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ABSTRACT 

For a nonnegative irreducible matrix A with spectral radius p, this paper is 
concerned with the determination of the unique normalized Perron vector II which 
satisfies AT = pn, a > 0, Einj = 1. It is explained how to uncouple a large matrix A 

into two or more smaller matrices-say P,,,P,,, ,Pkk -such that this sequence of 
smaller matrices has the following properties: (1) Each Pii is also nonnegative and 
irreducible, so that each Pii has a unique Perron vector II(‘). (2) Each Pii has the same 
spectral radius p as A. (3) It is possible to determine the II(’ completely indepen- 
dently of each other, so that one can execute the computation of the ?I(*) ‘s parallel. (4) 
It is easy to couple the smaller Perron vectors II (I) back together in order to produce 
the Perron vector II for the original matrix A. 

1. INTRODUCTION 

For a nonnegative irreducible matrix A,,, with spectral radius p(A) = p, 
a fundamental problem concerns the determination of the unique normalized 
Pen-on vector n, X 1 which satisfies 

7n 
Aa = pn, 
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For small values of m, this is not a difficult problem to solve using adapta- 
tions of standard techniques for solving systems of linear equations. However, 
there exist many applications for which m is too large to be comfortably 
handled by standard methods. 

For large scale problems, it is only natural to attempt to uncouple the 
original matrix A somehow into two or more smaller matrices-say 

P,,P,,..., P,-of order ri, r,, . . . , rk, respectively, where If= Irj = m. Ideally, 
this sequence of smaller matrices should have the following properties. 

(1) Each smaller matrix P, should also be nonnegative and irreducible, so 
that each Pi has a unique normalized Perron vector 7~~‘). 

(2) Each smaller matrix P, should have the same spectral radius p as the 
original matrix A. 

(3) It should be possible to determine the ~(~)‘s completely indepen- 
dently of each other. For modem parallel computer architectures it is 
desirable to be able to execute the computation of the ~‘*)‘s in parallel. 

(4) Finally, it must be easy to couple the smaller normalized Perron 
vectors ,ci) back together in order to produce the normalized Perron vector 
71 for the original nonnegative matrix A. 

This paper is dedicated to showing how to accomplish the above four 
goals. 

2. PERRON COMPLEMENTATION 

The purpose of this section is to introduce the concept of a Perron 
complement in a nonnegative irreducible matrix and to develop some of the 
basic properties of Perron complementation. The concept of Perron comple- 
mentation will be the cornerstone for the entire development which follows. 

Unless otherwise stated, A will denote an m X m nonnegative irreducible 
matrix with spectral radius p, and A will be partitioned as 

A= 

Al, Al2 . . . Al, 
A 21 A22 . . A,, 

. . 

A;, A;, . . : A*k 
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where all diagonal blocks are square. It is well known that p1 - A is a 
singular M-matrix of rank m - 1 and that every principal submatrix of p1 - A 
of order m - 1 or smaller is a nonsingular M-matrix. [See Berman and 
Plemmons (1979, p. 156)]. In particular, if Ai denotes the principal submatrix 
of A obtained by deleting the ith row and ith column of blocks from the 
partitioned form of A, then each p1 - Ai is a nonsingular M-matrix. There- 
fore, 

(PI- Ai) -‘a 0, (2.1) 

so that the following terms are well defined. 

DEFINITION 2.1. Let A be an m X m nonnegative irreducible’ matrix 
with spectral radius p, and let A have a k-level partition 

A A 
A = .“’ .“” 1 ’ 

A;, A;, . . 

A 2k 

A kk I 

in which all diagonal blocks are square. For a given index i, let Ai denote the 
principal block submatrix of A obtained by deleting the ith row and ith 
column of blocks from A, and let Ai * and A, i designate 

Ai*=(Ai, Ai ... Ai,i_l 

and 

Aei = 

‘ki 

‘The irreducibility assumption is not absolutely necessary for this definition to make sense. 
The ith Perron complement is well defined whenever p(Ai) < p(A), and many subsequent 
statements remain valid under these weaker conditions. Of course, irreducibility guarantees that 
this is the case for all i. 



72 CARL D. MEYER 

That is, Ai * is the ith row of blocks with A ii removed, and A, i is the ith 
column of blocks with Aii removed. The Perron complement of Aii in A is 
defined to be the matrix 

Pii = Aii +Ai,(pI - A,) -IA*,. 

For example, the Perron complement of A,, in 

is given by 

P,,=A,,+(A2, AB) 
PI-A,, 

_A, 

31 

The reason for the terminology Perron complement will become clear as 
later developments unfold. Although the concept of Perron complementation 
as defined above is not the same as the well-known concept of Schur 
complementation, there is an obvious connection. For example, consider a 
2level partition of a nonriegative irreducible matrix 

with spectral radius p. Assuming square diagonal blocks, the Perron comple- 
ment of A,, is given by 

PI, = A,, +A,,(P~ - A,) -‘A,,> 

and the Perron complement of A, is 

P,=A,,+A,,(pI-A,,)-‘A,,. 
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For this case, it is easy to see that the Perron complement of A,, is in fact 

[ pI - SchurComplement( PI- A,)] inthematti pI-A 

and the Perron complement of A, is 

[ pI - SchurComplement( pI - A,,)] in the matrix p1 - A. 

The following observation-stated as a technical lemma-is conceptually 
straightforward to prove. 

LEMMA 2.1. Suppose that Aii has size r X r, and let 

A=QAQ, 

where Q is the elementary permutation matrix which corresponds to an 
interchange of the 1st and ith block positions. The matrix d can be 
repartitioned into a 2 x 2 block matrix 

A= All x12 
i I 621 ‘L 

so that A,, = Aii and the Perron complement of Aii in A is the same as the 
Perron complement of A,, in A. That is, 

Pii = P,, = A,, +&( p1 - ;izz) - %,,. 

We are now in a position to develop some of the basic properties of 
Perron complementation. The following theorem is the first in the sequence. 

THEOREM 2.1. Zf 

A A 
A = .“’ .” 1 ’ . 

A 
.“” 

I A;, A;, ‘. 1 Aik 
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is a nonnegative irreducible matrix with spectral radius p, then each Pemon 
complement 

Pii = Aii +Ai,(pI - Ai) -IA,, 

is also a nonnegative matrix whose spectral radius is again given by p. 
Moreover, if 

#) \ 

@) 
Tr= . >o 

is a conformubly partitioned positive eigenvector for A associated with p, 
then 

Pii@) = p@). (2.2) 

That is, v(i) > 0 is a positive eigenvector for Pii associated with the spectral 
radius p. 

Proof. Assume that A has been permuted and repartitioned as described 
in Lemma 2.1, so that 

and the Perron complement of A,, in A is the same as the Perron comple- 
ment of A,, in A. That is, Pii = Pi,. Since each principal submatrix of PI- A 

(and PI- A) of order m - 1 or less is a nonsingular M-matrix, it follows from 
(2.1) that (PI- A,))’ > 0 and hence 

Pii = Pii = A,, +;ii2( PI- A,,) - l;i,, >, 0. 

REMARK. Pii need not be strictly positive-an example is given after this 
proof. 
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To prove that 

Pii” = pn(‘), 

define ii = Qq and write 

+=QT= 
*Cl) 

i 1 $4 ’ 

where ii(‘) = ,ci). Use the facts that AT = pa and Q2 = I to conclude that 

p+ = pQlr = QAlr = QAQ2~ = ki 

and hence 

It now follows that 

$4 = (PI - dzz) - ‘;i2p, 

and therefore 

piiT = ~#) = i 
11 41) + A,,( p1 - dzz) ~ 1;421ii(l) 

This proves that p is an eigenvalue for Pii with an associated positive 
eigenvector given by ,ci). It follows from the classical Perron-Frobenius 
theory that for a nonnegative irreducible matrix, the only eigenvalue which 
can have a positive eigenvector is the Perron root. Thus, p must indeed be 
the spectral radius of Pi,. W 
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REMARK. The method used in the previous proof yields a similar conclu- 
sion for any eigenvalue. 

To see that a Perron complement need not be strictly positive, consider a 
4 ~4 nonnegative irreducible matrix whose partitions and zero pattern are 
shown below: 

For this configuration, 

PI, = A,, +A&1 - A,) %, 

Although Perron complements can have zero entires, the zeros are always 
in just the right places to guarantee that each Pii is an irreducible matrix. 

THEOREM 2.2. Zf 

IA11 Al2 ... Al, 
A A A = .a’ .” 1 ’ . A .“” 

I . A;, Ai . . 1 Aik 

is a nonnegative irreducible matrix with spectral radius p, then each Perron 
conlplenlent 

Pii = Aii +A&1 - Ai) plA,i 

is also a nonnegative irreducible matrix with spectral radius p. 

Because they are each of independent interest, two different proofs are 
given. 
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Algebraic proof Suppose that A,,-and hence Pi,-is r x T. If 

’ ,$l) \ 

,G? 
IT= . >o 

77 

,+k) / 

is a conformably partitioned positive eigenvector for A associated with its 
spectral radius p, then Theorem 2.1 guarantees that T(~) > 0 is a positive 
eigenvector for Pii associated with its spectral radius p. If D is the r x T 
diagonal matrix 

D= 

n,(i) 

T,(i) 

,(i) 
* 

then 

s= 
D-‘PiiD 

P 

is a row stochastic matrix. For all row stochastic matrices, it is known that the 
unit eigenvalue has index 1-i.e., the unit eigenvalue for S has only linear 
elementary divisors. [See Gantmacher (1960, Vol. 2, p. 84).] Therefore, as an 
eigenvalue of Pii, Index(p) = 1, and hence the Jordan form for PI- Pii is 

(2.3) 

where t is the algebraic multiplicity of p as an eigenvalue of Pii and where X 
is a nonsingular. Assume now that A has been permuted and repartitioned as 
described in Lemma 2.1, so that 

and Pii = Prr. 
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By observing 

\o 1 ,\ -A21 

x (pI-b;)-1A21 i 
0 

I = 1 
it follows that 

i 

PI - Pll 0 

0 PI - L, 

Suppose A, A,,, and A, have dimensions m X m, T X T, and q X q, respec- 
tively, with r + q = m. It is well known that A being nonnegative and 
irreducible implies that Rank( PI- A) = m - 1 and Rank(p1 - A2a) = q. Thus 

Rank( PI- A) = Rank( PI- p,,) + Rank( pI - A,,). 

Rank(pI - Pii) = Rank( pI - P,,) = m - I - q = r _ I. 

This together with (2.3) produces the conclusion that p must in fact be a 
simple eigenvalue for Pi,. It is not difficult to see that Pi; is the Perron 
complement of A?li in AT, so that Theorem 2.1 guarantees P;f also has a 
positive eigenvector associated with its spectral radius p. It is known 
(Gantmacher, 1969, Vol. 2, p. 79) that if the spectral radius p of a nonnega- 
tive matrix is a simple eigenvalue, and if the matrix and its transpose each 
possess a positive eigenvector associated with p, then the matrix must in fact 
be irreducible. Since this is precisely the situation for the Perron complement 
Pii, the conclusion is that Pii must be irreducible. W 

The above proof is purely algebraic in nature. However, irreducibility can 
be viewed strictly as a combinatorial concept because of the fact that a 
matrix M is irreducible if and only if its directed graph B(M) is strongly 
connected. It is therefore desirable to also argue the irreducibility of a Perron 
complement from a graph theoretic point of view. The author is indebted to 
C. R. Johnson for suggesting the following combinatorial proof. 

Combinatorial proof of Theorem 2.2. For any particular Perron comple- 
ment Pii of size r X r, it can be assumed-without loss of generality-that A 
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has been permuted and repartitioned to the form 

in which A,, is r X r and Pji becomes identified with 

P,, = 41 +*,,bI - A,) -542,. 

To demonstrate that S(P,,) is strongly connected, let 

h,kE {1,2 ,..., r}, 

and let E( .) denote the set of directed edges in the directed graph of a 
specified matrix. 

Case 1: There is a path j%m node h to node k in S(A,,). In this case, 
there must also be a path from node h to node k in S(P,,), because 

&(A ii) L &Pi, )- 
Case 2: There is rw path jivm node h to node k in S(A,,). For this 

situation, there must be a path from node h to node k in 9(A) but which 
necessarily passes through at least one node 

iE {r+1,r+2 )...) n}. 

That is, 9(A) contains a sequence of directed edges 

h+h,-.. +h,,+il... +iq-+kl+ . . . +k,-,k 

leading from node h to node k such that 

{(h-h,),(h,-h,),...,(h,_,~h,)} c&h,), 

{(k,~k,),(k2~k,),...,(k,jk} c&4,,), 

(2.4 

(2.5) 

and where 

0# {il,i2,..., i4} c {r+l,r+2 ,..., n}. 
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in 3(A) guarantees that 

[A&Q,-‘A,,] h,k, + 0. 

This, together with the fact that 

m AnA]2& 
AdpI-&-‘A,,= c 

j-0 pi+1 ’ 

implies 

[AdPI - A,,) %t,] ,I k f 0, 
P I 

so that (hp + k,) E b(P,,). Combining this with (2.4) and (2.5) together with 
the fact that &(A,,) c I(P,,) leads to the desired conclusion that there is a 
path from node h to node k in 9(P,,). n 

3. UNCOUPLING AND COUPLING THE PERRON VECTOR 

Adopt the following definition-which is consistent with the terminology 
used in Horn and Johnson (1985). 

DEFINITION 3.1. For a nonnegative irreducible matrix A with spectral 
radius p, the unique normalized eigenvector IT satisfying the conditions 

Aa = plr, n > 0, and eTT=l, 

whereeT=(l 1 ... l), is called the Perron vector for A. 
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If 

/ 
A,, A,, ... ‘%A 

A A A = .“’ .” 1. ’ A .“” 

A;, A;, ..I A;,, 

is a nonnegative irreducible matrix with spectral radius p, then the results of 
the previous section guarantee that each Perron complement 

Pii = Aii +A,&1 - Ai) -lA,i 

is also a nonnegative irreducible matrix which again has spectral radius p. 
Furthermore, if 

’ ,& 

44 
II= . 

,,W 

is the conformably partitioned Pen-on vector for A, then Theorem 2.1 
guarantees that the vector defined by 

,(i) 
pi E - 

eTT(i) 

is the Pen-on vector for the associated Perron complement P,,. In what 
follows, the normalizing scalar 

will be called the ith coupling factor. Observe that the Pen-on vector for the 
larger matrix A can be written in terms of the Perron vectors of the smaller 
Pen-on complements as 

’ [iPi ’ 

(2P2 
n= . . (3.1) 

\ tkik, 
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This illustrates that-at least in theory-it is possible to uncouple the 
Perron eigenvector problem by using Perron complementation. If the matrix 
A is partitioned to k levels so as to yield k Perron complements-one Pi, for 
each diagonal block-then the Perron vectors pi for the PiI’s can be deter- 
mined independent of each other and then combined in order to construct 
the Perron vector n for the larger matrix A. However, the expressions for the 
coupling factors Ei have the form 

At first glance, this might seem to place the issue in a hopeless circle, because 
prior knowledge of ~--in the form of the sums &~Ai)--is necessary in order 
to reconstruct 71 from the pi's. Fortunately, this is not the case. The following 
result shows that the coupling factors ti can very easily be determined 
without prior knowledge of the v(i) ‘s. This is a key feature in the 
uncouplingcoupling technique. 

DEFINITION 3.2. Let A be a nonnegative irreducible matrix with spectral 
radius p. Suppose that A is partitioned as 

(A,i A,s “’ A,k 

A A A = .2’ I .22 1 ’ ’ A .2k 

I . A;, AL2 . . 1 Aik 

with square diagonal blocks, and let pi be the Perron vector for the Perron 
complement 

Pii = Aii +Ai,(pI - Ai) -lAei. 

The coupling matrix associated with A is defined to be the k X k matrix 
C = [ ci j] whose entries are given by2 

cij = eTAiipj. 

2Throughout, the size of the vector e T = ( 1 1 1) will always be defined by the context 
in which it appears. 
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The reason for this definition will immediately become apparent. The 
utility of the coupling matrix is realized in the following theorem, which 
demcnstrates how the Perron vectors of the individual Perron complements 
can be easily coupled together by means of the coupling matrix C in order to 
construct the Perron’ vector for A. 

THEOREM 3.1. For a nonnegative irreducible matrix 

/All Al2 -.. Al, 

I A A 
A = .“’ .” 1 ’ ’ A .“” 

\ * A;, A;, . ’ 1 Aik 

with spectral radius p and conformably partitioned Perron vector 

’ &) \ 

,(2) 
Tr= . ) 

\ =(k) 

the associated k X k coupling matrix C is also a nonnegative irreducible 
matrix whose spectral radius is again given by p. Furthermore, the Perron 
vector for C is precisely the vector 

‘61’ 
EC [.2 

\ik, 

whose components are the positive coupling factors defined earlier as 

ti = erTci). 

The vector E is hereaj3er referred to as the coupling vector associated with 
the partitioned matrix A. 
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Proof. It is clear from the definition of the coupling matrix that C > 0. 
To see that C is irreducible, note that because 

eT> 0, A,,aO, and pj>O, 

it must be the case that 

cij = 0 if and only if Aij = 0. 

Since A is irreducible, the preceding statement implies that C must also be 
irreducible-otherwise, if C could be permuted to a block triangular form, 
then so could A. To show that the coupling vector 

is the Perron vector for C, use the fact 

pi= -q 

and compute the ith component of the product CY; to be 

k k 

j=l j=l 

k 
= eT C Aijdj) = eTpn(‘) = pjt. 

j=l 

Thus C& = ok, so that p is a positive eigenvalue for C associated with a 
positive eigenvector 6. Since C is irreducible, p must therefore be the 
spectral radius of C. Because 71 is a normalized vector, it follows that ( is 
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a normulized positive eigenvector for C by observing 

i *1(l) \ 

5,Ci= ieTv(i)=(eT eT . . . eT) II’“’ =e%=l. 
i=l i=l 

,+k) 

By combining the observation of (3.1) with Theorem 3.1, we arrive at the 
major conclusion of this paper-which is summarized below as a formal 
statement. 

THEOREM 3.2 (The coupling theorem). Let A be a nonnegative irre- 
ducible matrix with spectral radius p, and suppose that A has a k-level 
partition 

(4, Al2 “. Alk 

A21 
A= . 

A, .‘. A,, 
. . 

\ AL1 

with square diagonal blocks. Zf 
complmnmt 

Ai . .I ALk 

pi is the Perron vector for the Perron 

Pii = A,, +Ai,(pI - Ai) -lA,i 

and if 

‘51 
E= s.2 

,'ik 

is the Perron vector for the k x k coupling matrix C in which 

cii = eTAijpj, 
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is the Perron vector for A. Conversely, if the Perron vector for A is given in 
the form of a conformably partitioned vector 

/ ,&) ’ 

,$a 
II= . ) 

\ =(k) / 

then 5. = eTnci) and a(“)/ti is the Pemon vector for the Perron complement 
Pi,. ’ 

REMARK. The use of the coupling matrix is similar to techniques used in 
the theory of aggregation-e.g., see Courtois (1977) or Simon and Ando 
(1961) and the references contained therein. The coupling theorem given 
above might be viewed as an exact aggregation technique. 

The case of a e-level partition is of special interest. The following 
corollary shows that it is particularly easy to uncouple and couple the Perron 
eigenvector problem for these situations. 

COROLLARY 3.1. Let A be a nonnegative irreducible matrix with spectral 
radius p. If A is partitioned as 

where A,, and A, are square, then the Perron vector for A is given by 
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where pI and pz are the Perron vectors for the Perron complements 

I’,,= A,,+A,,(pI - A,) -h, and P,=A,+A,,(pI-A,,)~‘A,,, 

respectively, and where the coupling factors [I and Ez are given by 

5r= 
eTA 12P2 

P - eTA,,p, +eTA,,p2 
and [a=1--5r. 

Proof. Simply verify that the given values of [i and [a are the two 
components of the Perron vector for the coupling matrix 

c= 
i 

eTAriP, eTA rapa 

eTAZiP, eTAaap2 

There is always a balancing act to be performed when uncoupling the 
Perron eigenvector problem using Perron complementation. As k increases 
and the partition of A becomes finer, the sizes of the Perron complements 
become smaller, thus making it easier to determine each of the Perron vectors 
pi. At the same time, however, the size of the coupling matrix Ckxk becomes 
larger, thus making it more difficult to determine the coupling factors ti. In 
the two extreme cases when either k = m or k = 1, there is no uncoupling 
whatsoever, because C = A when k = m and Pi, = A when k = 1. Further- 
more, as the size of a Perron complement becomes smaller, the order of the 
matrix inversion embedded in the Perron complement becomes larger. One 
must therefore choose the partition which best suits the needs of the 
underlying application. For example, if computation utilizing a particular 
parallel architecture is the goal, then the specific nature of the hardware and 
associated software may dictate the partitioning strategy. 

Rather than performing a single uncouplingcoupling operation to a high 
level partition of A, an alternative is to execute a divide-andconquer proce- 
dure using only 2-level partitions at each stage. Starting with a nonnegative 
irreducible matrix A (with spectral radius p) of size m X m, partition A 
roughly in half as 

A= 

to produce two Perron complements, P,, and Pzz, which are each nonnega- 
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tive irreducible matrices (each having spectral radius p) of order approxi- 
mately m/2. The Perron complements P,, and Pas may in turn be partitioned 
roughly in half to produce four Perron complements-say (PI,),,, (P,,),,, 

(Pz7L and (P,),-each of which is of order approximately m/4 (again, 
each has spectral radius p). This process can continue until all Perron 
complements are sufficiently small in size so as to easily yield a Perron vector. 
The small Perron vectors are then very easy to successively couple-accord- 
ing to the rule given in Corollary 3.1-until the Perron vector 7~ for the 
original matrix is produced. At each stage, all Perron complements have 
spectral radius p, so that no eigenvahre computation past the initial determi- 
nation of p is necessary. 

For example, consider the following 8 X 8 nonnegative irreducible matrix 
whose spectral radius is p = 33.2418: 

p,, = 

Pzz= 

( 86357071 
07385641 
1 2 6 1 3 8 8 7 

A= 
28407782 

2 4 6 2 5 7 6 5 
41048482 
31664550 

\ 01167034 

10.51 8.136 
3.058 9.189 

5.231 4.915 
6.401 11.16 

For the indicated partition, the Perron complements of A are given by3 

7.639 9.309 
7.175 12.74 I---- 11.91 8.862 
10.38 7.113 

\ 

and 

3The arithmetic indicated in this example is not exact. Numbers have been rounded to four 
significant digits. 
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with coupling vector 

.5469 
C=( ). .4531 

Now, the two Perron complements of P,, are 

17.50 17.65 and RI),= ( 16.01 15.14 11.27 20.61 l7 . 34 l7 . g3 1 

with coupling vector 

while the two Perron complements of Pzz are 

P22h = ( 16.89 18.56 
17.91 12.92 

with coupling vector 

The Perron vector for (P,,),1 is given by ( 1 
:zti , and the Perron vector for 

(PA2 is 1;: 3 i 1 
so that the Perron vector for P,, is 

Similarly, the Perron vector for (P&r1 is given by :zz and the Perron ( 1 

vector for (Paa)= is :Fl , ( 1 
so that the Perron vector for Pzz is 
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Therefore, the Perron vector for A must be 

\ .2600 j = 

,1475 
.1316 
I1256 
I1422 
1347 
1188 

.1173 

.0823 

In addition to the divide-and-conquer process illustrated above, there are 
several other variations and hybrid techniques-e.g., iterative methods-which 
are possible. It is clear that the remarks of this section can serve as the basis 
for a fully parallel algorithm for computing the Perron vector for a nonnega- 
tive irreducible matrix. However, there are several substantial computational 
issues which must be addressed, and therefore a more detailed discussion 
concerning parallel implementations will be considered in separate papers. 

4. PRIMITIVITY ISSUES 

Primitivity is, of course, an important issue. Accordingly, it is worthwhile 
to make some observations concerning the degree to which primitivity-or 
lack of primitivity-in a partitioned matrix A is inherited by the smaller 
Perron complements P,,. 

The first observation to make is that A being a primitive matrix is not 
sufficient to guarantee that all Perron complements are primitive. For exam- 
ple, the matrix 

is irreducible and primitive because A5 > 0. However, for the indicated 
partition, the Perron complement 

p=o l I1 i 1 1 0 

is not primitive. 
Nevertheless, it is true that if a particular diagonal block in A is primitive, 

then the corresponding Perron complement must also be primitive. 
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THEOREM 4.1. Let A be a nonnegative irreducible matrix partitioned as 

All Al2 ‘. . A,, 
A A 

A = .“’ I: : * . .” 1” 
A .“” 

\ 
A kl Ak2 ‘.. 

in which all diagonal blocks are square. If a particular diagonal block Aii is 
primitive, then the corresponding Perron complement Pii must also be primi- 
tive. 

Proof, Since Aij > 0 and Ai *(I - Ai) ‘A, i >, 0, it follows that for each 
positive integer n, 

where N > 0. Therefore, Pi7 > 0 whenever Ayi > 0. n 

The following theorem explains why all but a special class of Perron 
complements must be primitive. 

THEOREM 4.2. Zf Aii has at least one nonzero diagonal entry, then the 
corresponding Perron complement Pii must be primitive. 

Proof. If Aii has at least one nonzero diagonal entry, then so does P,,. 
Theorems 2.1 and 2.2 guarantee that each Pii is always nonnegative and 
irreducible. It is well known-see Berman and Plemmons (1979, p. 34)-that 
an irreducible nonnegative matrix with a positive trace must be primitive. 
Therefore, Pii must be primitive. H 

The converse of Theorem 4.1 as well as the converse of Theorem 4.2 is 
false. The matrix 

‘0 0 0 0 0 11 
100000 

A= 
0 ; 0 0 0 0 

,+, 
0 1 0 0 0 0 

(4.1) 

OLlOO 
000010 

is irreducible, but notice that neither A,,, A,, nor A itself is primitive. 
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Nevertheless, the corresponding Perron complements 

are each primitive. 
This example indicates another important advantage which Perron com- 

plementation can provide. The matrix A in (4.1) is not primitive, and hence 
its Perron vector n cannot be computed by the simple iteration4 

where x0 is arbitrary. 

However, P,, and Pzz are each primitive, and therefore each Pji yields a 
Perron vector pi by means of the straightforward iterations 

where p(O) is arbitrary. I 

Take note of the fact that the two iterations represented here are completely 
independent of each other and consequently they can be implemented 
simultaneously. By using the coupling factors described in Corollary 3.1, it is 
easy to couple p1 with pz in order to produce the Perron vector for the larger 
imprimitive matrix A. 

5. SUMMARY 

For a nonnegative irreducible matrix which is partitioned as a matrix with 
square diagonal blocks 

‘All Al2 ... AlJ 
A 

A 
21 A,, ... A,, 

mxm= . . . . 3 

\A;, A;, ..: A;,, 

4The spectral radius p is included here for the sake of generality. Notice that the matrix in 
(4.1) is column stochastic, so that p = 1. 
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which has spectral radius p and conformably partitioned Perron vector 

93 

’ &) 

,(2) 
n= . > 

&) 

the concept of the Pmon complement of Aii is introduced as 

Pii = Aii +A&1 - Ai) -lA,+ i=1,2 k. ,..., 

Perron complementation is shown to possess the following properties: 

(1) Each Pii is also a nonnegative and irreducible matrix. 
(2) Each Pii also has spectral radius p. 
(3) The Perron vector pi for Pii is the normalized ith segment of IT. That 

is, pi = a(‘)/.$, where the normalizing factors (also referred to as the coupling 
factors) are ti = eWi). 

(4) The vector 

is the Pen-on vector for the k X k coupling matrix C-which also is a 
nonnegative irreducible matrix with spectral 
defined to be 

cij = eTAijpj. 

radius p-whose entries are 

These results allow the Perron eigenvector problem to be completely 
uncoupled in the sense that the Perron vector pi of each small Perron 
complement Pii can be determined independently of the Perron vectors of 
the other Perron complements. By using the Perron vector E, for the coupling 
matrix C, the smaller Perron vectors pi associated with the individual Perron 
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complenients can be coupled together to form the Perron vector T for the 
original large matrix A by taking 

This work represents a generalization of‘ the results of Meyer (1987), in 

which the concept of stochastic complementation was introduced in order to 

uncouple finite Markov chain problems. 
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