

g(P) = min 

where the minimum is taken over all nonempty proper subsets M,, M2 of 
(1,. . . , n} where M, n M, = 0. Thus, if we suppose that P has already been 
rearranged so that cr(P) is achieved at M, = {l, . . . , k,], M, = {k, + 
1, . . , k,}, then P can be partitioned as p,, p,, PI3 p = PI!, p,, p,, 

[ 1 p,, p,, p33 

(2.2) 

where P,, is k, X k,, P,, is (k, - k,) X (k, - k,), and V(P) is the sum of 
the entries in Pi,, Pi,, Pzl, P,,. From this, if a(P) is small, P is nearly 
uncoupled into two blocks Pi,, P,,. (This definition can be extended, in an 
obvious way, to more than two blocks. For our work, however, two blocks are 
sufficient.) 

Our uncoupling theorem follows. 

THEOREM. Let n > 0 be a fixed integer. For that integer, given E > 0 
there is S > 0 such that $ P is an n X n stochastic matrix with 1 A,(P) - 11 

< S then a(P) < E. 

Proof. The proof is by contradiction. Thus, suppose there is an E > 0 
such that for any S > 0 there is an n X n stochastic matrix P with 1 A,(P) - 11 
< S and (T(P) > E. For S = l/k let Pk be such a matrix. Let P,,, Pt2,. . . be 
a subsequence of P, , P2, . . . which converges, say to P,,. Then P,, must have 
A,(P,) = 1 and thus (T(P,,) = 0. Yet, cr(P,,) = limk ‘~ a(P,> >, E, a contra 
diction. The result follows. ??

In the next section we show how remarkably close, in general, A,(P) must 
be to 1 in order to see the uncoupling described in this theorem. 
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3. EXAMPLES 

We now look at three examples 

EXAMPLE 1. Consider tridiagonal Toeplitz matrices of the form 

T, = 

a b 
cab 

c a b 

C a b 
C a b 

c a 

\ 

/ 1 

(3.1) 

IXn 

It is a straightforward exercise to show that if A,, = det T,, then 

A,, = aA,_l - bcA,_, with A,=l. (3.2) 

Moreover, it is known [S, pp. 59, 1541 that the eigenvalues of T, are given by 

kn- 
rk = a + 2&F cos - for 

n-i-l 
k = I,2 ,..., n. (3.3) 

Matrices of the form (3.1) are not stochastic, so some alteration is needed. 
While it is not absolutely necessary, it is computationally convenient to set 
a = 0 and begin with the special class of tridiagonal Toeplitz matrices of the 
form 

A,, = 

3 b 
Y 0 b 

c 0 b 

c 0 b 
C 0 b 

c 0 

(3.4) 
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whose eigenvalues are 

krr 
A, = 2&z cos - for 

n+l 
k = I,2 ,..., n. 

Now adjust the first and last row of A,, to force the resulting matrices to have 
constant row sums by setting 

P, = 

0 b+c 
C 0 b 

c 0 b 

c 0 b 
c 0 b 

b+c 0 

\ 

I I 

(3.5) 

I x tl 

(Other options are also possible.) Of course, this adjustment will alter the 
eigenvalues-but in a predictable way. To see how, consider the characteris- 
tic equation IP,, - hII = 0, and use straightforward determinant expansion to 
find that 

If’, - AI\ = h”D,_, + (b + c)“( AD,,_, + bcD,,m,), (34 

in which D, is the k X k determinant 

-A b 
c -A b 

c -A b 

c -A b 
C -h b 

c -A 

(3.7) 

Since D, is the same as A - det T, with a = -A, the relation (3.2) can be 
used in (3.6) to conclude t;aL 

IP,, - AI1 = [A” - (b + c)“] D,,m2. 
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But D,_ 2 = (A,_, - AI1 is the characteristic polynomial for A, _ s, so the 
spectrum of P,, denoted spec(PJ, must be 

spec(P,,) = spec(A,_,) U {(b + c), -(b + c)}. 

Consequently, (3.3) guarantees that the eigenvalues of P, are 

spec(P,) = 
i 

(b + c), -(b + c),2Gcos $+ 
1 

for k=1,2 ,..., n-2. 

While there are many choices for b and c which produce irreducible 
stochastic matrices that fail to be nearly uncoupled, the point is best made by 
setting b = c = $, so that P,, becomes 

P, = 

with eigenvalues 

0 + 
1 
2 0 ; 

1 0 

(3.8) 

IlXfl 

1, -l,cos& fork = 1,2 ,..., n - 2 

Clearly, the eigenvalue A, = cos [r/(n - l)] can be made arbitrarily close to 
1 by increasing the size of n. Yet, for n > 4, (T(P,,) = 1. In other words, for 
no value of n can P, in (3.8) be considered to be nearly uncoupled, because 
in every partition the sum of the entries in the off-diagonal blocks will always 
be at least 1. From this it is clear that a subdominant eigenvalue of P can be 
arbitrarily close to 1 without P being nearly uncoupled. 

Note in our example that to get h,(P) close to 1, without changing o(P), 
requires the increase of n. Studying this further, let I,, denote the n X n 
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identity matrix and, for all n > 4, 
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C,={aI,+bP,:a+b=landa>O,b>0}. (3.9) 

Note that if P E C, then 

a(P) =b, 

9-r 

A,(P) = a + b cos - 
n-1 

= 1 - g(P) 1 - cos 2 . 
( 1 

(3.10a) 

(xlob) 

It is clear that if we choose any rr > 4 and any number A, (cos[~/(n - 
l)] < A, < l), then with the right choice of b, there is a P E C, such that 
A,(P) = A,. 

Using (3.lOb), write 

1 - W) 
n- = a(P). 

1 - cos - 
n-l 

(3.11) 

Some data, choosing n and A,, and computing u from this equation, are 
given in Table 1. These data show that A,,_(P) must be close to 1 in order to 
assure (T(P) = 0.1. And this is true even for small size matrices. 

TABLE 1 
DATA SHOWING THE RELATIONSHIP BETWEEN A2 AND CT FOR c,, 

7r 
n cos - 

n-1 
Q A2 u 

4 .50000 .95000 .l 
5 .70712 .97071 .I 
6 .80902 .98090 .I 
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EXAMPLE 2. For this example, define 

S, = {P : P is a 2 X 2 stochastic matrix) . 

If P E S, and P = , then 

1 + *2(P) = Pll + P22 = (1 - ?%,I + (1 -p,d. 

Thus, since CT(P) = p,, + p,,, 

1 - h,(P) = U(P). 

We point out that this expression can be written in the form 

1 - h2P-Y 
rr = a(P). 

1 - cos - 
2 

(3.12) 

(3.13) 

(In the conclusion we explain the significance of this form.) 

EXAMPLE 3. For this example, define 

T,, = {P : P is an 72 X n symmetric stochastic matrix) . (3.14) 

As used by Fiedler [2], define for any P E T,, 

p(P) = min C pij, 
iEM 
jZM 

(3.15) 

where M is a nonempty proper subset of (1, . . . , n}. Note that if the 
minimum is achieved at M, and we set M, = M, M, = (1, . . . , n} \ M, then 
since P is symmetric, cr(P> = Zp(P). 

Fiedler proved [2, Theorem 3.21 that if /L(P) < k then 

1 - h,(P) > (1 - cos 92/J(P) 

> (1 - cos +m 
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TABLE2 
DATA SHOWING THE RELATIONSHIP BETWEEN A, AND (T(P) 

n 
II 

2(n - 1) 
> l-A, > (l-r:os;)r A, g 

2 .I .l .I .I_) .I 
3 ,075 .05 .05 .9*5 .1 
4 ,067 .03 .03 .97 .1 
5 .063 .02 .02 .98 .l 

or 

1 - W) 
r 2 a(P). 

1 - (‘OS - 
n 

(3.16) 

Fiedler shows that if CT and A, are chosen such that 

n 
o G a< 2 and 

2(rI - 1) 

then there is a P E T, such that a(P) = (T and A,(P) = A,. 
We use the inequality (3.16), h c oosing n, CT, and A, so equality holds, to 

provide the data in Table 2. Some larger values of n are shown in Table 3. 
Again, it is interesting to see just how close A,(P) needs to be to 1 to obtain 
CT(P) = 0.1. 

TABLE3 
RELATIONSHIP DATA FOR T,, LARGER n 

n 
n 

2(" - 1y 
> 1 - A, > (lho+ A, c 

10 .05556 .00489 .00489 .99511 .l 
20 .052632 .0012312 .0012312 .99877 .l 

100 .052910 .000049344 .000049344 .99995 .1 
1000 .050050 .00000049348 .00000049348 .99999 .l 
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4. CONCLUDING REMARKS AND A CONJECTURE 

It is easily shown that 

1 - A, 1 - A, 
92-a lr 

1 - cos - 1 - cos - 
n n-1 

for all n. Thus, assuming the hypotheses of our examples, we have 

(4.1) 

(4.2) 

as an upper bound on u (P> over S, , as well as T, and C,. With this function 
in mind we conclude this paper with a conjecture. 

CONJECTURE. Let S, denote the set of n X n stochastic matrices. Then 
there is a function f(n, A,) such that for fKed n, f(n, A,) -+ 0 as A, -+ 1. 
Further, for all P E S,, f(n, h,(P)) 2 U(P), and for each n, equality holds 
for some P. (Reasonable bounds would also be interesting.) 

In addition, by extending c+(P) to k nearly uncoupled blocks P,,, . . . , Pkk 
in 

r 

Pll PlZ *** Plk P1k+1 
P 21 P 22 *.* P 2k P 2kfl 

p=: :*. : :, 

pkl Pk2 -” ‘kk Pkk+l 

p kfl pk+12 ‘.. Pk+lk Pk+lk+l 

(4.3) 

f can be extended to cover A,, . . . , A,, 1 eigenvalues near 1. (See [3] for one 
such bound.) 

For somewhat related work, on the inverse eigenvalue problem for 
stochastic matrices, the reader may want to see [l], [S], [6], and [S]. 
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